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Abstract 
The aim of this study was to explore the relationship between complex brain networks in people with Chronic 
Fatigue Syndrome (CFS) and neurocognitive impairment. Quantitative EEG (qEEG) recordings were taken from 
14 people with CFS and 15 healthy controls (HCs) during an eye-closed resting condition.  Exact low resolution 
electromagnetic tomography (eLORETA) was used to estimate cortical sources and perform a functional 
connectivity analysis.  The graph theory approach was used to characterize network representations for each 
participant and derive the “small-worldness” index, a measure of the overall homeostatic balance between local 
and long-distance connectedness.  Results showed that small-worldness for the delta band was significantly 
lower for patients with CFS compared to HCs.  In addition, delta small-worldness was negatively associated with 
neurocognitive impairment scores on the DePaul Symptom Questionnaire (DSQ).  Finally, delta small-worldness 
indicated a greater risk of complex brain network inefficiency for the CFS group.  These results suggest that CFS 
pathology may be functionally disruptive to small-world networks.  In turn, small-world characteristics might serve 
as a neurophysiological indicator for confirming a biological basis of cognitive symptoms, treatment outcome, and 
neurophysiological status of people with CFS. 
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Chronic fatigue syndrome (CFS) is a complex multi-
system disease characterized by unexplained 
persistent or relapsing fatigue, post-exertional 
malaise, flu-like symptoms, and neurocognitive 
impairments not relieved by rest and worsened by 
physical or mental activity (Carruthers et al., 2003; 
Fukuda et al., 1994).  Neurocognitive impairment 
is a hallmark symptom in CFS (Jason, Zinn, & Zinn, 
2015) and one of the primary factors involved in the 
etiology of the condition (Johnson, DeLuca, & 
Natelson, 1996).  Approximately 90% of 
patients with CFS report having cognitive symptoms, 
anecdotally referred to in the clinic as “brain fog,” 
profoundly affecting health and quality of life 
(Grafman et al., 1993; Hopkins & Jackson, 2006; 

Komaroff & Buchwald, 1991; Ocon, 2013).  A meta-
analysis found cognitive deficits in CFS pertaining to 
memory, attention, and information processing 
speed, particularly during sustained working memory 
tasks (Cockshell & Mathias, 2010).  In addition, 
patients have been shown to have slower reaction 
times in many studies (Busichio, Tiersky, DeLuca, & 
Natelson, 2004; Constant et al., 2011; Majer et al., 
2008; Thomas & Smith, 2009; Van Den Eede et al., 
2011), particularly under conditions of increasing 
task complexity (Dobbs, Dobbs, & Kiss, 2001).  
DeLuca, Johnson, and Natelson (1994) proposed 
that most memory deficits seen in patients are due 
to slower information processing rather than 
impairment in storage/retrieval mechanisms.  
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Functional MRI studies have observed that patients 
with CFS show signs of brain compensation in 
response to verbal working memory tasks (Cook, 
O'Connor, Lange, & Steffener, 2007; Lange et al., 
2005).  This suggests that dynamic reorganization of 
brain network topology in CFS with subsequent 
reductions in neural efficiency could be contributing 
to cognitive impairment indirectly.  Thus, examining 
changes in overall brain information processing 
speed and neural efficiency factors in CFS may 
elucidate the relationship between cortical 
dysregulation and cognitive symptoms. 
 
Knowledge of general principles of self-organization 
in real-word systems has prompted a paradigm shift 
in neuroscience away from localization of brain 
responses toward a deeper understanding of brain 
connectivity influences on information processing 
efficiency (Sporns, 2013).  In the past decade, graph 
theoretical analysis has been increasingly used in 
neuroscience as a framework for understanding how 
dynamic processes are involved in the emergence of 
cognition and behavior (Menon, 2012; Stam, 2014).  
This approach has a number of distinct advantages 
which allow researchers to: 1) quantify and model a 
wide range of varying network attributes, 2) 
characterize the balance of local and global trade-
offs that operate within systems, 3) examine 
weakened elements of the system and 
compensatory dynamics responding to pathological 
processes, and 4) simultaneously account for 
relationships between all the network elements and 
a given cognitive function (Rubinov & Sporns, 2010).  
In this sense, the application of graph theoretical 
analysis can extend our understanding of the key 
aspects of brain function in patients with CFS. 
 
Complex networks are ubiquitous to the real world 
(e.g., social networks, airline routes, power grids, 
protein networks; Watts & Strogatz, 1998), and the 
brain itself is a complex network comprised of many 
subnetworks of distributed brain regions which 
instigate even the most basic behaviors (Deco, Jirsa, 
& Friston, 2012; Sepulcre, 2014; Stam, 2010).  The 
coordinated activity within complex networks of the 
brain gives rise to fundamental aspects of 
neurocognitive domains involving attention, 
perception, memory, language, and motor 
processing (van den Heuvel & Sporns, 2013; Wig, 
Schlaggar, & Petersen, 2011).  A homeostatic 
balance exists within complex brain networks 
between random neuronal growth processes and 
activity-dependent modification of those processes 
(Minati, Varotto, D'Incerti, Panzica, & Chan, 2013).  
This state of affairs can be explained in terms of 
parsimony; there is a continual drive in the system to 

negotiate trade-offs to the costs involved in 
supporting and to create adaptively valuable 
functional connectivity (Bullmore & Sporns, 2012).  
The number of connections in the system is 
relegated by wiring cost (biological energy and 
materials), and there are evolutionary reasons for 
keeping the demand for long distance connections, 
which are more “expensive,” to a minimum (Stam, 
2010).  Peculiar trade-offs in the topological 
properties of complex brain networks can therefore 
serve as a marker for specific neurobiological 
adaptions to the CFS condition, modeling disease 
course and spread, aberrant plasticity, indexing 
overall information processing efficiency—all of 
which could aid clinical diagnosis of patients and 
even identify clinical subtypes (Crossley et al., 
2014). 
 
The “small-world” network model was introduced in a 
landmark study by Watts and Strogatz (1998) 
demonstrating for the first time that small-world 
properties exist in central nervous systems.  The 
topology of small-world networks is characterized by 
high clustering (segregation) and short path lengths 
(integration), representing a homeostatic balance 
between local and global processing in order to 
satisfy opposing demands which maximize 
processing speed at minimal neurobiological energy 
cost (Sporns & Honey, 2006).  Segregation refers to 
the tendency of nearest neighbor elements to cluster 
together, whereas integration refers to the amount of 
interconnectedness and efficient information 
exchange within the entire network.  The clustering 
coefficient is a measure of functional segregation or 
local connectedness, whereas the characteristic 
path length is a measure of functional integration 
describing global, large-scale activity and 
coactivation of neuronal populations within the 
network (Telesford, Simpson, Burdette, Hayasaka, & 
Laurienti, 2011).  The clustering coefficient and the 
characteristic path length constitute properties of the 
small-world network model.  Taken together, they 
are an indicator of small-worldness, an index 
representing the suitable balance between functional 
integration and segregation of dynamic system 
organization (Humphries & Gurney, 2008; Stam, 
2010; Thatcher, 2016; van Straaten & Stam, 2013). 
 
Kim et al. (2015) demonstrated small-world 
abnormality in CFS using resting-state fMRI to 
examine a sample of 18 women with CFS and 18 
age-matched female controls.  They assessed 
global efficiency, the inverse of the mean shortest 
characteristic path length, relating to the functional 
efficiency of information flow between any two nodes 
in the network.  They also assessed local efficiency 
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which quantifies the fault tolerance of the network 
proportional to the clustering coefficient (Bassett & 
Bullmore, 2006).  They found that global efficiency 
(integration) was lower in CFS compared to the HC 
group, while there were no differences in local 
efficiency (segregation).  Increased demand for long 
distance connections in CFS suggests there is an 
added wiring expense for compensatory systems 
which negatively affects global efficiency of the 
network information processing.  The degree of 
perturbation to small-world dynamics was linked to 
the amount of neurocognitive impairment in patients 
and brain processes found to be compromised 
reflected an underlying disturbance to small-world 
propensity.  However, these investigators did not 
examine small-worldness, an overall indicator of 
optimal brain functioning and neural efficiency and 
neurocognitive impairment (e.g., memory, attention, 
slow thought, etc.) may represent a combination of 
pathology in the overall small-worldness measure 
with the concomitant overt behavioral changes in 
CFS. 
 
Quantitative electroencephalography (qEEG) 
involves numeric analysis of local field potentials 
resulting from the summation of neuronal electrical 
activity that arises from the cell bodies and 
associated dendrites of large populations of 
synchronously active cortical pyramidal neurons 
(Niedermeyer & Lopes da Silva, 2005).  The 
electrical currents are dependent on the integrity of 
the neural sodium/potassium and calcium ion 
pumps, reflecting metabolic activity and rendering 
qEEG a useful tool for quantifying and exploring 
electrophysiological correlates of both normal and 
abnormal neurological function (Thatcher, 2016).  
The frequency, phase, and amplitude of band-limited 
EEG oscillations relates to the specific information 
processing taking place at different spatiotemporal 
scales at any given moment (Le Van Quyen, 2011).  
Higher order cognitive processes appear to call 
upon even more temporal precision for sustained 
neuronal activity between neuronal populations 
(Nunez, Srinivasan, & Fields, 2015).  Temporal 
resolution of qEEG on a millisecond timescale allows 
fine-grained detection of subtle differences in speed 
and efficiency within the relay of information flow via 
cooperative sequencing of oscillatory patterns and 
their phase differences (Buzsáki & Freeman, 2015; 
Steriade, 2005; Thatcher, North, & Biver, 2008).  
This is important given that even the most basic 
cognitive processes depend on precise timing of 
phase relationships in the brain occurring through 
large populations of spontaneously synchronized 
neurons communicating among distributed brain 

regions (Buzsáki, 2006; Sauseng & Klimesch, 2008; 
Steriade & Paré, 2006).  
 
Tomographic EEG methods (electrical 
neuroimaging) use inverse methods to accurately 
map current source density in a three-diminensional 
brain volume, allowing the ability to visualize EEG 
abnormality in deeper brain structures (Grech et al., 
2008; Thatcher, 2016).  A growing number of studies 
are using electrical neuroimaging methods to 
elucidate information processing in the brain and 
small-world network organization in response to 
neurological conditions including epilepsy 
(Adebimpe, Aarabi, Bourel-Ponchel, 
Mahmoudzadeh, & Wallois, 2016; Vecchio, Miraglia, 
Curcio, Della Marca, et al., 2015), multiple sclerosis 
(Vecchio et al., 2017), and Alzheimer’s disease 
(Hata et al., 2016; Vecchio, Miraglia, Curcio, 
Altavilla, et al., 2015; Vecchio et al., 2016).  A 
comprehensive review on the role of electrical 
neuroimaging techniques for studying the brain in 
CFS can be found in Jason, Zinn, et al. (2015).  
 
Using low resolution electromagnetic tomography 
(LORETA) to investigate 17 monozygotic twins with 
one twin with CFS vs. one healthy co-twin, Sherlin et 
al. (2007) showed that twins affected with CFS had 
increased delta sources in the left uncus and 
parahippocampal gyrus, deeper structures of the 
limbic system.  Sherlin et al. also found higher theta 
sources in the cingulate gyrus and right superior-
frontal gyrus.  Using eLORETA (where “e” stands for 
exact), Zinn et al. (2014) found significantly elevated 
delta sources in a widespread portion of the frontal 
lobe and limbic lobe as well as decreased beta 
sources in the parietal lobe bilaterally.  Higher delta 
sources were also associated with the reduced 
motivation scores on the Multidimensional Fatigue 
Inventory, a measure of fatigue severity commonly 
used in CFS studies.  Increased delta in limbic 
structures is consistent with the findings of Sherlin et 
al., and rhythmic alterations in these regions could 
be indicators of blunted emotional processing in 
CFS possibly related to reduced motivation and 
attentional difficulties.  Interestingly, symptoms 
manifested by brain pathology within the medial 
prefrontal cortex, anterior cingulate, and orbitofrontal 
cortex are largely undetected by most traditional 
neuropsychological tests (Koziol & Budding, 2009).  
Finally, using a Beamformer source analysis 
method, Flor-Henry, Lind, and Koles (2010) found 
sources that were globally reduced in the alpha and 
beta bands in those with CFS (delta band was not 
examined).  Together, the various qEEG and 
tomographic EEG investigations mentioned here 
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demonstrate a relationship between EEG and CFS 
which lay the foundations for this study.  
 
Zinn, Zinn, and Jason (2016) performed eLORETA 
functional connectivity analysis in CFS to examine 
three fundamental neurocognitive networks based 
on Menon’s triple network model of brain pathology 
(Menon, 2011).  This model posits there are three 
primary large-scale brain networks that operate 
dynamically to regulate shifts in arousal, attention, 
and general access to cognitive abilities.  It includes 
the central executive network, salience network, and 
the default mode network and predicts that aberrant 
activity within any one of these networks will 
significantly impact the other two networks resulting 
in pathological states.  Using lagged phase 
synchronization (Pascual-Marqui, 2007a), 
hypoconnectivity was found in the delta and alpha 
frequency bands between nodes for all three 
networks in the group with CFS in comparison to 
health controls.  This finding is consistent with 
several functional connectivity studies using 
magnetic resonance which reported decreased 
connectivity involving key nodes of the salience 
network (Boissoneault et al., 2016; Gay et al., 2016; 
Wortinger et al., 2016).  Disruptions to the salience 
network could underlie primary cognitive symptoms 
in CFS involving attention to internal/external events 
and adaptive engagement of systems responsible 
for processing of working memory and executive 
control.  The above findings show that functional 
connectivity approaches including electrical 
neuroimaging methods are promising avenues for 
studying brain dysfunction in CFS.  
 
The present study addressed the question of 
whether fundamental neurobiological relationships 
and adaptions could underlie cognitive symptoms in 
CFS.  Our primary hypothesis was that patient 
networks would show deviations from normal in 
small-world network characteristics as measured by 
the small-worldness index, thus demonstrating a 
pathological imbalance affecting network efficiency 
and information processing due to the trade-offs 
associated with adaptive reconfiguration of network 
topology in CFS.  Using graph theoretical analysis of 
small-world networks with eLORETA connectivity 
data was used for exploring the linkage of brain 
topology with cognitive impairments that are 
commonly associated with CFS (John, 2005; van 
Straaten & Stam, 2013).  Secondly, changes in the 
small-worldness index were hypothesized to be 
associated with subjective levels of cognitive 
impairment due to maladaptive reconfigurations in 
network topology needed for supporting efficient 
brain processing in patients with CFS.  Lastly, the 

small-worldness index was tested as a way to look 
at risk in patients with CFS compared to HC 
participants.  At the present time, there is no 
physiological marker that represents risk for 
neurocognitive impairment in patients with CFS.  
Having an accurate method for identifying risk of 
cognitive impairment in CFS would help establish 
the utility for this approach for identifying 
epidemiological factors relating to patient health. 
 

Method 
 
Participants 
The participants in this investigation were 29 adults 
(14 individuals with CFS, 15 HCs) ranging in age 
from 20 to 80 years old and the mean age was 
43.97 years (SD = 20.32).  The effects of age were 
statistically adjusted since the mean age between 
groups was significantly different and physiological 
aging is a significant factor within the EEG (Kirk, 
2013; Rossini, Rossi, Babiloni, & Polich, 2007; 
Vysata et al., 2014).  All participants visited the 
Center for Community Research at DePaul 
University to have their EEG recorded.  The 
participants with CFS all met the Fukuda criteria 
(Fukuda et al., 1994) and they had been diagnosed 
with CFS by their physician.  No participants were 
taking medications that would affect the EEG.  This 
study was approved by the Institutional Review 
Board at DePaul University in Chicago. 
 
Procedure 
Eyes-closed, resting state EEG data for each 
participant was recorded for 5 min from 19 electrode 
locations (Fp1, Fp2, F3, F4, F7, F8, Fz, C3, C4, Cz, 
P3, P4, Pz, T3, T4, T5, T6, O1, and O2) positioned 
on the scalp according to the international 10/20 
system using standardized electrode caps (Jurcak, 
Tsuzuki, & Dan, 2007) with a linked-ears reference.  
During cap preparation, impedances for all electrode 
sites were measured and brought to within 5 kΩ.  
Once cap preparation was completed, participants 
were shown their raw EEG signals and trained to 
minimize artifact by relaxing muscles in their 
forehead, jaws, and face to the best of their ability 
while they observed corresponding changes in the 
raw EEG.  The data collection apparatus involved 
Neuroguide qEEG signal processing software 
(Version 2.8.7, 2016) together with the BrainMaster 
Discovery 24 (Bedford, OH) qEEG acquisition 
module, which allows up to 19 channels of EEG 
signals to be recorded simultaneously at 256 Hz. 
During the EEG recording session, each participant 
was seated upright in a comfortable chair in a room 
that was well lit.  Participants were given instructions 
to relax to the best of their ability while keeping their 
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eyes closed until the recording session has ended.  
EEG data were acquired at a 256 Hz sampling rate 
and filtered offline between 1 and 40 Hz.  Artifact 
removal procedures were as follows: 1) visual 
inspection and manual deletion of visible artifact by 
an EEG technician; 2) automated Z-score artifact 
removal using rejection algorithms built into 
Neuroguide set for high sensitivity at two standard 
deviations for immediate exclusion of EEG segments 
with eye movement, muscle, and drowsiness artifact; 
and 3) second visual inspection and manual deletion 
of the artifact by an EEG technician.  Since this 
study was directed toward understanding changes in 
phase relationships of the original time-series data, 
independent components analysis (ICA) was not 
performed.  ICA/regression procedures intended to 
remove artifact actually produce distortion of phase 
relationships between channels by reconstructing 
the EEG time series.  This methodological problem, 
which essentially invalidates the EEG data, has 
been empirically proven in several studies 
(Castellanos & Makarov, 2006; Kierkels, van Boxtel, 
& Vogten, 2006; Wallstrom, Kass, Miller, Cohn, & 
Fox, 2004).  The EEG segments that were included 
for analysis showed greater than 95% split-half 
reliability and greater than 90% test–retest reliability 
coefficients instantaneously computed by 
Neuroguide, and each record had a minimum total 
edit time of at least 1 minute.  For each participant, 
the artifact-free data were then fragmented into 2-
sec EEG segments.  Due to theoretical 
considerations, all analyses were limited to the delta 
(1–3 Hz), alpha-1 (8–10 Hz), and alpha-2 (10–12 
Hz) frequency bands.  Each frequency band 
provides an added layer of physiological significance 
to brain function.  
 
Materials 
All participants completed the DePaul Symptom 
Questionnaire (DSQ; Jason, So, Brown, Sunnquist, 
& Evans, 2015), and data for the DSQ were 
collected and managed using the Research 
Electronic Data Capture (REDCap) hosted at 
DePaul University (Harris et al., 2009).  The DSQ is 
a self-report instrument that measures 54 symptoms 
related to criteria specified in the CDC criteria 
(Fukuda et al., 1994), the Canadian Criteria for 
ME/CFS (Carruthers et al., 2003), and the CFS 
International Consensus Criteria (Carruthers et al., 
2011).  For each symptom item, respondents are 
asked to separately rate the frequency and severity 
over the last 6 months on a 5-point Likert scale (0 = 
none of the time, 1 = a little of the time, 2 = about 
half the time, 3 = most of the time, and 4 = all of the 
time).  The DSQ has good test–retest reliability with 
Pearson’s correlation coefficients above 0.70 and 

test–retest correlations for classified symptom 
categories (fatigue, post-exertional malaise, 
neurocognitive, and autonomic) at 0.80 or higher 
(Jason, So, et al., 2015).  Results of factor analysis 
on the DSQ support at least three distinct symptom 
factors: 1) post-exertional malaise, 2) neurocognitive 
dysfunction, and 3) neuroendocrine/autonomic 
/immune dysfunction (Jason, Sunnquist, et al., 
2015).  Murdock et al. (2016), an independent group 
using the DSQ, found that it demonstrated excellent 
internal reliability and that among patient-reported 
symptom measures it optimally differentiated 
between patients and controls.  The cognitive 
variable of this proposal was the aggregate average 
of nine items that fall under the neurocognitive 
dysfunction factor: problems remembering things, 
difficulty paying attention for a long period of time, 
difficulty with word finding or expressing thoughts, 
difficulty understanding things, only able to focus on 
one thing at a time, unable to focus vision attention, 
slowness of thought, absentmindedness or 
forgetfulness, and loss of depth perception (Jason, 
Sunnquist, et al., 2015). 
 
Functional connectivity was analyzed using 
coherence, a measure of the consistency of phase 
differences in the time-series corresponding to 
different spatial locations (Lehmann, Faber, Gianotti, 
Kochi, & Pascual-Marqui, 2006; Pascual-Marqui, 
2007a, 2007b).  Coherence is interpreted as an 
indicator of “connectivity” which quantifies the 
degree to which phase differences remain stable 
over time either between electrode sites, when 
measured at the scalp when using surface EEG 
(Buzsáki & Watson, 2012; Klimesch, Freunberger, 
Sauseng, & Gruber, 2008; Thatcher, 2016), or 
between two brain regions, in the case of eLORETA 
(Pascual-Marqui et al., 2011).  An advantage of 
eLORETA is that it uses lagged coherence, a 
specialized measure of functional connectivity that 
controls for physiological artifact by removing zero-
lag contributions from volume conduction and spatial 
blurring effects (Pascual-Marqui, 2007a, 2007c).  
Functional connectivity analyses of coherence was 
conducted using the LORETA-KEY software 
package (Pascual-Marqui, 2015).  This software is 
freely provided for download by the KEY Institute for 
Brain-Mind Research at http://www.uzh.ch/keyinst 
/loreta.htm.  eLORETA is based on the stereotactic 
space provided by the Montreal Neurological 
Institute (MNI) template and offers a highly accurate 
estimate of the intracortical current source density 
within a three-dimensional cortical volume consisting 
of 6,239 voxels of unambiguous grey matter at 5 
mm3 spatial resolution.  Complete mathematical 
details of this inverse solution are provided in 
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Pascual-Marqui et al. (2011).  To obtain a 
topographic view of the whole cortex, coordinates 
were computed for 42 separate Brodmann areas 
(BAs: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 17, 18, 19 
20, 21, 22, 23, 24, 25, 27, 28, 29, 30, 31, 32, 33, 34, 
35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47) for 
the left and right hemispheres (84 total ROIs) using 
a single voxel to define each ROI centroid.  Given 
that eLORETA has low spatial resolution based on 
the spatial smoothness assumption, the single 
center voxel is considered an accurate 
representation of activity within the ROI while 
minimizing the possibility of signal contamination 
from neighboring ROIs. 
 

eLORETA lagged coherence was then calculated for 
all 84 ROIs for each participant, generating text files 
with output containing a separate weighted 84 x 84 
coherence matrix for each frequency band. The 
coherence matrix contains the entire set of network 
connections whereby each cell has a value 
representing the magnitude of the statistical 
correlation (coherence) between any pair of nodes.  
In each coherence matrix, the table rows and 
columns represent the ROIs and the cell values 
represent the coherence magnitude of dependency 
between each pair of ROIs.  Figure 1 illustrates the 
workflow for all the analyses that were implemented 
in this study. 

 
 

 
 
Figure 1. The workflow of all analyses in this thesis summarized as an overview. 

 
 
Graph Theoretical Analysis 
The coherence matrix for each frequency band for 
each participant was subjected to graph theoretical 
analysis using the MATLAB Brain Connectivity 
Toolbox (BCT; Rubinov & Sporns, 2010).  The BCT 
has functions that take into account the weighted 
undirected strength or magnitude of all the network 
connections.  Descriptions and code for the 
mathematical functions in the BCT are freely 
available for download at https://sites.google.com 
/site/bctnet/.  BCT functions were applied to each 
participant’s coherence matrix to calculate small-
world characteristics.  The weighted clustering 
coefficient around a given node varies from 0 to 1 

and is quantified by the number of triangles formed 
by that node and its neighboring nodes.  The 
weighted characteristic path length is defined as the 
average shortest weighted path between two given 
nodes using the sum of the individual weighted 
lengths.  Path lengths with conversions based on 
values of the coherence matrix were stored 
separately as a distance matrix with sequences of 
edges that connect nodes indirectly to form neural 
paths.  The path length values in the distance matrix 
are not physical distances, but instead they 
represent the degree of topological separation 
between any two given nodes (Rubinov & Sporns, 
2010).  The GraphVar toolbox in Matlab (Kruschwitz, 
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List, Waller, Rubinov, & Walter, 2015) was used to 
calculate small-worldness, which is the ratio 
between the clustering coefficient and characteristic 
path length compared to their values for equivalent 
randomly generated graphs (Humphries & Gurney, 
2008).  The small-worldness index variable (SW) 
was computed using Csw = (Cw/Cwrand)/(Lw/Lwrand) 
as a comparative marker of efficient brain 
functioning for each participant. 
 
Statistical Analysis 
The graph theory output that was produced using 
BCT functions in MATLAB was subsequently 
imported to SPSS version 23 for conducting further 
statistical analyses.  The data were screened for 
outliers, missing data, skewness, and kurtosis in 
meeting the assumptions for parametric statistics.  

Continuous variables were log-transformed to meet 
the assumption of Gaussianity. 
 

Results 
 
Demographic characteristics by study group and 
descriptives of key study variables are shown in 
Tables 1 and 2.  Most patients with CFS were older 
than HCs and the potential confound of age was 
controlled for in all models.  Given that some 
secondary outcomes were considered 
corresponding to the study hypotheses, this study is 
considered exploratory, and the p values considered 
descriptive.  All data were evaluated with tests which 
were two-sided at the .05 level of significance. 

 
 
Table 1 
Demographic and Clinical Data. 

 14 CFS 15 HCs All 29 Participants 
Age (years)* 
Mean (SD)  57.71 (15.15)  31.13 (15.63)  43.97 (20.32) 

Sex 11 Female 11 Female 22 Female 

 3 Male 4 Male 7 Male 

Handedness 14 Right 14 Right 28 Right 

 0 Left 1 Left 1 Left 

Education 1 Partial college 2 Partial college 3 Partial college 

 6 College 8 College 14 College 

 7 Graduate 5 Graduate 12 Graduate 

Ethnicity 14 White 14 White 28 White 

   1 Latino 1 Latino 
DSQ Cognitive Composite score*  
Mean (SD)  2.87 (.10)  1.25 (.04)  2.03 (.10) 

* p < .01  
 
 
Table 2 
Means and Confidence Intervals for Small-worldness 
Indices by Experimental Group. 

  Small-world 
delta 

Small-world 
alpha-1 

Small-world 
alpha-2 

Group N M (CI) M (CI) M (CI) 

HC 15 .89 (.85–.92) .79 (.76–.83) .84 (.80–.88) 

CFS 14 .82 (.78–.85) .78 (.74–.82) .79 (.76–.82) 
 
The primary outcome of interest was to determine 
whether small-world network values deviate from 
normal in a sample of patients with CFS.  Analysis of 

Variance (ANOVA) was conducted to assess 
whether networks of patients with CFS deviated 
significantly from those of HCs, adjusting for age.  
We first identified statistically significant ANOVA 
values in an overall test, F(2, 80) = 4.915, p = .029, 
which indicated a significantly lower small-worldness 
index z-value for patients with CFS (M = −.181, SD = 
1.047) than HCs (M = .164, SD = .950).  To identify 
the differences between small-worldness within each 
frequency band in this study, follow-up tests were 
conducted with the Bonferroni correction for multiple 
comparisons.  These estimates identified SW delta 
as statistically different between patients with CFS 
and HCs, p = .014; however, the SW alpha-1 and 
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SW alpha-2 were not significant between both 
groups (p = .622 for alpha-1; p = .099 for alpha-2; 
Figure 2).  Within the HC group, a significant 
difference was found between SW delta and SW 
alpha-1 (p = .001), but not between SW delta and 
SW alpha-2 (p = .177).  Within the CFS group, 
however, there was no significant difference 
between any SW frequency bands (p = .355). 
 
 

 
Figure 2. Small-worldness results of group comparisons 
by frequency band.  The CFS group was 1 SD lower than 
the HC group for SW delta (p = .014). 
 
 
Next, hierarchical regression techniques were used 
to determine the linear relationship of small-world 
network organization (measured by SW delta, SW 
alpha-1, and SW alpha-2 combined) with 
neurocognitive impairment.  Two models were fit for 
estimating this relationship, age-adjusted, and found 
that small-worldness significantly predicted the 
neurocognitive impairment scores, F(2, 84) = 
53.482, p = .000, adjusted R2 = .550 for model 1 and 
F(2, 83) = 122.546, p = .000, adjusted R2 = .809.  
These strong effect sizes suggest that deviations 
from small-worldness affect neurocognitive 
impairment.  For model 2 in particular, 80.9% of 
neurocognitive impairment was predicted by the 
combination of small-worldness, experimental group, 
and age (Figure 3). 

 
Figure 3. Small-worldness results of regression analysis 
by frequency band. 
 
 
Our third outcome of interest was the development 
of prediction models to estimate odds ratios and 
95% CIs for patients with CFS in SW delta, SW 
alpha-1, and SW alpha-2.  Fixed-effects multinomial 
logistic regression allowed us to appropriately model 
the relationship between group membership and 
small-world effects at each frequency band.  All 
models were adjusted for the potential confounder of 
age.  To estimate differences between patients with 
CFS in our study cohort, the deviated small-world 
values (small-worldness index variable) in the fixed-
effects logistic regression model were associated 
with increased risk in CFS of SW delta (OR 1.425; 
95% CI: 0.500–3.75) but not for SW alpha-1 (OR 
0.702; 95% CI: 0.310–1.590) or SW alpha-2 (OR 
0.786; 95% CI: 0.386–1.601).  According to this data 
set, the group with CFS was 1.425 times as likely to 
have deviations from normal in small-worldness in 
the delta frequency band but not in the alpha-1 or 
alpha-2 band.  The overall regression model was 
significant at p = .05. 
 

Discussion 
 
To our knowledge, this is the first study to evaluate 
an association between small-world characteristics 
and cognitive symptoms reported in CFS.  These 
findings of functional connectivity alterations suggest 
the importance of applying graph theory to 
connectome-scale analysis of network topology to 
detect subtle disruptions incurred by CFS sequelae.  
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Neurocognitive impairment, as measured by the 
DSQ cognitive composite score, was negatively 
associated with small-worldness index for the delta 
band under observation.  Group-level differences 
were also found, but only for small-worldness in the 
delta band.  Finally, the risk of having small-
worldness deviations in the delta band is 
increasingly greater in CFS. 
 
Small-world models of the brain systems explore the 
balance between high clustering of local systems 
with short path lengths of global systems; these 
attributes are considered to be vital to the efficiency 
of information processing within neurocognitive 
networks (Menon, 2012; Rubinov & Sporns, 2010).  
This model emphasizes the morphological 
adaptations (e.g., changes in axonal diameter, white 
matter pathways, conduction velocities, and energy 
transport mechanisms) governed by trade-offs within 
components and compensation necessary for 
maintaining the multiscale spatial-temporal patterns 
for which the brain operates.  Differences in neural 
resource allocation in CFS were reported in three 
fMRI studies investigating compensatory responses 
to cognitive tasks (Caseras et al., 2006; Cook et al., 
2007; Lange et al., 2005).  The findings of our study 
explain these differences in terms of peculiarities to 
these trade-offs with subsequent weakness to small-
worldness structure that could account for loss of 
cognitive function in people with CFS. 
 
Secondarily, it was found that small-worldness in the 
delta band accounted for the greatest amount of 
variance in cognitive composite scores for the 
hierarchical regression model equation.  Delta is a 
slow oscillation that plays a key role in the dynamic 
coordination of large-scale cortical networks and 
modulation of faster rhythms through cross-
frequency coupling (Buzsáki & Freeman, 2015).  In 
the case of inflammatory disorders of the CNS, the 
most prominent change in large-scale network 
dynamics is the occurrence of cortical slowing (e.g., 
delta activity) during the waking state 
(Westmoreland, 2005).  Furthermore, delta cortical 
slowing can result from a decrease in the afferent 
drive due to white matter or subcortical lesions to 
deep midline areas (Gloor, Ball, & Schaul, 1977; 
Schaul, Gloor, & Gotman, 1981).  Finding abnormal 
small-worldness in delta suggests there may be 
some similarities between CFS and Alzheimer’s 
disease (Babiloni et al., 2013; Hata et al., 2016), 
multiple sclerosis (Babiloni et al., 2016), and 
Parkinson’s disease (Babiloni et al., 2011), where 
abnormal delta sources have been detected. 
 

This is the first study to measure small-world 
properties in CFS in terms of the small-worldness 
index.  Using resting-state fMRI data, Kim et al. 
(2015) found that functional integration (global 
efficiency) was decreased in CFS and disruption to 
global efficiency suggests that, with fewer 
biologically “expensive” long distance connections, 
added burden is being placed on the system for 
satisfying opposing demands.  The “costs” to 
chronically reduced functional integration in CFS 
include: 1) a lowered ability to rapidly combine 
specialized information from distributed brain 
regions, 2) slowed information processing speed 
due to compensatory responses, and 3) a 
generalized impairment to domains of cognitive 
function.  However, our study found differences 
using the small-worldness index as a ratio of 
individual small-world properties (clustering and path 
lengths), a measure of both global and local 
properties which are salient in CFS depending on 
frequency band.  This underscores the need for 
considering a combination of graph theory metrics 
for a more comprehensive examination of CFS. 
 
There are some limitations in the present study.  The 
results of this study should be interpreted with 
caution due to small sample size.  Although 
significant deviations in the reported small-
worldness phenomena were found in people with 
CFS, neurological disorders are invariably 
associated with diffuse network changes.  However, 
it was beyond the scope of this study to report the 
individual nodes, hub, and modules that may be 
involved in suboptimal information processing 
efficiency and prone to failure in CFS.  Although the 
outcome of brain function following individual hub 
failure would likely go beyond discrete local regions, 
future research could explore a more 
comprehensive inspection of hub strength, 
distribution, and participation within modular 
structures to identify ROIs that serve as potential 
targets for treatment.  As another limitation of this 
study, the examination of small-world differences 
was kept within the delta, apha-1, and alpha-2 
frequency bands.  Frequency-dependent changes to 
cortical arrangements occurring in other frequency 
bands (e.g., theta, beta) could also be explored.  
Finally, insignificant findings in alpha-1 and alpha-2 
could reflect a deficiency in the diagnostic criteria for 
CFS, a deficiency in the coherence-based measure 
itself, a problem with the way the ROIs were defined, 
and/or unexplored levels of complex network 
analysis using other graph theory metrics.  
Functional connectivity EEG markers associated 
with neurocognitive impairment and small-worldness 
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in different frequency bands should be verified in 
future studies. 
 

Conclusions 
 
The present findings support the concept that small-
worldness is altered in CFS.  This has important 
implications for this field of study.  For example, 
system-dependent coupling of oscillations has 
fundamental importance to CNS function and may 
be strongly influenced by delays in conduction 
velocity and myelin plasticity.  Changes to white 
matter have been reported in CFS (Puri et al., 2012), 
also associated with clinical measures (Barnden et 
al., 2011), and a severity-dependent increase in 
myelination has also been found (Barnden, Crouch, 
Kwiatek, Burnet, & Del Fante, 2015).  Disruption to 
white matter could explain the relationship between 
abnormal eLORETA coherence patterns over large-
scale complex systems in CFS.  Furthermore, the 
linkage between cognitive symptoms and small-
worldness demonstrates the fundamental 
importance of timing, stability, and adaptation of 
complex systems to CFS which could be related to 
findings of neuroinflammation in patients (Nakatomi 
et al., 2014).  Understanding the network dynamics 
of CFS in terms of eLORETA coherence is an 
important way of comprehending compensatory 
mechanisms and could serve as a practical tool for 
investigating large-scale loss of cognitive function 
related to adaptive reconfiguration of brain networks.  
There is a need for future research that models the 
activity-dependent modifications of brain connectivity 
in CFS with disruption to neurocognitive processes. 
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