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Abstract 
While much knowledge has been gained by the endeavor to link specific brain sites with specific cognitive 
functions, modern conceptualizations of brain activity focus much more on the function of networks of brain 
regions.  A key construct in defining these networks has been the study of connectivity across regions.  In this 
review, we discuss several methods of measuring connectivity and focus primarily on the utility of 
electroencephalographic (EEG) coherence.  While over- and under-connectivity have been related to numerous 
clinical phenomena, we focus our discussion on the role of connectivity in reading and language disorders, and 
present a Neurocognitive Connectivity (NCC) framework for understanding these disorders.  We argue that EEG 
coherence presents a unique target for treatment of these and other populations, in that the ability to modulate 
connectivity via EEG neurofeedback has been shown to be of significant clinical utility. 
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Introduction 

 
Linking cognitive and behavioral functions with 
specific regions of the brain through case studies of 
individuals with brain injury has been the primary 
basis of understanding “brain-behavior” relationships 
in neuropsychology.  This dates back at least as far 
as Pierre Paul Broca (1861), who famously 
attributed specific deficits in the production of 
speech to corresponding damage to the inferior 
frontal lobe.  Although neuropsychological studies 
such as Broca’s have been valuable, technological 
advances in neuroimaging have drastically 
expanded the types of questions we can ask about 
cognition, especially in the healthy brain.  For 
example, neuroimaging techniques have uncovered 
and refined theories about brain areas being 

“dedicated” to some domains of cognition, such as 
face processing (Kanwisher, McDermott, & Chun, 
1997), phonological decoding (Boukrina, Barrett, 
Alexander, Yao, & Graves, 2015; He at al., 2013,), 
and the planning of motor speech (Dronkers, 1996; 
Richardson, Fillmore, Rorden, LaPointe, & 
Fridriksson, 2012).  However, on the whole, 
neuroimaging studies have also highlighted the 
limitations of simple localization perspectives of 
brain functions in demonstrating that most cognitive 
functions are not localized to just one area, but 
rather distributed across different regions of the 
brain.    
 
Moving beyond simplistic theories of single-site 
localization, neuroimaging investigations of brain 
function have revealed that even relatively simple 
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cognitive functions involve a complex and dynamic 
pattern of brain network activation across diverse 
regions of the brain.  This complexity in patterns of 
brain activation parallels the complexity of human 
cognition found in even mundane everyday 
endeavors.  Not only refuting simplistic localization 
theories of brain functioning, contemporary 
neuroimaging research also provides suggestion of 
deeper principles of brain function to explain 
cognition.  Indeed, brain-behavior relationships 
extend beyond merely understanding the 
relationships between brain injury and behavior.  
Utilizing both structural and functional magnetic 
resonance imaging (MRI), numerous anatomical and 
functional properties of the brain have been 
uncovered.  Most commonly, these studies involve 
combining detailed pictures of structure (e.g., T1-
weighted images), collected over several minutes, 
with estimates of blood flow over time (i.e., blood-
oxygenation level-dependent [BOLD] contrasts), 
collected every several seconds.  While this works 
well in many contexts, many cognitive functions 
unfold on timescales of tens or hundreds of 
milliseconds, requiring additional sources of 
information to fully understand them.  
Electromagnetic imaging techniques such as 
electroencephalography (EEG) and 
magnetoencephalography (MEG) fill this gap well, 
and have excellent temporal resolution (e.g., Breier , 
Simos, Zouridakis, & Papanicolaou, 1999; Thierry, 
Boulanouar, Kherif, Ranjeva & Démonet, 1999), thus 
providing unique perspectives on the function of 
brain “networks.”   
 
One important discovery in the past few decades 
has been the role of brain networks as an 
intermediary link between brain structure, cognition, 
and behavior.  Understanding functions of the brain 
in terms of networks rather than specific anatomical 
structures has been a considerable development in 
modern neuroscience (Bullmore & Sporns, 2009).  
There are numerous networks in the brain, without 
clear differentiation; however, the various networks 
are characterized by specific patterns of connectivity 
(Sporns, 2011; van den Heuvel & Sporns, 2013).  
Similar to how different cities are connected by a 
network of airports, brain networks have hubs or 
central nodes with high connectivity, and other 
regions with low connectivity.  The specific model of 
network connectivity in the brain has been described 
as a “small-world” network (Bassett & Bullmore, 
2006). 
 
More importantly, connectivity, or lack thereof, in 
brain networks has proven to be an important 
theoretical construct with considerable applied 

applications.  An emerging view in contemporary 
neuroscience is that many functional neurocognitive 
deficits for which individuals seek treatment are 
caused by problems in brain connectivity within 
specific brain networks, such as those that are 
important for academic learning (Paulesu et al., 
1996; Rippon, Brock, Brown, & Boucher, 2007), 
sustaining attention (Kucyi, Hove, Esterman, 
Hutchison, & Valera, 2016), social communication 
(Coben, Clarke, Hudspeth, & Barry, 2008; 
Grossmann, 2015), and fulfilling activities of daily 
living (Bieńkiewicz, Brandi, Goldenberg, Hughes, & 
Hermsdörfer, 2014). 
 
Despite the numerous studies demonstrating the 
importance of brain connectivity for different clinical 
conditions, measurement of brain connectivity has 
not typically been incorporated in general 
applications of psychological diagnostic procedures.  
The problem appears twofold.  First, the rationale for 
including measures of brain network connectivity 
and how such measures can be connected to 
behavior is not clearly understood.  Second, the 
measurement of brain connectivity is often confusing 
and also not well understood.  
 
The rationale for differentially connected brain 
networks as an intermediary between brain structure 
and behavioral functioning is not derived from any 
one particular study but inducted through hundreds 
of studies (i.e., Bullmore & Sporns, 2009; Fox et al., 
2005; Mišić, & Sporns, 2016, etc.).  Collectively, 
broad assumptions are emerging that clarify the 
nature of the brain, brain-behavior relationships, and 
clinical applications thereof.  While far from 
definitive, Table 1 provides an attempt to logically 
derive the role of connectivity through a list of 
assumptions, each supported by modern 
neuroscientific research. 
 
 
Table 1 
Assumptions regarding brain connectivity and 
cognitive functions. 

1. For any given cognitive function, there are 
multiple brain structures or sets of structures 
that are primarily involved in performing that 
function. 

2. In most cases, these areas are functionally 
(and often structurally) connected, forming a 
specific network. 

3. Dysfunction of a network via over- or under-
connectivity will result in reduced proficiency 
in cognitive functions reliant upon 
connectivity of the involved brain regions. 



Decker et al. NeuroRegulation  

 

 
5 | www.neuroregulation.org Vol. 4(1):3–13  2017 doi:10.15540/nr.4.1.3 
 

As derived from Table 1, there is an intricate 
relationship between “cognition” and “brain 
connectivity.”  In recognizing the emerging 
importance of the link between cognition and 
measures of brain connectivity, the term 
Neurocognitive Connectivity (NCC) will be used to 
provide a framework for linking cognition with brain 
connectivity through the assumptions of Table 1.  
The NCC framework implicitly suggests that while 
having some theoretical importance when measured 
in isolation, brain connectivity is of primary interest 
when it can be linked to cognition or behavior.  
Similarly, therapeutic techniques for changing brain 
connectivity with no relevance for cognition or 
behavior are of little clinical value.  Thus, the NCC 
framework is used to provide explicit assumptions 
regarding the clinical utility of measuring brain 
connectivity as a link to measures of cognition.  
Theoretically, NCC provides integration across 
empirical findings that extend beyond neuroscience 
and include development, cognition, genetics, and 
behavior.  The remaining sections of this manuscript 
will provide additional details of the NCC framework 
and its clinical application.  Additionally, we will 
discuss specific methods of objectively measuring 
and/or modulating brain network connectivity, 
focusing primarily on a metric referred to as EEG 
coherence (Bowyer, 2016). 
 

Importance of Connectivity 
 
Although the above rationale provides a strong 
theoretical foundation for an increased focus on the 
investigation of brain connectivity, the details of how 
we define and measure connectivity can be quite 
varied.  Structural connectivity is often measured by 
MRI and diffusion tensor imaging (DTI), and yields 
information about both local and global directionality 
(via maps of fractional anisotropy; e.g., Feldman, 
Lee, Yeatman, & Yeom, 2012; Lebel et al., 2013) as 
well as robustness of connections between defined 
points (via fiber-tracking methods; e.g., 
Vandermosten et al., 2012).  While structure 
provides a vital substrate for the presence of 
networked brain function, it does not give the full 
picture of which networks actually exist, performing 
coordinated functions.  Thus, the notion of functional 
connectivity has gained great traction in recent years 
(Glasser et al., 2016; Smith et al., 2013), including 
spawning large-scale projects to systematically map 
the human functional brain networks and their key 
nodes (http://www.humanconnectome.org/; Glasser 
et al., 2016).  The term functional connectivity is 
used to describe the correlated neuronal activity of 
these various regions (Bowyer, 2016).  However, 
this term is not only conceptual but also refers to the 

measurement basis of brain connectivity using fMRI 
and EEG methodologies.  Functional connectivity 
refers to the cross-temporal correlation of measured 
brain activity in different regions of the brain 
(Bowyer, 2016; Honey et al., 2009).  While much of 
the work in defining functional connectivity has 
utilized resting-state fMRI (RS-fMRI; e.g., Smith et 
al., 2013), as noted above, more temporally 
sensitive methods such as EEG and MEG are also 
necessary to evaluate how functional connectivity 
might change over brief timescales (Bowyer, 2016; 
also see discussion of functional versus effective 
connectivity in Friston, 2011).  Coherence is one 
commonly used metric for deriving functional brain 
connectivity in EEG, which will be discussed in detail 
below. 
 
Defining Coherence 
Electroencephalographic measures provide 
excellent temporal resolution of brain activity and are 
based on electrical properties of the brain as 
measured by electrodes on the scalp.  The 
measured electrical potentials on the scalp are small 
(microvolts: uV) and can be decomposed into 
frequency bands (i.e., Delta, Theta, Alpha, Beta, 
Gamma) or further into single hertz bins generally 
via the Fast Fourier Transform (FFT).  The 
measured microvolts are typically squared (uV2) to 
derive Absolute Power, which is typically used as an 
underlying indicator of brain activation.  
 
Coherence measures, on the other hand, quantify 
the degree of association between two brain 
regions, which is used to infer a functional 
relationship between two different regions of the 
brain.  Similar to a correlation coefficient, coherence 
measures take values between 0 (no coherence) 
and 1 (absolute coherence).  Coherence is 
calculated following transformation from the time 
domain to the frequency domain, and compares 
similarity of the power spectra, with regions showing 
greatest similarity being assumed to be the most 
functionally connected.  It incorporates information 
on synchrony including both amplitude and phase, 
but is independent of power (Bowyer, 2016).  
 
Most commonly, EEG coherence describes the inter-
relationship between two surface electrodes, though 
summaries such as site coherence (the average 
coherence for one electrode’s coherences to all 
others) or global coherence (the average of all site 
coherences) can be useful; see Kaiser (2008) for a 
more comprehensive review.  Recent methods (e.g., 
LORETA/eLORETA; Pascual-Marqui, Michel, & 
Lehmann, 1994; Pascual-Marqui et al., 2011) also 
allow coherence to be estimated between brain 
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regions themselves, using source analysis to infer 
the generators of EEG signals.  In its most common 
formulation, EEG coherence is calculated by the 
form:  
 

!"#! $ = &#! $ "

(&## $ &!! $ ) 
 
where Gxy(f) is the cross-power spectral density and 
Gxx(f) and Gyy(f) are the respective auto-power 
spectral densities (Thatcher, Krause, & Hrybyk, 
1986).  Though summarizing frequency content 
necessarily requires a defined time window, which is 
commonly at least tens of seconds for quantitative 
EEG (qEEG) analyses (Bowyer, 2016), these time 
windows can be shortened to allow for near-real-
time estimates of coherence, making coherence a 
malleable metric for use in neurotherapeutic 
contexts such as neurofeedback. 
 
Given the dynamic properties of brain activity, it 
would seem the correspondence between distantly 
located electrodes on different regions of the scalp 
would be, on the whole, erratic and unreliable.  
Surprisingly, coherence measures have been found 
to be quite reliable.  For instance, reliability 
coefficients above r = .80 were first found in 1961 
(Adey, Walter, & Hendrix, as cited in Thatcher, 
2010), with many later studies finding similar levels 
of stability (Cannon et al., 2012; Chabot et al., 1996; 
Corsi-Cabrera, Galindo-Vilchis, del-Río-Portilla, 
Arce, & Ramos-Loyo, 2007; Corsi-Cabrera, Solís-
Ortiz, Guevara, 1997; John, 1977; Roberts, Fillmore, 
& Decker, 2016; Thatcher, Walker, Biver, North, & 
Curtin, 2003; though see Gudmundsson, 
Runarsson, Sigurdsson, Eiriksdottir, & Johnsen, 
2007, for an alternate perspective).  One study 
(Fernández, Harmony, Rodríguez, Reyes, Marosi, & 
Bernal, 1993) reported coherence reliability 
coefficients as high as r = .95 for both resting state 
and a verbal cognitive task, even with a test-retest 
interval of 1 month.  Indeed, due to its high reliability, 
coherence is often targeted in neurofeedback 
treatment (i.e., Friedrich et al., 2014; Gruzelier, 
2014; Keizer, Verment, & Hommel, 2010).  However, 
as demonstrated in Roberts, Fillmore, and Decker 
(2016), the effects of such a treatment protocol are 
highly dependent on the reliability of the targeted 
metric itself.   
 
Several factors have been shown to affect 
coherence reliability.  For instance, Shaw (1984) 
found that coherence was higher in eyes-closed 
than eyes-open resting state.  This difference was 
the most pronounced in the alpha range; in which 
eyes-closed coherence reliability coefficients 

approached unity.  Other patterns have emerged as 
well, including interhemispheric and gender 
differences in coherence (i.e., Gootjes, Bouma, Van 
Strien, Scheltens, & Stam, 2006; Koles, Lind, & Flor-
Henry, 2010; Miskovic, Schmidt, Boyle, & Saigal, 
2009; Tucker, Roth, & Bair, 1986). Thatcher et al. 
(1986) also reported reliable patterns of coherence, 
which prompted the proposal of a two-
compartmental model of coherence describing the 
importance of different types of cells for short- (i.e., 
basal dendrites) and long- (i.e., pyramidal cells) 
range communication. 
 

Neurocognitive Connectivity  
and Clinical Connections 

 
To demonstrate the basic assumptions of the 
importance of brain connectivity, a simplified 
demonstration involving reading cognition will be 
given and further expanded to discuss clinical 
implications for understanding Specific Learning 
Disabilities.  The applicability of the framework for 
other neurodevelopmental disorders will also be 
discussed. 
 
First, reading is a multi-dimensional cognitive task, 
and the specific cognitive demands change 
throughout its development.  The early stages of 
reading involve “word decoding.”  Decoding 
involves, first, a visual analysis of letters and visual 
recognition of letter patterns or groups of letters.  
Next, letter groups must be associated with 
language sounds (phonology).  To read a word, the 
letter sounds of different letters in the word must be 
blended.  Finally, the blended letter sounds must be 
recognized as a word that is already stored in the 
individual’s vocabulary (lexical semantics).  
 
Specific cognitive processes involved in word 
decoding are linked to specific brain networks in 
different areas of the brain.  First, the visual analysis 
of letters primarily involves brain networks beginning 
in the occipital lobe in the most posterior region of 
the brain.  In contrast, the second step of phonology 
involves auditory sound representations that are 
primarily localized in the temporal regions of the 
brain, more specifically in the superior temporal 
region.  Third, closely associated with auditory 
sound representations are the receptive languages 
areas, which involve networks in close proximity to 
auditory sound representation regions because 
language is learned through sound.  However, 
language goes beyond sound to involve semantic 
representations or word meanings, which involve 
even more distributed networks in the brain.  Thus, 
reading involves all the assumptions of an NCC 
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framework as provided in Table 1 (see also Figure 1 
for a pictorial representation of the NCC framework 
as it applies to reading).  First, word decoding 
involves cognitive processes in different regions of 
the brain, which subsequently involve networks from 
different regions of the brain.  Second, these 
different networks involved in reading must have 
functional connections for the normal development 
of reading to occur.  Finally, reduced connectivity 
between brain networks involved in specific learning 
tasks reduces learning efficiency.  Reduced learning 
efficiency of academic task(s) due to individual 
differences in atypical brain connectivity is the 
underlying cause of specific learning disabilities 
(SLD). 
 
 
 

1. Decode: Visual analysis of letters and 
visual recognition of letter patterns occurs 
in the occipital lobe after the individual has 
viewed the word. 

2. Phonology: Visual letter groups are 
associated with the language sounds and 
sound blending occurs primarily in the 
superior temporal lobe. 

3. Semantics: Blended sounds are 
compared to words in stored vocabulary in 
neurological areas in close proximity to 
where phonological processing occurred. 
 

Figure 1. NCC Framework of Word Recognition: 
Corresponding cognitive and coherence measures in 
different brain regions. 
 
 
Numerous studies involving brain imaging support 
an NCC framework for SLD.  One of the first studies 
investigating brain connectivity differences between 

children with dyslexia and typically developing peers 
found that children with dyslexia had “disconnected” 
language areas of the brain that corresponded to 
deficits in phonology (Paulesu et al., 1996).  Here, it 
was proposed that weak connectivity between the 
anterior and posterior brain regions in the left 
hemisphere resulted in phonological deficits 
characteristic of many children with reading 
problems.  Sally Shaywitz’s work has also 
consistently demonstrated functional connectivity 
disruptions in the brains of individuals with dyslexia 
(e.g., Shaywitz, B. A., et al., 2002; Shaywitz, S. E., 
et al., 1998).  Differences in brain connectivity in 
children with learning disabilities has also been 
linked to white matter structures of the brain, which 
serve as the major “highways” for connecting 
different brain regions (Silani et al., 2005; Temple, 
2002).  Additionally, reduced functional connectivity 
has been associated with deficits in integrating 
orthography and phonology in children with dyslexia 
(Cao, Bitan, & Booth, 2008) and has been predictive 
of differences between children with dyslexia and 
neurotypical readers (Quaglino et al., 2008).  
Moreover, specific patterns of brain connectivity are 
linked to specific types of learning problems (Fields, 
2008; Pugh et al., 2000). 
 
Additionally, the NCC framework is not limited to 
reading disabilities.  Recent research has 
demonstrated differentiated functional connectivity in 
brain regions involved in word processing amongst 
fMRI data for children with dysgraphia and oral and 
written language learning disabilities (Berninger, 
Richards, & Abbott, 2015).  Disruptions in 
neurocognitive connectivity have also been found in 
children with developmental dyscalculia (Rosenberg-
Lee et al., 2015).  These networks often dissociate 
from those important for language-based SLD.  For 
example, it has been found that individuals with 
math learning disabilities (MLD) exhibit disturbances 
in the left parietal and prefrontal brain areas (Geary, 
2013).  Another study found children with dyscalculia 
display decreased fractional anisotropy (a marker of 
white matter integrity) in the superior longitudinal 
fasciculus, as well as significant insufficiencies in 
fibers of the superior longitudinal fasciculus—a tract 
theorized to provide essential connections for 
numerical processing (Kucian et al., 2014).  This is 
in contrast to children with dyslexia who typically 
have reduced connectivity in the left occipito-
temporal cortex (Paulesu, Danelli, & Berlingeri, 
2014).  Many other studies have also highlighted the 
ways in which brain areas implicated in dyscalculia 
are different than those in dyslexia, due to the 
different neurocognitive demands inherent in 
learning math and reading (Ashkenazi, Black, 
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Abrams, Hoeft, & Menon, 2013; Butterworth, Varma, 
& Laurillard, 2011; Kucian & von Aster, 2015).  This 
demonstrates the flexibility in network 
characterization for SLD via the NCC framework.  
 
The NCC perspective for viewing cognitive deficits 
as a result of disconnection of brain networks not 
only provides a fresh perspective for understanding 
SLD but also for grasping neurological disorders at 
large (Stam, 2014).  Abnormal patterns of brain 
connectivity have been linked to numerous 
developmental and psychiatric conditions, and 
reduced symptomatology in these conditions is 
dependent on the normalization of brain network 
connectivity (Voytek & Knight, 2015).  For example, 
atypical patterns of connectivity have been found in 
individuals with schizophrenia (Su, Hsu, Lin & Lin, 
2015), epilepsy (Widjaja et al., 2015), and 
Alzheimer’s Disease (Qin et al., 2015), to name a 
few.  The NCC framework may help to devise new 
and better identification and/or treatment options for 
individuals with these (and other) neuropsychiatric 
disorders. 
 
Given the relevance of the NCC framework in the 
understanding of neuropsychiatric disorders, it 
follows logically that metrics capable of 
characterizing and/or modulating brain connectivity 
would be ideally suited for both diagnostic and 
treatment purposes.  Accordingly, there is evidence 
to suggest that EEG coherence may be an ideal 
target for neurotherapeutic interventions.  For 
example, Thatcher et al. (2003) have suggested that 
coherence is a better predictor of IQ (and other 
neurocognitive constructs) than other EEG metrics 
including absolute power.  Additionally, several 
studies have examined this question in children and 
adults with neurodevelopmental disorders.  For 
example, Coben, Wright, Decker, and Morgan 
(2015) demonstrated coherence training improved 
reading performance above and beyond that of 
traditional school-based reading interventions.  
Coben (2008, as cited in Linden, & Gunkelman, 
2013) also demonstrated the efficacy of coherence 
training a sample of individuals with autism spectrum 
disorders.  Furthermore, the authors completed a 
randomized control study of neurofeedback 
treatment for college students with ADHD, 
demonstrating significant changes in coherence, 
above and beyond that of other qEEG and 
behavioral metrics (Roberts & Decker, 2015).  Thus, 
not only does coherence provide a valid indicator of 
brain network connectivity that directly links to 
cognitive functioning, it may also be the best target 
for therapeutic outcomes. 
 

Clinical Applications for Coherence  
in Assessment and Treatment 

 
Theoretical 
Complex cognitive activity emerges from neuronal 
activity as part of an integrated network structure to 
exchange information throughout the brain (van den 
Heuvel & Sporns, 2013).  Although the degree to 
which disconnected brain networks manifest as 
discrepancies between different types of behavioral 
measures is not precisely known, reasonable 
inferences can be made based on the theory.  
Nonetheless, there are only a few cognitive theories 
that have formally integrated the role of brain 
connectivity with performance on cognitive 
measures.  One exception is the Parieto-Frontal 
Integration Theory (P-FIT) of Intelligence (Jung & 
Haier, 2007).  This theory is derived from a review of 
literature on correlates of intelligence with a variety 
of brain imaging indicators, which provide a strong 
basis for intelligence being linked to the brain.  
Though current instantiations of the P-FIT model rely 
largely on MRI data, and thus do not take into 
account electrophysiological methods such as EEG 
and MEG that could shed light on the temporal 
dynamics of networks for intelligence, it provides a 
clear example of integrating connectivity with 
cognitive theory. 
 
Assessment and Identification 
Neuropsychological approaches to clinical disorders 
have recently grown in interest to practitioners 
(Decker, 2008).  Historically, measures of cognition 
were limited to IQ scores.  However, IQ scores were 
the basis of using such cognitive measures.  
Consistent with a contemporary neuropsychological 
view, specific cognitive deficits arise from 
connectivity problems in particular regions of the 
brain.  The use of IQ scores, which is an amalgam of 
different cognitive tests compiled into a single score, 
lacks the specificity and sensitivity for capturing the 
exact cognitive deficits associated with different 
clinical disorders (Decker, Hale, & Flanagan, 2013).  
 
Supporting an NCC framework, causal links have 
been made between experimental changes in brain 
connectivity and behavior. For example, reading 
interventions, which enhanced brain connectivity in 
the left occipital-temporal region of the brain resulted 
in improved reading scores in children (Shaywitz & 
Shaywitz, 2008).  Similarly, meta-analytic research 
has supported clear changes in brain activity as a 
result of reading interventions (Barquero, Davis, & 
Cutting, 2014).  Specifically, researchers found that 
children with reading difficulties exhibited different 
amounts of functional connectivity in the frontal lobe 
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compared to children without reading difficulties.  
However, after participating in different reading 
interventions, a difference in frontal connectivity no 
longer existed.  Futhermore, recent literature 
suggests children with double-deficits (phonological 
and rapid naming deficits) have more atypical brain 
connectivity than children with only a single deficit 
(Norton et al., 2014), which demonstrates an 
additive relationship between atypical connectivity 
and learning problems.  These findings indicate 
treatment outcomes of children with dyslexia, in 
comparison to a control group, are dependent on the 
normalization of brain connectivity in specific regions 
of the brain (Richards & Berninger, 2008)—a 
concept that has major implications for directing 
future neurological interventions, such as 
coherence-based neurofeedback. 
 
Within the NCC framework, an uneven profile of 
cognitive skills may correspond to deficits in network 
hub functionality in the brain.  Some preliminary 
research may already suggest this is likely the case 
(Adelstein et al., 2011; Bassett & Bullmore, 2006; 
Cole, Yarkoni, Repovš, Anticevic, & Braver, 2012; 
Shimono, Mano, & Niki, 2012; van den Huevel, 
Mandl, Luigjes, & Hulshoff Pol, 2008; Zalesky & 
Fornito, 2009).  
 
Just as brain networks provide a common 
denominator for cognitive and academic 
weaknesses in phonology that change with 
intervention (Shaywitz & Shaywitz, 2008), there is 
promise that other interventions involving different 
brain networks will be similarly effective.  Within the 
NCC framework described here, the value of 
cognitive tests in assessing brain networks can be 
clarified.  First, and historically noted, cognitive tests 
provide a behavioral indicator of the functional 
integrity of brain networks.  Second, different 
cognitive tests provide an indicator of the integrity of 
different brain networks.  Finally, coherence 
provides a more direct measure of the functional 
integrity of different brain networks.  Unfortunately, 
no cognitive measure is pure and variance in 
performance can be attributed to contextual, 
socioeconomic, and educational sources.  
Coherence provides a more direct measure of brain 
connectivity to verify the neurophysiological basis of 
cognitive problems.  However, the practical utility of 
both measures is in their correspondence with each 
other.  
 
Ultimately all cognition is dependent on brain 
connectivity, and cognitive measures provide 
ecological validity for better understanding 
challenges someone might face in everyday life.  

However, cognitive deficits as indicated by 
behavioral measures are ambiguous as to 
underlying causes.  Coherence measures in 
conjunction with cognitive measures not only provide 
validation of diagnostic problems but also provide 
information to guide and select more targeted 
interventions.  Evaluating the correspondence 
between cognitive test performance and brain hub 
involvement will likely be a future direction of 
neurocognitive and translational research. 
 
In emphasizing the role of brain connectivity, the 
NCC perspective may provide an important 
theoretical foundation for guiding interventions.  
Essentially, children with SLD have weak 
connections in particular areas of the brain that 
reduce integration of associative learning that is 
involved in specific academic tasks.  Similar 
functional deficits have been documented in a 
number of other neurodevelopmental and 
neurological disorders, as described above.  Thus, 
interventions that facilitate connectivity of these 
brain regions should result in improved performance, 
or create the conditions for improving the efficiency 
of learning (as well as of attention, social skills 
attainment, etc., in other clinical disorders). 
 
An important role emerging from NCC involves a 
revised understanding of attention, which has 
historically been difficult to define. Attention has 
been classically defined as a description of 
information held in awareness at a particular 
moment in time; it can become more or less focused 
and can shift; it involves both exogenous 
(environmental) influences as well as endogenous 
(within the person) influences.  More contemporary 
research has found links between attention and 
brain connectivity.  Specifically, attention is a 
cognitive mechanism that facilitates the binding or 
connectivity of different brain networks (Gootjes et 
al., 2006).  Attention is important because it is 
influenced by both task demands and volitional 
control; thus, it is amendable to intervention.   
 
Lastly, the NCC framework may provide a 
conceptual framework for explaining novel therapies 
that have been used in SLD and other clinical 
conditions. Neurofeedback (NF) has been one 
method used to directly change brain connectivity.  
This treatment involves a brain-computer interface 
for operant conditioning of brain activity, where 
patients are trained to direct their own EEG activity.  
Positive outcomes have been reported for various 
disabilities, including SLD.  For instance, cases and 
experimental studies have demonstrated changes in 
brain connectivity from NF in children with dyslexia 



Decker et al. NeuroRegulation  

 

 
10 | www.neuroregulation.org Vol. 4(1):3–13  2017 doi:10.15540/nr.4.1.3 
 

that resulted in improved spelling (Breteler, Arns, 
Peters, Giepmans, & Verhoeven, 2010), improved 
reading (from 1.2 grade levels to upwards of 2 grade 
levels; Coben et al., 2015; Walker & Norman, 2006), 
and improved phonological skills (Nazari, 
Mosanezhad, Hashemi, & Jahan, 2012). 
 

Summary 
 
EEG Coherence is a metric derived from the 
electrical potentials in the brain to gauge the inter-
relationship between two electrodes.  The measured 
relationship can be used to infer the degree of 
connectivity between two distant regions of the 
brain.  As discussed throughout this manuscript, 
neuroimaging techniques, and EEG in particular, 
have become integral physiological metrics in the 
identification and study of various brain networks.  
More and more, research is focusing less on 
structural differences, in lieu of understanding how 
these interconnected structures communicate in 
order to process the increasingly complex 
environments that we encounter on a daily basis.  
 
The integration of cognitive and neuroscience 
investigations of SLD is converging to suggest 
specific brain regions, or networks, are explicitly 
engaged cognitive tasks.  Additionally, education 
requires integrated, or connected, brain networks 
dedicated to the differential processing demands in 
learning.  The Neurocognitive Connectivity (NCC) 
framework is offered to synthesize the emerging 
theme of neuroscientific investigations.  The NCC 
framework is demonstrated using examples of 
specific learning disabilities which involve problems 
in learning due to specific cognitive deficits.  
Furthermore, research is emerging to suggest 
children with SLD have specific atypical patterns of 
brain connectivity and these patterns of reduced 
connectivity in brain networks are the underlying 
cause of SLD.  These atypical patterns of 
connectivity correspond to different displays of 
learning disabilities.  Implications of viewing SLD as 
a brain network connectivity problem are discussed 
with relevance to theory, assessment, and 
intervention.  While research supporting a 
disconnectivity model of SLD has been reinforced by 
neuroscientific investigations, there is also emerging 
evidence for the role of coherence metrics to detect 
atypical patterns of connectivity in brain networks for 
a broad array of neuropsychological and 
neuropsychiatric conditions.  However, additional 
research in the applied and practical applications of 
the NCC model is necessary.  While coherence can 
be derived from a variety of brain imaging 
methodologies, EEG and QEEG have numerous 

advantages within clinical applications.  In addition 
to the general benefits over other neuroimaging 
methodologies related to temporal resolution, EEG 
and QEEG metrics are easy to obtain, inexpensive, 
noninvasive, cost-effective, and provide reliable and 
valid indicators of brain connectivity.  Furthermore, 
coherence measures are ideal therapeutic targets 
for gauging treatment outcomes as well as the target 
of treatments involving neurofeedback.    
 
Although continued research is needed to further 
investigate the ever-growing web of connectivity 
within the human brain, EEG coherence is a metric 
particularly well suited to this endeavor.  Future 
research will likely continue to refine methodological 
aspects of coherence measures in identifying the 
best approaches to identify discrete brain networks 
within source space based on sensor level 
recordings.  Additionally, coherence measures will 
likely factor into the formation of future models of 
cognition and provide a substantial role in not only 
shaping theoretical models of cognition but also 
therapeutic applications for individuals with cognitive 
deficits. 
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