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Abstract 

Neurofeedback is gaining widespread attention across clinical and research domains.  As our knowledge of the 
brain and its enigmatic mechanisms increase, so does the interest in harnessing these mechanisms to promote 
improved mental processes and reduce symptomatic issues.  Neuroscience advances and neurofeedback will 
continue to evolve into a primary focus for learning, performance, and reduction of symptoms in psychopathology.  
Likewise, electroencephalographic (EEG) and source localization techniques will improve our understanding and 
identification of biomarker EEG patterns to better identify and ultimately classify specific patterns associated with 
psychological and neurological syndromes.  As technology and production of devices become more prevalent, 
there is a growing need to define the parameters used in neurofeedback, as well as to classify the processes into 
specific or nonspecific factors to avoid further confounds and problems across disciplines. 
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Introduction 

 
Over the course of the past 50 years, and more 
recently, neurofeedback has been gaining interest 
and popularity in the public eye and across 
disciplines devoted to human mental wellness and 
performance.  The literature is replete with published 
reports describing the processes involved with 
neurofeedback and results of empirical studies using 
this procedure to treat psychological syndromes or 
functionality in normative groups.  However, a clear 
operant definition for neurofeedback has been 
elusive.  Thus, the term neurofeedback has been 
used widely in recent years in studies that target 
changes measured through techniques including 
electroencephalographic (EEG), current source 
density (CSD), functional magnetic resonance 
imaging (fMRI), magnetoencephalography (MEG), 
functional near-infrared spectroscopy (fNRIS) and 
others (Hammond, 2011; Thibault, Lifshitz, 
Birbaumer, & Raz, 2015).  Likewise, there have 

been countless devices developed for home use or 
entertainment that have adopted the term.  
However, accounts of the learning processes and 
biological mechanisms underlying neurofeedback 
are sparse.  This is the impetus for this editorial 
perspective; as methods for operant learning 
through neurofeedback must be discussed, refined, 
and adopted into a rational format to further 
successful use of this method across research 
settings, peak performance, and mental health 
disciplines.  This paper is not an attempt to validate 
neurofeedback as a method to treat psychiatric 
disorders; rather, it is a summary elucidating the 
mechanisms and procedures important to 
neurofeedback and learning in general. 
 

Neurofeedback 
 
Neurofeedback (EEG biofeedback, neurotherapy, 
neuroregulation) is a self-regulation technique that 
utilizes a brain computer interface (BCI) to influence 
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the processes of neural plasticity and neural 
efficiency.  Neurofeedback is accomplished by 
providing the individual with feedback about the 
electrical activity of the brain within a specific 
frequency range at a specific target on the scalp.  
Neurofeedback has traditionally been accomplished 
by placing one or more sensors on the head to 
measure the EEG at a particular site, in a specific 
frequency range, so that auditory and/or visual 
stimuli are provided contingent on EEG activity 
reaching a target value.  Through feedback human 
beings, animals, and even single neurons can learn 
to change and regulate EEG activity (or firing 
patterns thereof).  
 
Neurofeedback is not to be confused with 
neurostimulation, transcranial magnetic stimulation, 
or any methodology that introduces a signal or pulse 
into the brain.  These methods cannot be considered 
operant conditioning and therefore cannot be 
considered neurofeedback, because the stimuli 
involved are not contingent on any defined brain 
activity.  
 
Neurofeedback may be defined as the presentation 
of a stimulus change contingent on brain activity that 
meets a target-specific defined criterion.  At this 
time, three types of EEG neurofeedback can be 
described.  Neurofeedback of the operant 
conditioning type (NFOC) requires EEG activity to 
reach a fixed criterion before feedback is delivered.  
In other cases the response threshold or criterion for 
feedback varies dynamically based on numerous 
moment-by-moment calculations of the antecedent 
EEG activity.  Due to lack of specificity and details, 
such techniques are better classified as 
neurofeedback of an undifferentiated type (NFUT).  
Finally, there are the commercially available devices 
that a user takes home and wears, to improve 
subjective experiences, typically without clear 
targets or known functional correlates (e.g., focus, 
relaxation, stress reduction).  These methods can be 
classified as neurofeedback of the entertainment 
type (NFET).  
 

Operant Conditioning 
 
Operant conditioning (OC) describes how we 
develop behaviors that operate upon the 
environment.  OC was first investigated by 
Thorndike (1898) and later was expanded upon by 
Skinner (1938).  In OC, a response that occurs with 
some minimum frequency is made to occur more 
frequently by following it with a particular type of 
reinforcement, be it positive or negative in form 
(Pear, 2001).  As contrasted with respondent (i.e., 

classical) conditioning, OC involves directly 
associating a response with a stimulus event (not 
reward) rather than a stimulus with a stimulus.  This 
is an important distinction that is often misguided 
and ill defined in learning research and clinical 
applications.  A reward is a thing of value to an 
organism, whether it is food, water, points, monies, 
or any other stimulus.  Reward is subject to 
individual differences except when a deprivation is 
present.  Thus, the stimulus event’s covariance with 
the desired response is the positive reinforcement 
(e.g., the car driving, ball bouncing, or beeping) and 
the reward directly follows the stimulus event.  
Behavior that has been learned through OC is called 
operant behavior, which may also be interpreted as 
learning to operate effectively and efficiently on the 
environment with its contingencies, consequences, 
and antecedent behaviors.  A positive reinforcer is 
any stimulus whose presentation immediately 
following a response increases the probability of that 
response; while a negative reinforcer is any stimulus 
whose removal immediately following a response 
increases the probability of that response.  
 
In laboratory experiments with animals it is well 
known that a deprivation must be present for the 
animal to engage in experimental protocols.  For 
example, a socially enriched environment with a 
satiated (food, water, temperature, etc.) animal will 
be highly unlikely to engage in the process of 
pushing a lever for food, or other stimulus.  Shaping 
of the response of interest is additionally important in 
the early stages of the experiment.  Importantly and 
not always considered in the application of 
neurofeedback procedures, a deprivation must be 
present in order for shaping and conditioning of 
behavior to occur.  Any human being presenting for 
neurofeedback training has an awareness of a 
deprivation (e.g., I can be better at memory, I would 
like to be less anxious, etc.).  This is also true for 
individuals engaging in neurofeedback training for a 
particular syndrome.  For example, children with 
Attention-deficit/Hyperactivity Disorder (ADHD) 
perceive there is a deficit in functionality as 
contrasted with other normative children, or 
interactions with teachers and parents.  The same is 
true for the athlete or businessman wanting to 
perform at a higher level; or an individual with 
depression, anxiety, or any other problematic issues 
with emotional, cognitive, or adaptive skill sets.  
However, there are exceptions to every rule and in 
the case of OC and awareness of a deprivation, it 
may not always be discernible due to disorders of 
communication (autism or traumatic brain injury) yet 
the EEG and its association with behavioral 
regulation (excessive movement, emotional 
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reactivity, etc.) can be shaped and reinforced using 
OC.  
 
Neurofeedback utilizes OC in a specific context that 
focuses on the electrical activity of the brain at the 
scalp, current source density at a specific region of 
interest, or blood oxygenated level dependent 
(BOLD) activity at a specific region of interest.  
Additionally, an EEG frequency that occurs at some 
minimal rate (e.g., 2 uV of beta to theta power, alpha 
power of 5 uV, or other designated anomaly) is 
targeted for conditioning.  The most important 
measure in a neurofeedback learning paradigm is a 
learning curve that demonstrates acquisition has 
taken place; or more simply, that the individual has 
learned to change the EEG or brain activity in the 
desired direction.  The formula for a neurofeedback 
mechanism using OC consists of a simple, yet 
elegant paradigm:  
 

1. A value of a specific target frequency or set 
of target frequencies is selected (e.g., uV 
value of SMR, theta/beta ratio, or alpha 
amplitude).  

2. A specific electrode site, set of sites, or 
region of training is selected (e.g., Cz, Fz, or 
anterior cingulate).  

3. An establishing operation induces a 
motivational state based on the subject’s 
deviation from a specified goal state (e.g., in 
ADHD, impairment of attention; in anxiety, 
the presence of an aversive subjective 
experience; in peak performance training, a 
greater than usual skill level).   

4. Through positive or negative reinforcement, 
a desired change in EEG activity is 
documented.  

5. Evidence of change is documented at other 
levels of analysis (e.g., subjective 
experience, psychopathology scales, 
neurophysiology assessments, cognitive or 
behavioral performance).  

 

In many instances, research studies will document 
all of these elements.  In a clinical setting this may 
be taxing on clinicians and technicians.  However, it 
is not beyond the scope of a practitioner to produce 
a learning curve to provide evidence that acquisition 
has in fact occurred.  I have conferred with several 
manufacturers of neurofeedback devices and all 
have affirmed the data within and across sessions is 
stored and accessible for production of learning 
curves; be it microvolt levels, percentage of time in 
reward, or points scored.  
 
In the figures below, examples of group and 
individual acquisition curves are provided.  Figure 1 
shows an example of a learning curve for the 
average number of points generated for eight 
individuals with ADHD who had completed 17 to 20 
sessions of neurofeedback.  Figure 2 shows the 
average CSD for two study groups across sessions.  
Figure 3 shows the percentage of reward for an 
individual within and across 11 sessions.  Figure 4 
shows a learning trend for points scored in one 
session of neurofeedback for an individual. 
 
There are two main requirements for demonstrating 
successful learning.  The first is a stable trend in the 
desired direction.  Although a linear trend is typical, 
nonlinear methods can also contribute to our 
understanding of learning across time (e.g., 
quadratic and cubic trends).  For example, if one is 
training SMR uV levels up, then the plot of SMR 
should show an increasing positive trend.  Likewise, 
if specific frequencies are inhibited, then the plot of 
voltage in those frequencies should demonstrate a 
decreasing trend.  These can be considered the 
linear components of learning.  Secondly, there 
should be a decrease in variance across sessions.  
For example, as the individual learns to self-regulate 
an EEG frequency, the values of EEG activity or 
number of points scored should become more 
consistent across sessions.  The method of delivery 
(neurofeedback, MEG, fMRI, fNRIS) becomes 
secondary to the original definition of OC and its 
functional units of measurement: If no acquisition is 
demonstrated in the variables being trained, then, 
despite any change in measures at other levels of 
analysis (e.g., self-report, behavior measures), the 
process cannot be classified as NFoc. 
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Figure 1.  Average points scored across sessions for a group of 8 ADHD patients. 

 
 

!
Figure 2.  Two groups of individuals and average current source density (CSD) levels at the region 
of training (ROT) across sessions by using sessions 1, 5, 10 and 12.  
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Figure 3.  Percentage of time in reward for an individual across 11 sessions and within sessions.  
Each session consists of six 5-min training rounds.  

 
 

Figure 4.  Learning trend generated by an individual within  
a single neurofeedback session.  Number of rewards per  
2-min rounds; 11 rounds, for a total of 22 min training 
time. !
 

Neuroplasticity 
 
Neuroplasticity (NP) is the inherent capacity of the 
brain to develop new connections and pathways as 
a compensatory mechanism for injury, or as a 
function of learning in response to experience and 
changes in the environment.  Practice and learning 
play a vital role in human brain plasticity over the 
lifespan (Kelly, Foxe, & Garavan, 2006).  Clearly, NP 
is the driving force in human learning (experience-
dependent changes) over the lifespan.  This 
experience-driven effect has refuted the long held 
position that the adult human brain is both hardwired 

and resistant to change (Holloway, Broadfield, & 
Yuan, 2003).  Experience-driven changes in the 
brain have been widely demonstrated in both human 
and nonhuman primates and these findings present 
exceptional challenges for observing these 
mechanisms in vivo.  However, technology and 
human drive to understand have produced more 
advanced methods to capture how these 
mechanisms operate.  This has contributed to the 
development of methodologies that influence these 
processes and to novel treatments and diagnostic 
techniques for disorders of learning.  There is little 
doubt among neuroscientists that symptoms 
associated with most psychiatric disorders can be 
attributed to brain activity and functional network 
disruptions, regional activation patterns, and lack of 
the functional integration of systems required for 
operating effectively on the environment.  Currently, 
the most promising measure of plastic changes in 
the human brain, as a function of learning and 
practice, are demonstrated by volumetric magnetic 
resonance imaging (vMRI).  This method shows 
increases or decreases in white matter and grey 
matter volume as a function of learning or training 
(practice) including neurofeedback methods 
(Beauregard & Lévesque, 2006; Ghaziri et al., 2013; 
Lévesque, Beauregard, & Mensour, 2006; 
Petersson, Elfgren, & Ingvar, 1999).  Importantly, 
recent data have shown changes in individual 
neurons as an individual experiences new data 
(memories), as well as conditioning of spiking 
patterns in individual neurons in the hippocampus 
(Ishikawa, Matsumoto, Sakaguchi, Matsuki, & 
Ikegaya, 2014; Ison, Quiroga, & Fried, 2015).  In 
most research demonstrating learning in human and 
nonhuman subjects, the principles of OC are 
followed and evidence of change is documented 
(Baxter & Byrne, 2006; Cannon, Baldwin, et al., 
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2014; Mozzachiodi, Lorenzetti, Baxter, & Byrne, 
2008; Spencer, Syed, & Lukowiak, 1999; Sterman, 
2000).  Clearly this definition will evolve and adapt 
as technology and understanding improve.  
However, in as much as learning and self-regulation 
are involved, NP is the primary target for all 
behavioral treatments and processes (including 
education).  As such, NFoc is a viable and 
reproducible method for improving NP associated 
with self-awareness, self-regulation, and behavior 
change. 
 

Neural Efficiency 
 
Neural efficiency (NE) and the effects of practice in 
the human brain offer the best promise in 
understanding behavior.  Decreases in the extent or 
intensity of activations or activity are observed in the 
majority of studies examining task practice.  The 
primary mechanism proposed to underlie activation 
decreases is increased NE; which, by definition, 
reflects an increased efficiency within a network 
such that operant efficiency now occurs with the 
engagement of fewer neural sources, as well as 
increased synchronous firing relative to a particular 
task or stimulus (Babiloni et al., 2009; Foerde et al., 
2008; Poldrack, 2000, 2002; Poldrack, Desmond, 
Glover, & Gabrieli, 1998; Poldrack & Foerde, 2008; 
Poldrack & Gabrieli, 2001; Poldrack & Logan, 1997, 
1998).  Decreases in activation are suggested to 
reflect a more robust and efficient neural 
representation (Duncan & Miller, 2002) or a more 
precise functional circuit related to a behavior or 
function of interest (Garavan, Kelley, Rosen, Rao, & 
Stein, 2000).  In several studies of practice effects in 
the brain, increases in activation or activity refer to 
two processes; practice-related expansions in the 
volume of cortical representations and increases in 
the strength or amplitude of activations (Kelly et al., 
2006).  Thus, NE is directly evident by a decrease in 
the number of resources (energy) allocated to 
perform a particular task.  In many cases this may 
be referred to as automatic processing and can be 
thought of in terms of heartbeat, breathing, use of 
language, and those activities that are well learned 
and well practiced (the area or function of expertise).  
In EEG work, specifically we can think of NE in 
terms of EEG amplitude and global magnitude of the 
additive signals.  For example, as an individual 
learns to regulate the behavior of sitting still and 
focusing on a stimulus we would expect an increase 
in the response of interest (e.g., SMR, low-beta, 
etc.).  As the individual learns to generate this 
response and sustain it we would eventually expect 
a decrease in the signal amplitude once the skill is 
acquired.  In sum, once an individual learns and 

masters a task we can surmise that the brain has 
adapted to best perform this task with minimal 
resource depletion. 
 

Self-regulation 
 
Self-regulation (SR) is a highly adaptive and 
powerful process (Vohs, Baumeister, & Ciarocco, 
2005; Vohs et al., 2008).  SR refers to the self’s 
capacity to alter its behaviors based in the degree 
that human beings are adaptive and flexible (Vohs et 
al., 2005).  Alternatively, SR can better be defined 
as plasticity that relies upon the functional integrity 
and NE of the brain and its network convergence or 
divergence in executive processes; including, self-
monitoring, self-concept, self-control, self-
perception, self-organization, self-related goal 
setting, planning, and agency (Cannon, Congedo, 
Lubar, & Hutchens, 2009; Cannon et al., 2007; 
Cannon & Baldwin, 2012; de Greck et al., 2008; 
Northoff et al., 2006).  This is reinforced by evidence 
of clinical applications of SR in which Baumeister, 
Gailliot, DeWall, and Oaten (2006) and de Ridder 
and de Wit (2006) have proposed that whatever 
differences and deficits exist in the ability to self-
regulate, either innate or learned during 
development, can be modified by additional learning.  
Thus, SR is the neural process of data integration 
and learning as it pertains to the self and its 
experiential functionality; or more simply, an 
adaptive data-driven process (Cannon, 2012).  
 
SR is a skill necessary for reliable emotional well-
being, or affective constancy.  It is proposed that 
differential variants of SR include emotional, 
behavioral, and cognitive variants.  Importantly, the 
most overlooked construct necessary for SR is 
language (defined as the ability to communicate, 
including internal self-directed speech) and practice.  
If, like many authors suggest, self-regulation is a skill 
or set of skills, then mastery of this skill requires 
extensive practice and learning.  The key 
components for practice in the human brain are NP 
and NE.  These components have been 
demonstrated in numerous fMRI studies of practice 
(Frackowiak & Ward, 2004; Fraser et al., 2002; 
Garrido et al., 2009; Kelly et al., 2006; Neville & 
Bavelier, 2002).  It is well known that practice in 
effect can induce activation (learning) and 
decreased activation (well-learnt and less energy 
required) in numerous experimental conditions, from 
stringed instruments (Elbert, Pantev, Wienbruch, 
Rockstroh, & Taub, 1995), to motor functions (Fraser 
et al., 2002), verbal recall (Andreasen et al., 1995), 
and working memory (von Bastian, Langer, Jäncke, 
& Oberauer, 2013).  Thus, there is sufficient 
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evidence that practice (learning by repetition) 
influences neural networks in both positive and 
negative fashion.  Probably the best example of a 
negative instance is depression or anxiety.  We 
might consider the influence of negative self-directed 
speech (Cannon, Lubar, Sokhadze, & Baldwin, 
2008; Gilbert, Dumontheil, Simons, Frith, & Burgess, 
2007) or processing of derogatory (Baumeister, 
2003) appraisals of self by the self or others (Kim et 
al., 2008) and its potential effects in networks 
associated with the physiological response to stress.  
With the large literature of practice and learning and 
the role of SR across the biobehavioral spectrum we 
might strongly consider SR as the primary 
mechanism of action in neurotherapeutic procedures 
that require operant conditioning or learning (e.g., 
EEG biofeedback, neurofeedback; Kamiya, 2011; 
Wood & Peut, 1981).  
 
Experience-dependent changes in the human brain 
can occur from a synaptic to a cortical level 
throughout the life span.  There is a growing 
literature base demonstrating these NP effects in 
both human and nonhuman populations.  NP can be 
thought of in terms of development, such that in our 
earliest periods of development we assimilate 
information because of learning (operant behavior) 
by mimicking, observing, and experiencing the 
environment.  We also begin to organize our self 
critically based on our perceptions of self in relation 
to others (operant behavior driven by self-perception 
and its relation to the environment).  As 
development progresses, so does the data-
dependency requirements on the brain through 
which we learn to adapt an operant efficiency (the 
result of learning, practice, and specialization) 
relative to our culture, profession, ethnicity, and so 
forth.  In essence, development is a function of 
operant learning, and disorders of learning begin 
and end with the central nervous system and its 
functional integrity (Cannon, Baldwin, et al., 2014).   
 
Executive functions and self-regulation are better 
considered as synonymous, rather than independent 
processes and may best be described with 
functional neural signatures (e.g., functional integrity 
of the CNS) within the context of the Papez circuit 
(1937).  One very important research finding—that is 
often overlooked or unknown in research paradigms 
investigating the limbic system and its function—is 
that hippocampal firing (generation of the theta 
frequency) is directly dependent on septal firing; that 
is to say, the hippocampus does not function 
independent of the septal area.  Thus, the whole of 
the Papez circuit is proposed to be a specific 
network of mechanisms to integrate sensory, 

internal dialogue, and external information to 
regulate the hypothalamus and its control over 
behavioral patterns (Parmeggiani, Azzaroni, & Lenzi, 
1971).  
 
It is when some aspect of data integration is 
compromised and specific neural data-dependency 
modules become overly practiced and efficient 
within a maladaptive context (e.g., negative self-
perception, abuse, poor affect regulation, or external 
and internal stressors) relative to the self occurs, 
that problems in operant efficiency and 
psychological well-being are compromised.  
Neurofeedback, in all its forms, holds great potential 
in providing an evidence-based mechanism for 
improving emotional and regulatory processes 
(Johnston, Boehm, Healy, Goebel, & Linden, 2010; 
Johnston et al., 2011).  It is reasonable to consider 
that the self (organized neural networks) is both 
malleable and in some aspects more resistant to the 
effects of new learning (i.e., religion, disciplines, 
values, morality).  It may also be that there are 
specific genetic mechanisms associated with the 
homeostatic maintenance of the organism that 
become disorganized or skewed toward a negative 
data-selection process.  As put forth by Cannon, 
Baldwin, et al. (2014), SR can be conceptualized 
within this framework:  Behavioral Equilibrium (BE; 
or Operant Efficiency) is dependent (on the output) 
of the interaction between emotional equilibrium 
(EE) and homeostasis (HS); or BE = EE/HS.  The 
mediating variable for Operant Efficiency or Operant 
Inefficiency is SR or its equivalent executive 
functions.  The primary assumptions underlying this 
model are NP and NE.  
 
In sum, SR is directly related to NP and NE, and the 
role of these two processes in theory is based on 
cognitive and verbal tasks that show specific 
activations or deactivations as an effect of practice 
and learning, treatment effects of neurofeedback, 
transcranial magnetic stimulation, cognitive 
behavioral therapy, and/or other treatment models 
that have shown pre-post changes in the cortical 
landscape.  Thus, the fundamental processes 
(mechanisms of action) underlying all NFOC 
techniques, regardless of methodology, are NP and 
NE directed toward improved SR and learning 
(Johnston et al., 2010; Johnston et al., 2011) for 
optimal Operant Efficiency. 
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Conclusions 
 
Neurofeedback continues to gain widespread 
interest and attention from numerous research, 
clinical, and performance-related disciplines.  It 
therefore becomes pertinent to define the processes 
associated with neurofeedback and to differentiate 
between these methods.  A large number of data 
have shown positive results for neurofeedback 
across methods.  However, not all neurofeedback 
can be said to involve OC (Cannon, Pigott, et al., 
2014).  Operant conditioning requires a complete set 
of fundamental components, some of which are 
often lacking in both research and clinical realms.  
Thus, we might consider a classification system for 
neurofeedback with three designations: NFOC, NFUT, 
and NFET.  Differentiating neurofeedback methods in 
these terms may resolve contradictory findings, 
could aid in reducing the number of confounds in 
research studies, and provide clients clear 
information on which to base their consent to 
treatment.  Neurofeedback offers promise for 
influencing learning and SR across a variety of 
normative and clinical groups.  Its methods and their 
description must improve along with technological 
advancements so that better and more consistent 
outcomes can be achieved. 
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