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Introduction/Support.  Concussion incidence rates 

are at epidemiological levels and rising (Giza & 

Hovda, 2001).  In 2011, the Center for Disease 

Control (CDC) estimated 1.6–3.8 million sports- or 

recreation-related concussions occur per year 

(Daneshvar, Nowinski, McKee, & Cantu, 2011), and 

concussion rates are increasing in adolescents 

(Zhang, Sling, Rugg, Feeley, & Senter, 2016).  

Concussion is a complex pathophysiologic process 

affecting the brain, induced by biomechanical forces 

(McCrory et al., 2013).  Concussion-related 

symptoms interrupt the daily functioning of the 

concussed individual, and current concussion 

recovery guidelines emphasize rest and the 

avoidance of symptom-provoking behaviors to 

minimize concussion-related symptoms throughout 

recovery (McCrory et al., 2013).  Concussion injury 

results in measurable EEG abnormalities detectable 

by electrophysiological techniques (Rapp et al., 

2015).  Cortical deregulation due to concussion 

injury as depicted by qEEG may be addressed by 

neurofeedback shortly after injury.  

 

Hypothesis/Justification.  Neurofeedback has 

been used as an intervention for traumatic brain 

injury, but requires further investigation as an 

evidence-based practice.  Neurofeedback is 

currently ranked as “Level 3 – Probably Efficacious” 

by the statement of efficacy on evidence-based 

practice in biofeedback and neurofeedback by the 

Association for Applied Psychophysiology and 

Biofeedback (AAPB; Yucha & Gilbert, 2004).  The 

principle investigator hypothesizes that (1) 

neurofeedback interventions to inhibit slow wave 

activity will reduce the presence of concussion 

related symptoms and (2) the use of the intervention 

will decrease recovery time compared to 

recommended clinical guidelines of return-to-play 

concussion recovery.  

 

Methods.  As soon as logistically possible, qEEG 

data will be collected from adolescent or young adult 

patients presenting autonomously to a neurology 

clinic for the evaluation and treatment of acute 

concussion related to sport or recreational activity.  

Cognitive measurements and concussion-related 

symptoms will be measured and tracked using the 

XLNTbrain Sport Inc. Concussion Management 

Program as patients recover according to current 

evidence-based guidelines outlined by McCrory et 

al. (2013) qEEG data, neurocognitive test results, 

concussion-related symptoms, and attending 

neurologist who will guide neurofeedback protocol 

design.  Data will be recollected after patients 

undergo approximately 15 sessions of 

neurofeedback and are medically cleared of 

concussion injury. 

 

Results.  Surface (scalp), sLORETA, and 

connectivity Z-score qEEG metrics from multiple 

commercially available qEEG database suites will be 

assessed for change from pre-neurofeedback and 

post-neurofeedback qEEG assessments.  Changes 

in deviant sLORETA Z-scores and affected brain 

volume will be emphasized.  Images of sLORETA 

results will be displayed visually and graphed by 

frequency band.  Cognitive scores and concussion-

related symptoms following injury and after recovery 

will be assessed. 
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Conclusion.  Neurofeedback may provide a novel 
treatment option for the pervasive 
neuropsychological concussion problem.  Findings 
that yield Z-scored brain activity largely approaching 
a statistically normal range (Z = 0) would suggest 
that neurofeedback may be beneficial to concussion 
recovery in comparison to recovery without the use 
of neurofeedback, where Z-scores may remain 
statistically deviant upon recovery from concussion 
injury (Ims, 2016).  Theoretically, interventional 
neurofeedback following concussion injury may 
enable the concussed individual to train his or her 
brain towards recovery and alter the long-term 
trajectory of the injured brain. 
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ISNR FOUNDATIONS – Introduction to qEEG 
Concepts and Applications 
Thomas Collura 
The Brain Enrichment Center, Bedford, Ohio, USA 
 
This oral presentation will provide an overview of the 
use of quantitative EEG (qEEG) in clinical practice.  
Emphasis will be placed on mental health 

applications.  The basic functions of the human brain 
in relation to EEG will be described.  Specific EEG 
components (frequency bands) will be explained, as 
well as the anatomical basis of EEG rhythms.  
Material will be drawn from published articles and 
books, and will emphasize current knowledge.  The 
relationships of EEG amplitude and phase, 
connectivity, and brain activation will be described.  
From a basic knowledge of physiology and anatomy, 
the relevant clinical signs and symptoms can be put 
into context and used to create treatment planning.  
The use of normative reference databases will be 
explained, as well as relevant inclusion and 
exclusion criteria for creating clinically relevant 
databases.  Signal processing concepts will also be 
introduced, including frequency analysis, use of 
summary maps and other graphical tools, and z-
scores.  The relationship between EEG, qEEG, and 
neurofeedback will be explained in detail and put 
into a clinical framework that can be applied by 
diverse practitioners.  The historical, scientific, and 
medical background of these topics will also be 
described, and specific examples of key research 
and clinical activities will be presented.  In order to 
ensure a foundational approach, the basic theory of 
neuronal electrophysiology, volume conduction, 
EEG amplification, and signal processing will be 
described at a level accessible to mental health and 
medical practitioners.  Relevant specifications and 
performance criteria for instrumentation and 
software will also be described, providing a grasp of 
the capabilities and limits of modern technology.  A 
variety of clinical case studies will be used to 
illustrate key concepts and to demonstrate the utility 
of these approaches in the medical and mental 
health practice areas. The importance of recognizing 
individual differences, peak performance traits, and 
coping and compensatory mechanisms will also be 
covered, including the concepts of phenotypes and 
individual brain optimization strategies. 
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A Model for qEEG, and sLORETA Correlates to 
Predicting and Enhancing Human 
Performance: A Multivariate Approach 
David Cantor1, Dick Genardi2, Barbara Minton3, and 

Robert Chabot4 
1Mind and Motion Developmental Centers of Georgia, Johns 
Creek, Georgia, USA 
2Licensed Clinical Psychologist, Centerville, Ohio, USA 
3Licensed Clinical Psychologist, Boise, Idaho, USA 
4BrainDx, Johns Creek, Georgia, USA 
 
The derivation of qEEG predictive functions may 
play a critical role in using qEEG measures that 
predict potential functional weaknesses or 
individuals “at risk” for specific academic or 
occupational challenges.  Such measures can also 
hypothetically be used in a multivariate algorithm 
approach in neurofeedback to achieve human 
performance enhancement.  EEG was obtained from 
493 individuals ranging in age from 4 to 75 years 
diagnosed with a variety of disorders.  All EEG data 
used a 19-site monopolar montage and referenced 
to Cz in acquisition and utilizing linked ears 
reference to derive digitized information in each of 
the following broad bands: delta (1.5–3.5 Hz), theta 
(4.0–7.5 Hz), alpha (8.0–12.5 Hz), beta (13.0–25.0 
Hz), and beta2 (25.5–35.0 Hz) frequency bands with 
derived measures of absolute power, relative power, 
power asymmetry (inter- and intrahemispheric), 
coherence (inter- and intrahemispheric), and mean 
frequency for each broad band was attained and 
then converted to z-scores relative to a database of 
age-matched normal.  Univariate as well as complex 
multivariate variables collapsed across selected 
regions and combination of frequencies were 
derived for a total of 13,712 variables.  Additionally, 
the sLORETA voxels including weighted function 
voxels for subcortical structures were derived at very 
narrow band frequencies (.39 Hz bands) ranging 
from 1.5 Hz to 35.5 Hz of the EEG (87 variables).  Z-
scores of all voxels for each ROI standard in 
sLORETA as well as a number of weighted voxels 
estimating subcortical locations were derived for 
each very narrow band frequency for a total of 6,896 
variables.  Data reduction methods for this total 
599,952 variable matrix were utilized by deriving the 
mean Z-score score of all voxels within each ROI 
and then averaging these mean Z-scores across the 
narrow band frequencies that define each of a 
number of broad band frequencies for each subject.  
Step-wise regression analyses of the resultant 
reduced variable sets were used to define specific 
weighted polynomial multivariate equations 
accounting for over 90% of variance that predict 
standard scores from neuropsychological tests and 
their subtests for many cognitive and behavior 
measures.  Analyses revealed distinctive predictive 

equations for human performance spanning a wide 
range of human performance.  It is proposed that 
these algorithms represent electrophysiological base 
networks (as opposed to fMRI based networks) at 
“resting state” that correspond to gradients of 
psychological performance.  Pilot data from 
equations demonstrated predictive ability to test 
neuropsychological performance were tested in 
independent patient samples to test validity and 
reliability.  This study demonstrates that qEEG can 
be used to screen for brain functional impairment 
with prediction of specific neuropsychological deficits 
that may require further assessment and 
intervention.  A discussion will be provided regarding 
the use of these same algorithms for neurofeedback 
training optimized human performance. 
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ISNR FOUNDATIONS – How Accurate 
Assessment Leads to Effective Intervention 
for ASD 
Robert Coben and Anne Stevens 
Integrated Neuroscience Services, Fayetteville, Arkansas, USA 
 
Autism Spectrum Disorder (ASD) can be described 
as a “group of developmental disabilities that can 
cause significant social, communication, and 
behavioral challenges.”  The epidemiological data 
presented by the CDC reported that 1 in 68 children 
are currently diagnosed with ASD (CDC, 2016).  The 
CDC has noted an increase in the prevalence of 
ASD since the 1990s, making effective treatment an 
important part of the growing conversation.  
Providing effective treatment options is becoming 
more and more crucial for this population, especially 
when considering the cost of healthcare for these 
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individuals.  With rates of incidence rising, this 
condition has become a major healthcare crisis 
calling for effective methods of intervention and an 
intimate understanding of the disorder.  
Neurofeedback is one promising method to treat the 
symptoms of ASD (Coben, 2013).  This presentation 
will focus on providing up to date information on the 
clinical, neurophysiological, and neuropsychological 
underpinnings for individuals with Autism Spectrum 
Disorders (ASD) and how to use this information for 
better treatment plans and improved outcomes. 
 
This presentation will discuss the importance of 
considering ASD in the context of underlying 
neurophysiological and neurocognitive correlates.  
When considering a treatment plan, this information 
can be used to rate the baseline symptoms in 
objective manner, as well as objectively measure 
change through the treatment course.  This 
approach also allows the clinician more information 
to use to make adjustments during the treatment 
process.  It is apparent that an optimal treatment 
course will demonstrate measurable change at the 
subjective, neurophysiological, and neurocognitive/ 
behavioral levels of analysis.  
 
This presentation will outline assessment 
opportunities for various mental health professionals 
to consider adding to their own practice.  Further 
discussion will relate this information to the EEG 
analysis.  Next, steps will be provided regarding 
using the information for establishing the 
neurofeedback protocol.  The presentation will 
provide a basic foundation for assessment 
opportunities for the neurofeedback clinician and 
strategies on how to use this information to make a 
more informed choice about neurofeedback 
treatment protocols.  Using this information to 
measure outcome goals will also be discussed.  
Case presentations will also be provided to further a 
practical understanding.  
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An Analysis of Long-Term and Secondary 
Outcomes of a Randomized Controlled Trial of 
Neurofeedback to Treat Chemotherapy-
Induced Peripheral Neuropathy 
Sarah Prinsloo1, Randall Lyle2, Diane Novy1, Larry 
Driver1, Lois Ramondetta1, Cathy Eng1, Gabriel Lopez1, 
Sunil Patel1, Jennifer McQuade1, and Lorenzo Cohen1 
1MD Anderson Cancer Center, Houston, Texas, USA 
2Mount Mercy University, Cedar Rapids, Iowa, USA 
 
Background.  CIPN is a common side effect of 
chemotherapy, leading to impairment in daily 
activities and diminished quality of life.  
Neurofeedback (NF) is a brain-training paradigm that 
induces neuroplasticity to modulate brain activity, 
and we have previously shown it leads to improved 
CIPN symptoms that were mediated by NF-induced 
brain changes.  
 
Methods.  Seventy-one (62 female; mean age = 63; 
52 breast, 8 gynecologic, 11 other; average length of 
symptoms = 24 months) cancer survivors greater 
than three months from completing chemotherapy 
who reported greater than 3 on the NCI’s 
neuropathy rating scale, were randomized to a NF 
group (n = 35) and underwent 20 sessions of 
electroencephalography (EEG) NF or a wait-list 
control group (WL; n = 36).  We used quantitative 
EEG imaging to determine any EEG patterns unique 
to CIPN and then provided NF to change aberrant 
brain signatures.  The primary outcome measure 
was the Brief Pain Inventory (BPI).  Secondary 
outcome measures included the Pain Quality 
Assessment Scale (PQAS), MD Anderson Symptom 
Inventory (MDASI), Short Form 36 (SF-36); Brief 
Fatigue Inventory (BFI); and Pittsburgh Sleep 
Quality Index (PSQI), which were completed at 
baseline, at the end of treatment, 1 and 4 months 
later.  Analyses were done using a general linear 
mixed model regression (GLMM), and general linear 
regression (GLM) determined between group 
differences at each time point.  
 
Results.  89% of the participants who were 
randomized completed treatment and 100% of 
participants who started NF completed treatment.  
Change scores from baseline to end of treatment 
demonstrate NF lead to significant reduction in 
neuropathic symptoms such as pain and numbness 
(previously reported), and in cancer-related 
symptom interference (NF = −5.3 vs WL = −0.5, p = 
.000); symptom severity (NF = −5.1 vs WL = −0.8, p 
= .000); fatigue (NF = −3.7 vs WL = −0.8, p = .001), 
and sleep disturbances (NF = −2.3 vs WL = 0.8, p = 
.030); and improved physical functioning (NF = 3.3 
vs WL = 1.4, p = .003).  At 4 months, the outcomes 
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remained for targeted symptoms but not for 
secondary outcomes.  
 
Conclusion.  NF clinically and significantly improved 
primary outcomes at 4 months posttreatment and 
reduced secondary symptoms associated with CIPN. 
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Depression Two Years Post Four-Channel 
Multivariate Coherence Neurofeedback 
Treatment  
Abby Bolen, Caitlinn Mosley, and Robert Coben 
Integrated Neuroscience Services, Fayetteville, Arkansas, USA 
 
Having high prevalence and a persistent nature, it 
becomes clear that depression can be blighting for 
those struggling with its symptoms (Kessler & 
Bromet, 2013).  According to the World Health 
Organization, there are more than 300 million people 
worldwide who are suffering from depression (WHO, 
2017).  Many options for treatment, such as 
psychotherapy and medication, have been shown to 
be effective in reducing depression.  However, a 
recent study by Stevens, Coben, and Middlebrooks 
(2015) showed that four-channel multivariate 
coherence neurofeedback treatment proved to be 
more effective in reducing depression compared to 
alternative methods.  The current study aims to 
show that four-channel neurofeedback training is not 
only effective for the duration of treatment, but 
continues to maintain positive effects over time. 
 
The original study mentioned consisted of 54 
patients across three conditions: psychotherapy, 
neurofeedback, and a waitlist control group.  The 
patients who did not receive neurofeedback initially 
were later offered neurofeedback treatment at the 
conclusion of the original study (crossover design).  
After completing the crossover study (Study 1), 
results showed that 15 out of the 18 patients who 
received NFB had significant changes over time, 
leading to a decrease in depression by 1 standard 
deviation, compared to the other conditions which 
did not show significance (Stevens, Coben, & 
Middlebrooks, 2015).  Our current sample consists 
of 48 patients involved in the original study who 
were administered the Beck Depression Inventory 
(BDI-II).  In order to show the continued effects of 
neurofeedback on depression, the current follow-up 
study will compare the differences in depressive 
symptoms immediately following the completion of 
treatment and 2 years after the treatment has 
concluded.  SPSS software will be used in order to 
perform an ANOVA for analysis.  Results 
demonstrating the changes in reported symptoms 
are expected to support our hypothesis that four-
channel multivariate coherence training will maintain 
the reduction of depressive symptoms 2 years after 
the conclusion of treatment. 
 
The data from the initial crossover study, as well as 
the current follow-up study, is expected to provide 
evidence that four-channel multivariate coherence 
neurofeedback treatment can have continuing 

positive effects for individuals struggling with 
depression.  With the commonality of depression 
present today, it is important we continue to expand 
our knowledge and explore the most effective 
treatment options. 
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The Use of Four-Channel Multivariate Training 
on Mild Traumatic Brain Injury: A Comparison 
of Newly Concussed and Remotely Concussed 
Individuals  
Anne Stevens and Morgan Middlebrooks 
Integrated Neuroscience Services, Fayetteville, Arkansas, USA 
 
Mild traumatic brain injury (MTBI), commonly 
referred to as a concussion, can be described as a 
brain injury resulting from acute trauma to the head 
(Carroll, Cassidy, Holm, Kraus, & Coronado, 2004).  
In the United States it is reported that up to 1.7 
million people sustain a traumatic brain injury (TBI) 
annually, which has resulted in the direct and 
indirect cost of $60 billion in the United Sates.  
However, it is estimated that the burden of TBI is 
dramatically underrepresented as many people who 
experience mild or moderate TBI do not seek 
medical support.  With an estimated 38 million 
children involved in athletic activities, it is important 
to consider the effects that MTBI presents to the 
United States (Daneshvar, Nowinski, Mckee, & 
Cantu, 2011).  MTBI is commonly associated with 
fatigue, headaches, memory loss, poor attention, 
sleep disturbances, seizures, feelings of depression, 
and other significant symptoms (Grady, 2010).  
 
The scope of MTBI makes improved detection along 
with ease and efficacy of treatment vital.  
Postconcussion 86% of patients are found to have 
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abnormal EEG making EEG an important tool in the 
detection of MTBI.  Additionally, the use of 
neuropsychological testing can help to identify the 
lasting effects of MTBI (Haneef, Levin, Frost, & 
Mizrahi, 2013).  When considering the types of 
improvements that different therapy modalities 
make, time of treatment has always been a point of 
discussion for treatment providers.  Many physicians 
believe that the patient should engage in a period of 
rest before starting therapy to improve MTBI 
symptomology.  We intend to explore the 
relationship between functional outcomes of the 
concussed patient and the amount of time elapsed 
before the start of treatment. 
 
Methods.  Our study aims to compare outcomes of 
four-channel coherence training with recent versus 
remotely concussed individuals using a case series 
methodology.  Patients diagnosed with MTBI will 
undergo a qEEG to develop individual protocol for 
four-channel multivariate coherence training. Pre- 
and post-qEEG will be done to appreciate global 
changes in coherence.  Additionally, other 
neuropsychological testing indices will be 
administered to provide a functional look at changes 
in MTBI-related symptomology.  The correlation 
between demographic information and outcome of 
treatment will be explored as well. 
 
Assessment.  Quantitative electroencephalogram 
studies were performed pre- and posttreatment 
using Brain Dx, NeuroRep, and Neuroguide.  
Additionally, the use of multiple neuropsychological 
tests was employed.  
 
Anticipated Results/Hypothesis.  We anticipate 
that the use of four-channel multivariate coherence 
neurofeedback training will improve the functional 
outcome of the concussed patient, regardless of 
time of injury. 
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Enhancing Treatment Success: The Benefits 
of EEG Analysis  
Ronald Swatzyna, Laura Childers, and Erin MacInerney 
Tarnow Center for Self-Management, Houston, Texas, USA 
 
A large number of neurofeedback candidates have 
tried a multitude of approaches, treatment 
modalities, and medications with limited success.  
Studies find qEEG neurofeedback successful 60 to 
80 percent of the time, leaving 20 to 40 percent 
unsuccessful.  This sizable percentage of treatment 
failure could be avoided by having the 
electroencephalogram (EEG) analyzed by a 
electrophysiologist or neurologist who is board 
certified in electroencephalography.  A recent 
EEG/qEEG study identified four neurobiomarkers 
that accounted for psychotropic medication failure: 
focal slowing, beta spindles, encephalopathy, and 
transient discharges (Swatzyna et al., 2014).  
Although the qEEG is excellent for identifying the 
location and significance of focal slowing as well as 
excessive beta, only the EEG can identify the 
morphology of beta spindles.  In a study by Arns, 
Swatzyna, Gunkelman, and Olbrich (2015), beta 
spindles were found to be associated with sleep 
issues and were best evaluated with 
polysomnography.  In addition, Swatzyna et al. 
(2015) found that individuals with beta spindles were 
five times more likely to be diagnosed with 
depression and experienced treatment resistance to 
selective serotonin reuptake inhibitors (Arns, 2011).  
Many sleep issues require a medical intervention 
and often account for treatment failure.  A low 
voltage slow EEG is the hallmark of encephalopathy, 
but only an electroencephalographer can identify the 
associated morphology.  Unless the brain has 
enough oxygenation or metabolic support, all 
therapies and medications will have limited 
effectiveness.  Lastly, transient discharges are often 
averaged out or removed in the qEEG process.  
However, identifying the source of these discharges 
is often critical to protocol design and treatment 
success.  Although everyone who utilizes qEEG 
collects EEG data, few clinicians have the data read 
by a board certified electroencephalographer.  This 
presentation provides case examples where data 
from an EEG provided critical information such as 
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structural, metabolic, or toxic etiology which required 
further testing, altered treatment, and improved the 
success rate of a client. 
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The Effects of Misdiagnosed Attention-
Deficit/Hyperactivity (ADHD) May Decrease 
Children’s IQ, and The Efficacy of qEEG and 
Neurofeedback in the Assessment and 
Treatment of Misdiagnosed ADHD Children:  
A Clinical Case Series  
Tanju Surmeli 
Living Health Center for Research and Education, Sisli, Istanbul, 
Turkey 
 
Background.  In children with ADHD, some studies 
support the effect of stimulant medication on 
academic achievement and some do not.  One 
problem may be the incorrect diagnosis of ADHD 
using subjective measures and another may be the 
inefficacy of treatment.  If the problem is not 
addressed properly it may cause a decline in IQ 
scores as seen in our population.  Neurofeedback 
was chosen as a treatment since there is evidence 
that neurofeedback in ADHD and LD has shown to 
be effective in this population and has also shown to 
be effective in improving IQ scores. 
 
Methods.  In this clinical case series, we analyzed 
the results of 21 medicated ADHD-diagnosed 
children and adolescents who did not show any 
substantial improvement and who had WISC-R 
results at least six months prior to coming to us.  All 
the subjects were withdrawn from medication and 
tests were performed to determine the diagnosis and 
establish a baseline (qEEG Neurometric Analysis, 

WISC-R, TOVA, and subjective questionnaires).  
These children were administered a qEEG-guided 
Neurofeedback protocol.  The rationale being that 
NF would be effective in this population and another 
consideration was the parents’ wishes of having a 
nonmedication alternative.  
 
Results.  At the end of the treatment all the tests 
were readministered and compared against baseline 
values.  The results showed an increase in IQ 
scores with improvement in the all tests 
administered. 
 
Conclusions.  In this group, incorrect diagnoses, 
ineffective treatment, and the side effects of 
medication may cause a decline in the intellectual 
development of the children as observed by a 
decline in IQ scores.  This decline was reversed with 
Neurofeedback treatment which not only showed 
improvement in objective measures (IQ scores) but 
on subjective measures also (rating scales).  The 
implication for a clinical practice is that the 
overreliance on subjective measures may lead to an 
incorrect diagnosis and an ineffective treatment, 
having untoward effects on the child’s intellectual 
development.  Another finding of this study is that 
Neurofeedback treatment may be an effective 
treatment in this group of children. 
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The Effectiveness of tDCS/tACS/tRNS and 
pEMF Stimulation on EEG Neurotherapy 
Performance  
Nicholas Dogris  
NeuroField, Inc., Bishop, California, USA 
 
In this session, a discussion regarding 
neurostimulation technology will be conducted.  The 
speaker will show how neurostimulation that is 
synchronized with EEG neurotherapy can enhance 
and facilitate regulation of the brain based on qEEG 
assessment and behavioral observational data.  The 
limitations of EEG neurofeedback prevent adequate 
treatment outcomes on "tough cases" (such as 
autism) and decrease the credibility of the field in 
general when no treatment effects are observed.  
One of the main reasons for poor neurofeedback 
outcomes is associated with deregulation of the 
human connectome, or rich club.  The human 
connectome has been strongly associated with the 
default mode network, and deregulation of this 
network can lead to poor communication between 
important network hubs that are responsible for 
regulating the brain.  The speaker will discuss the 
current MRI BOLD research associated with 
physiological responses to pEMF, tDCS/tACS/tRNS 
stimulation.  In 2016 multiple studies were published 
that show how stimulation technology triggers 
calcium ion activation in the glia which gives rise to 
global neuroplasticity responses.  This new data 
supports the use of neurostimulation methods as 
they can help to facilitate changes in absolute 
power, coherence, and phase towards the norm.  
The speaker will show and discuss qEEG and 
outcome data associated with clinical cases 
diagnosed with Autism, ADHD, depression, anxiety 
and Parkinson's disease.  Each of the cases 
discussed with include a summary of patient 
information, diagnosis, history, and treatment plan.  
Each case will be presented with pre- and 
posttreatment EEG data.  Behavioral changes will 
be discussed showing the effectiveness of EEG 
neurofeedback. 
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A Randomized Control Study of 
Neurofeedback Training on Children with 
Multiple Types of Trauma  
Ainat Rogel1, Allyse Melville2, Michael Suvak3, Ed 
Hamlin4, Hilary Hodgdon1, Joseph Spinazzola1, and 
Bessel van der Kolk1 
1The Trauma Center at Justice Resource Institute, Brookline, 
Massachusetts, USA 
2University of Connecticut, Storrs, Connecticut, USA 
3Suffolk University, Boston, Massachusetts, USA 
4Institute for Applied Neuroscience, Asheville, North Carolina, 
USA 
 
This research focuses on the effect of 
neurofeedback (NFB) on children with multiple types 
of childhood trauma.  The Center for Disease 
Control (CDC) estimates that such traumas are 
arguably one of the most important public health 
challenges in the United States (van der Kolk, Roth, 
Pelcovitz, Sunday, & Spinazzola, 2005).  They have 
a negative impact on the mental and neurobiological 
functioning (Teicher & Samson, 2016), which leads 
to a lower quality of life and creates a substantial 
financial burden for both the individuals affected and 
the healthcare industry (van der Kolk et al., 2005; 
Wang & Holton, 2007).  To date, there has been little 
research on the impact of NFB on multiple types of 
childhood trauma, although two recent studies on 
the impact of NFB on adults have shown that it 
significantly improves the condition of adults with 
chronic PTSD (Gapen et al., 2016; van der Kolk et 
al., 2016).  
 
We present a randomized control design study of 
NFB on 37 children ages 6 to 13 who suffered from 
at least two types of trauma.  The participants were 
randomly assigned into one of the two groups: 
Active (n = 20) and Control/waiting list (n = 17).  The 
Active group received 24 NF training sessions at T4-
P4 twice a week and underwent four periods of 
assessment: at baseline, midway through NFB, 
immediately posttraining, at a 1-month follow-up.  
The control group had assessments at equivalently 
spaced time points.  Chi-square analyses were 
conducted to evaluate the impact on PTSD 
diagnoses (present/absent) according to K-SAD 
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assessment.  Piecewise growth curve analyses were 
run to explore differences in rates of change from 
baseline to posttreatment and from posttreatment to 
follow-up for both groups. 
 
The results suggest that NFB significantly reduced 
the number of participants who met PTSD diagnosis 
criteria.  Moreover, NFB significantly reduced, with 
effect sizes ranging from −0.49 (medium effect) to 
−0.96 (large effect), the symptoms for alexithymia, 
as measured in CAM assessment; cognitive and 
executive functioning, as measured in BRIEF 
assessment; and internalizing and externalizing 
behavior, as measured in CBCL assessment. 
 
This study suggests that NFB is an effective 
treatment for improving the condition of children with 
multiple types of trauma.  Moreover, most care 
givers reported that the children were resistant to 
other therapies (note that resistant to other therapies 
was not an inclusion criteria).  
 
We therefore recommend further study with a larger 
number of participants, personalized protocol and 
more NFB sessions. 
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Impact of Developmental Trauma on Brain 
Function and Connectivity  
Carl Armes and Robert Coben 
Integrated Neuroscience Services, Fayetteville, Arkansas, USA 
 
The effect of trauma upon anyone can have a long-
lasting impact on their brain.  For children, trauma 
can have a permanent impact on their developing 
brain, yet they may never meet the criteria for PTSD 

(Teicher, Andersen, Polcari, Anderson, & Navalta, 
2002).  For children however, traumatic stress can 
come from multiple and/or chronic and prolonged, 
developmentally adverse traumatic events during 
early childhood development (van der Kolk, 2005).  
This has led to a new classification, Developmental 
Trauma (DT).  Areas of the brain involved in the 
stress response include the amygdala, 
hippocampus, and prefrontal cortex, which also play 
a role in memory (Bremner, 2006).  Research by 
Sapolsky found stress can alter plasticity of the 
limbic system, not only affecting hormone secretion, 
but also how the hippocampus and amygdala work 
together to form memories about the stressor 
(2003).  Comparing maltreated groups to control 
groups, Teicher, Samson, Anderson, and Ohashi 
(2016) also found connectivity issues as well in the 
left anterior cingulate, right occipital pole, left 
temporal pole, and right medial frontal gyrus.  
Regions of decreased connectivity were found in 
areas important to emotional regulation, attention, 
and social cognition, while areas with increased 
connectivity seemed to occur in areas of self-
regulation (Teicher, Samson, Anderson, & Ohashi, 
2016).  
 
EEG/qEEG research on developmental trauma is 
quite scant.  One study found that abused children 
had higher left hemisphere coherence and a 
reversed asymmetry as well as a slower rate of 
decay of left hemisphere coherence over electrode 
distance suggesting deficit in left cortical 
differentiation (Ito, Teicher, Glod, & Ackerman, 
1998).  Our study aims to study the impact of 
repeated developmental trauma on brain function 
and connectivity.  We hypothesize adults that 
experienced DT will show significantly different 
findings than those that did not have such a history.  
Further, we anticipate that susceptible regions may 
include those near the anterior cingulate left frontal 
temporal and limbic regions and right posterior 
regions involved in social engagement. 
 
We are in the midst of collecting QEEG data (19 and 
64 channels) on 30 survivors of DT and a 
comparison group.  The groups will be compared for 
differences in EEG power, coherence, and 
connectivity.  Using EEGLAB and MVGC 
(multivariate granger causality toolbox) we will 
measure scalp and source measures for comparison 
as indicated above.  Source comparisons will be 
made insuring finer spatial localization of the 
network components while minimizing signal 
processing confounds produced by broad volume 
conduction from neural sources to the scalp 
electrodes (Coben, Mohammad-Rezazadeh, & 
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Cannon, 2014).  Source-derived connectivity 
measures including Granger Causality and partial 
directed coherence will be applied.  Group-based 
comparisons of these metrics will be displayed and 
case examples will be used as well for illustrative 
purposes.  The implications of these findings for 
understanding DT and its treatment will be 
discussed. 
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Chronic back pain is a well spread phenomenon 
affecting as many as 2% of the French population 
with a conservative estimate of 1.5m chronic 
patients just in France for whom all therapeutic 
options have failed.  The direct cost for the payer is 

estimated to a yearly €1.6b for France, turning a 
relatively small population into a public health issue.  
Neurofeedback (NFB) is a self-paced brain 
neuromodulation technique that represents one’s 
brain activity in real-time using auditory or visual 
modulations, on which the subject can exerts 
voluntary control, or which is used to “condition” 
certain neural mechanisms.  Brain activity is 
captured using an electroencephalographic (EEG) 
device.  
 
The goal of this pilot study is to evaluate the 
efficiency of alpha synchrony based NFB, applied to 
chronic low back pain patients (n = 16) with whom all 
available therapeutic options have failed.  The 
intervention investigated is twenty 30-min-long alpha 
synchrony neurofeedback session using an EEG 
cap of 21 electrodes.  It is an open-label study with 
no control group.  Patients were included after failing 
all other therapeutic options including a 2-week-long 
pluri-disciplinary approach dispensed at a tertiary 
hospital. 
 
First, progression of clinical scores (before and after 
intervention) such as pain, anxiety, depression, and 
quality of life are shown to have been reduced by 
more than 25% in most of patients.  Likewise, 
electromyographic (EMG) signals show a statistically 
significant increase of the median frequency, 
associated to a gain of motor units of bigger 
diameters and more dynamic, the opposite that one 
can observe during muscle fatigue.  Finally, alpha 
synchrony neuromarkers extracted from EEG 
signals at each session show progressions along 
blocks and sessions.  More interestingly, the slope 
progression over sessions is correlated with the 
decrease of clinical score, which indicates specificity 
of the trained neuromarker with respect to clinical 
outcomes. 
 
Future works involves the analysis of 6- and 12-
month clinical and EEG follow-up data to investigate 
the long-term efficacy of neurofeedback.  The results 
of this pilot project would ultimately be the clinical 
and technical foundations of a high-impact RCT to 
limit use of analgesics and nonsteroidal anti-
inflammatory drugs (NSAID) and promote quick 
return to work for these patients. 
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