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Abstract 

Introduction: Intrauterine drug exposure (IUDE) including neonatal abstinence syndrome (NAS) is a group of 
problems that occur in a newborn exposed to drugs in the womb.  Currently, there is no consensus on diagnostic 
criteria for addressing the cluster of problems present in children suffering from IUDE.  The current data sought 
to examine differences between IUDE and attention-deficit/hyperactivity disorder (ADHD) clients to elucidate 
specific differences between these groups in the Conners Continuous Performance Test (CPT-3/K-CPT) and 
EEG source localization data using standardized low-resolution electromagnetic brain tomography (sLORETA).  
Methods: This study utilizes archived data from two groups 14 IUDE and 9 clients with standing diagnosis of 
ADHD between the ages of 4 and 13 without the presence of fetal alcohol syndrome (FAS).  All clients completed 
a standard protocol to assess functional domains, including diagnostic interview, review of records, and tests of 
attention, executive functions, and psychological status.  IUDE clients at time of initial assessment were taking 
one or more medications.  ADHD clients consisted of medicated and unmedicated individuals.  Results: 
Significant differences were found between resting-state baseline sLORETA parameters in temporal, limbic, and 
precuneus regions.  Conclusions: IUDE presents a growing problem in the United States due to current opioid 
problems, and it is imperative to accurately classify these children according to this specific set of problems.  
sLORETA assessment may be useful as one marker of IUDE.  Directions for future treatment paradigms are 
discussed as well as potential applications of neurofeedback and learning. 
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Introduction 

 
Prenatal exposure to drugs of abuse (illicit, legal, or 
prescribed) has been a major public health concern 
for decades and is subsumed by the term intrauterine 
drug exposure (IUDE).  In recent years the opioid 
epidemic and its effects have increased attention to 
this crisis.  It is estimated that 5.9% of pregnant 
women engage in illicit drug use; thus, it is difficult to 
convey the very high need for specific diagnostic and 

treatment paradigms to aid these children across the 
developmental continuum until one has encountered 
them in the clinical setting.  The smallest victims of 
the opioid and polydrug exposure epidemic are 
underserved and present great challenges to 
socioeconomic, healthcare, and education systems.  
An extensive review of prenatal drug exposure and 
descriptive patterns of effects of substances on the 
developing brain provides a well-done knowledge 
base (Ross, Graham, Money, & Stanwood, 2015), 
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with projected rates of exposure and substance 
specific characteristics.  Numerous studies have 
described behavior and attentional problems in 
children exposed to drugs in utero as well as 
associated patterns in overall cognitive functioning 
(Butz, Pulsifer, Leppert, Rimrodt, & Belcher, 2003; 
Franck, 1996; Freeman, 2000; Kelley, 1992; Kne, 
Shaw, Garfield, & Hicks, 1994; Mayes, Cicchetti, 
Acharyya, & Zhang, 2003; McNichol, 1999).  The 
sequelae of IUDE include deficits of sustained 
attention, language, social and emotional 
comprehension and affect regulation, social 
executive, and adaptive functions.  IUDE includes 
neonatal abstinence syndrome (NAS) and fetal 
alcohol spectrum disorder (FASD).  Notably, FASD 
has surpassed genetic anomalies as the leading 
contributor to mental retardation in North America 
(Nash, Sheard, Rovet, & Koren, 2008; Ross et al., 
2015).  Disruptions to numerous systems of the body 
may accompany IUDE including motor slowing, 
gastrointestinal difficulties, cardiovascular issues, 
and other disrupted homeostatic and regulatory 
functions (Eiden et al., 2009; Kleiber et al., 2014; Li et 
al., 2009; Wu, Yan, Qu, Feng, & Jiang, 2012; Zhao et 
al., 2015). 
 
IUDE may produce negative effects on neural 
proliferation, migration, dendrite growth, and axonal 
elongation (Geng, Salmeron, Ross, Black, & Riggins, 
2018; Riley, Kopotiyenko, & Zhdanova, 2015; 
Roitbak, Thomas, Martin, Allan, & Cunningham, 
2011; Yip et al., 2014), as well as the disruption of the 
functional integrity of neural networks (Chater-Diehl, 
Laufer, Castellani, Alberry, & Singh, 2016; Posner & 
Rothbart, 2007; Schweitzer et al., 2015; Willford, 
Singhabahu, Herat, & Richardson, 2018).  Studies of 
neonatal electroencephalogram (EEG) have shown 
delayed maturation and reduced hemispheric 
functional connectivity in IUDE children at 1 month of 
age (Akyuz et al., 2014; Conradt et al., 2014; Fisher 
et al., 2011; LaGasse et al., 2011; Lester, 2000; 
Lester et al., 2012).  IUDE children also show 
characteristics of attention-deficit/hyperactivity 
disorder (ADHD), tend to have poorer performance in 
an attention test battery and show EEG alterations in 
P300 and N200 event-related potential (ERP) 
measures.  These findings suggest that there may be 
deleterious long‐term effects of prenatal drug 
exposure on executive function domains of attention, 
classification, and decision-making (Jaeger, Suchan, 
Schölmerich, Schneider, & Gawehn, 2015).  
Studies of prenatal development have shown 
important interdependencies between the insula and 
amygdala in affective and social adaptivity (Bellucci, 
Feng, Camilleri, Eickhoff, & Krueger, 2018; Di 

Cesare, Marchi, Errante, Fasano, & Rizzolatti, 2018; 
Grecucci, Giorgetta, Bonini, & Sanfey, 2013; Klumpp, 
Post, Angstadt, Fitzgerald, & Phan, 2013).  The 
interactions between these regions and the noted 
deficits suggest important to potential treatment 
paradigms for IUDE given the rate of growth in the 
prenatal period and disruptions in connectivity 
amongst these regions in adolescents and adults with 
IUDE or cocaine dependence (K. Li et al., 2013; Li et 
al., 2009; Z. Li et al., 2013; McHugh et al., 2013; 
McHugh et al., 2014; McHugh, Gu, Yang, Adinoff, & 
Stein, 2017).  Differences in functional connectivity 
between insula, amygdala, orbitofrontal, anterior 
cingulate, and sensorimotor cortices have been 
implicated in behavioral issues including attention 
and arousal deficits found in IUDE children (Grewen, 
Salzwedel, & Gao, 2015; Salzwedel et al., 2015).  
Connectivity issues associated with the 
consequences of IUDE involve numerous regions 
and functions.  Of these, the orbitofrontal, amygdala, 
insula, sensorimotor, anterior cingulate, cuneus, 
precuneus, inferior parietal, subcortical, and limbic 
regions are also found disrupted in adolescent and 
adult populations with substance use disorders 
(SUD).  IUDE children have shown reduced global 
brain volume as well as regional differences in the 
cortex, amygdala, nucleus accumbens, cerebellum, 
brainstem, and basal ganglia.  White matter volume 
and disruptions in functional connectivity at rest have 
been noted in IUDE, as well as associations with 
cognitive deficits related to processing speed, 
mathematics ability, executive functions, and eye-
blink conditioning (Adinoff et al., 2015; Grewen et al., 
2015; Lotfipour et al., 2010; McHugh et al., 2017; 
Rando, Chaplin, Potenza, Mayes, & Sinha, 2013; 
Riggins et al., 2012; Roussotte et al., 2012; 
Salzwedel, Grewen, Goldman, & Gao, 2016; 
Salzwedel et al., 2015; Tamnes et al., 2010).  
 
The effects of IUDE opioid and polydrug exposure on 
the brain continue into childhood, and data have 
shown reduced cortical volume and thinner layer 
surface than normative controls (Nygaard et al., 
2018).  It has also been proposed that many of the 
regulatory difficulties found in these children may not 
be fully actualized until they begin the education 
process.  These problems are proposed to increase 
after the age of 4 and progress over the course of 
further development.  The reasons for this increase 
are suggested to include the increasing complexity of 
social, educational, and adaptive demands and the 
lack of functional integration of multiple concepts by 
these children.  It has been reported that 36% of 
individuals exposed to substances prenatally are 
likely to receive a diagnosis of ADHD as contrasted to 
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2% of nonexposed controls (Nygaard, Slinning, Moe, 
& Walhovd, 2016).  In the current data set, 99% of the 
IUDE population had received a diagnosis of ADHD—
primarily combined type prior to admission—and 96% 
of these children were being treated with traditional 
and nontraditional pharmacological agents.  
 
Low-resolution electromagnetic brain tomography 
(LORETA) is a method of probabilistic source 
estimation of EEG signals in a standardized brain 
atlas space utilizing a restricted inverse solution 
(Pascual-Marqui, Esslen, Kochi, & Lehmann, 2002; 
Pascual-Marqui et al., 1999).  LORETA and 
standardized LORETA (sLORETA) have been used 
to examine EEG sources in depression (Pizzagalli, 
Oakes, & Davidson, 2003), in epilepsy (Zumsteg, 
Wennberg, Treyer, Buck, & Wieser, 2005) and to 
evaluate temporal changes associated with 
differential task-specific default network activity 
(Cannon & Baldwin, 2012).  LORETA has been 
adapted to provide real-time feedback to participants 
in order to facilitate operant conditioning.  For 
example, LORETA investigation has documented 
learning of improved regulation of the current source 
density in a specific frequency range at a specific 
region of training within Talairach space.  The effects 
of LORETA neurofeedback have also been replicated 
(Cannon, Congedo, Lubar, & Hutchens, 2009; 
Cannon et al., 2007; Cannon, Lubar, Sokhadze, & 
Baldwin, 2008), and seen increasing use clinically 
(Cannon, 2014; Cannon, Strunk, Carroll, & Carroll, 
2018).  In recent years LORETA and the standardized 
version have been shown to localize medial default 
network regions with complementary accuracy, as 
well as detecting anomalies in network connectivity 
(Cannon, Kerson, Hampshire & Coleman, 2012). 
 
It is important to consider the greatest common 
factors (e.g., sustained attention, mood regulation, 
social and emotional delays, and specific cognitive 
issues) found in IUDE populations across specific 
substances and then progress on a course to 
influence the brain in such a way as to facilitate 
learning and self-regulation of one or more of the 
identified regional connective hubs to adjust the 
brain’s performance (e.g., neural efficiency) and 
facilitate data acquisition, encoding, and learning.  
The most salient symptoms found in IUDE across the 
developmental continuum include emotional 
dysregulation and reactivity, developmental delays, 
motor slowing, impulsivity and hyperactivity, 
difficulties with sustained attention, impaired 
executive functions and self-regulation, deficient 
social comprehension and interactions, social 

development delays, learning impairment, and 
processing speed difficulties.  
 
This study sought to examine differences between 
groups of children with IUDE and a contrast group of 
children with ADHD.  We hypothesized that there 
would be significant differences on the functional 
measure of attention and notable group differences 
between EEG sources in an eyes-opened baseline 
sample using sLORETA. 
 

Participants 
 
This study examined archived data from 23 (10 
female) children and early adolescent clients with 
mean age 8.38, SD = 2.80, (ages 4–13 years) seen 
at an outpatient mental health clinical in Knoxville, 
TN.  Fourteen of the clients were exposed to drugs of 
abuse in utero without the presence of fetal alcohol 
syndrome (FAS) with mean age 7.86, SD = 2.79, 
(ages 4–13).  All IUDE clients (7 female) would be 
classified as polydrug exposed.  All IUDE clients had 
been removed from biological parents and had been 
adopted by family members or foster parents.  99% of 
the IUDE group had received a prior diagnosis of 
ADHD.  The second group (3 female) were clients 
admitted for ADHD with three having comorbid 
generalized anxiety disorder (GAD) with mean age 
10, SD = 2.29 (ages 6–13).  There were no reports or 
records to indicate the ADHD children had been 
exposed to drugs or alcohol during the prenatal 
period.  The IUDE group on average was younger 
than the ADHD group.  The differences did not reach 
significance in this study population with t(21) = 
−1.91, p = .067.  There was no difference for gender 
between groups, t(21) = −0.438, p =.66, and 
medications showed no differences, t(21) = 0.249, p 
= .806.  The IUDE group was taking medications for 
ADHD symptoms, which included Clonidine, Adderall, 
Concerta, Tenex, Straterra, and combinations 
thereof.  The ADHD group was taking Ritalin or 
Adderall.  All assessment data were reviewed with 
parents and informed consent was reviewed and 
signed. 
 

Methods 
 
This study was conducted with approval from an 
institutional review board (IRB) at Maryville College, 
Maryville, TN, to examine attention and drugs of 
abuse in utero.  All clients completed a standard 
protocol for admission to the program, including a 
diagnostic interview, prior record review, and 
psychological and neurophysiological measures.  
This manuscript examines select components of this 
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protocol for contrasting the two clinical groups.  The 
clients completed the Conners Kiddie Continuous 
Performance Test, 2nd Edition, (K-CPT 2); or the 
Conners Continuous Performance Test 3rd Edition 
(CPT 3).  Both are computerized performance tests.  
The K-CPT 2 is a 7.5-min performance-based 
assessment that uses pictures of objects familiar to 
young children, whereas the CPT 3 is a 14-min, 360-
trial administration in which respondents are required 
to respond when any letter appears, except the 
nontarget letter “X” (MHS Assessments, Tonawanda, 
NY). 
 
The clients were prepared for EEG recording using a 
measure of the distance between the nasion and 
inion to determine the appropriate international 10–20 
system cap size for recording (Blom & Anneveldt, 
1982).  The head was measured and marked prior to 
capping for placement of frontal electrodes.  The ears 
and forehead were cleaned for recording with a mild 
abrasive gel to remove any oil and dirt from the skin.  
After fitting the caps, each electrode site was injected 
with an electrode gel and prepared so that 
impedances between individual electrodes and each 
ear were less than 10 KΩ.  The data were collected 
and stored utilizing the Deymed TruScan amplifier 
and acquisition software (Deymed Diagnostics, 
Payette, ID) with a band-pass set at 0.5–64 Hz, and 
a sampling rate of 256 samples per second.  Standard 
6-mm tin cup ear electrodes were used.  All 
recordings were carried out in a quiet, comfortably lit, 
clinical neurofeedback room at the clinic.  Lighting 
and temperature were held constant for the duration 
of the data collection.  We elected to use eyes-
opened baseline recordings, as many of the IUDE 
population struggled to keep the eyes closed during 
this condition, while others could not maintain the 
condition of keeping their eyes closed for more than 
a few seconds at a time. 
 

Data Processing 
  
The EEG stream was edited using Eureka 3 software 
(NovaTech EEG, Mesa, AZ).  EEG editing and 
resampling was obtained by means of natural cubic 
spline interpolation (Congedo, Özen, & Sherlin, 
2002).  All active task conditions and baseline data 
were processed with particular attention given to eye 
movement and jaw tension in frontal and temporal 
leads.  All episodic eye blinks, eye movements, teeth 
clenching, jaw tension, body or neck movements, and 
possible electrocardiogram (EKG) artifacts were 
removed from the EEG record.  Fourier cross-spectral 
matrices were then computed and averaged over 
75% overlapping 4-s artifact-free epochs, which 

resulted in one cross-spectral matrix for each subject 
for each discrete frequency.  The EEG data were 
analyzed utilizing the following frequency domains: 
delta (1.0–4.0 Hz); theta (4.0–8.0 Hz); alpha 1 (8.0–
10.0 Hz), alpha 2 (10.0–13.0 Hz) and beta (13.0–32.0 
Hz). 
 

Data Analyses 
 
In order to assess the electrophysiological differences 
between groups, sLORETA was employed to localize 
the sources of scalp EEG power spectra.  The 
sLORETA solution space is restricted to the cortical 
gray matter in the digitized Montreal Neurological 
Institute (MNI) atlas with a total of 6,329 pixels with 
5mm3 spatial resolution (Pascual-Marqui et al., 2002; 
Pascual-Marqui et al., 1999).  To test the specific 
hypotheses of the differences in cortical activity 
between groups, independent t-tests were used.  The 
average common reference was computed prior to 
the sLORETA estimations.  The calculated 
tomographic sLORETA images correspond to the 
estimated neuronal generators of brain activity within 
each frequency domain (Frei, Gamma, Pascual-
Marqui, Lehmann, Hell, & Vollenweider, 2001).  This 
procedure results in one 3D LORETA image for each 
subject for each frequency range.  The significance 
threshold is based on a randomization test utilizing 
5,000 data randomizations. 
 
The Conners CPT assessment includes nine scales 
to measure distractibility, omissions, commissions, 
perseverations, reaction time, reaction time standard 
deviation, variability, reaction time block change, and 
reaction time for interstimulus intervals.  The scores 
are expressed in T-scores with higher scores 
indicating greater severity.  We utilized independent 
t-tests to contrast the nine scales of the CPT between 
groups. 
 

Results 
 
Figure 1 shows the mean T-scores and standard 
deviation for each CPT scale, side by side for each 
group.  The test results show elevations on nearly all 
scales for the IUDE group as contrasted with the 
ADHD group except for perseverations.  The only 
scale that showed significance between IUDE and 
ADHD groups was omissions, yet results of all scale 
differences are important to the overall description.  
The results show distractibility (D), t(21) = 1.65, p 
= .113; omissions (O), t(21) = 2.62, p = .016; 
commissions (C), t(21) = 0.917, p = .370; 
perseverations (P), t(21) = −0.195, p = .847; reaction 
time (HRT), t(21) = 1.66, p = .111; reaction time 
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standard deviation (HRTS), t(21) = 1.57, p = .130; 
variability (V), t(21) = 0.361, p = .722; reaction time 
block change (HRTB), t(21) = 0.220, p = .828; and 
reaction time for interstimulus intervals (HRTISI), 
t(21) = 0.570, p = .575.  The results show clear 

differences between the two groups with IUDE 
performing with less accuracy and speed than the 
ADHD group on most measures except for 
perseverations.  

 
 

 
Figure 1: Contrast results between groups for scales on the Conners CPT.  Red is the IUDE group and black the ADHD group. 
From left to right the measures are distractibility (D), omissions (O), commissions (C), perseverations (P), reaction time (HRT), 
reaction time standard deviation (HRTS), variability (V), reaction time block change (HRTB) and reaction time for interstimulus 
intervals (HRTISI). *Only the omission scale was statistically significant at p = .016.  

 
 
Table 1 shows the sLORETA statistical contrasts 
between groups (IUDE > ADHD).  In the table from 
left to right are the frequency range, sLORETA x, y, 
and z coordinates, hemisphere, anatomical 
label/Brodmann area (BA), t value for the IUDE 

versus ADHD contrasts, and its probability.  From top 
to bottom are the frequency domains and coordinates 
for both the maximum and minimum levels of current 
source density (CSD) at specific regions of interest for 
sLORETA findings. 
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Table 1 

sLORETA Results for Contrasts IUDE > ADHD 

Frequency 
Range 

 
x, y, z 

Coordinates 
Hemisphere Anatomical Label t Value p 

Delta  –  – – ns 

Theta 

 

 

 

Max 

Min 

 

−30, −85, 40 

−35, −15, −35 

 

L 

L 

 

BA 19, precuneus, parietal 

BA 20, uncus, limbic 

 

1.74 

−0.74 

 

     .096 

    ns 

Alpha 1 

 

 

 

Max 

Min 

 

−30, −85, 40 

−40, 35, 35 

 

L 

L 

 

BA 19, precuneus 

BA 9, superior frontal gyrus 

 

2.11 

−1.65 

 

  .047* 

     .113 

Alpha 2 

 

 

 

Max 

Min 

 

70, −35, −5 

−50, −70, 35 

 

R 

L 

 

BA 21, middle temporal gyrus 

BA 39, angular gyrus 

 

0.048 

−2.37 

 

    ns 

.027* 

Beta 

 

 

 

Max 

Min 

 

−40, 35, 35 

15, −100, 15 

 

L 

R 

 

BA 9, superior frontal gyrus 

BA 18, cuneus 

 

2.16 

2.32 

 

.042* 

.030* 

Note: *p values are statistically significant.  

 
 
In Figure 2 the images shown are horizontal, sagittal, 
and coronal slices of the brain in MNI space. There 
were no significant effects for gender in any of the 
measures.  CSD differences were not significant for 
the delta frequency bin.  Theta CSD was elevated in 
the IUDE group in posterior parieto-occipital regions 
but did not reach statistical significance.  The lower 
range of alpha 1 CSD did show significant elevations 

in IUDE compared to ADHD in BA 19, posterior 
parietal regions, notably the same region of interest 
as theta power.  Alpha 2 CSD showed significantly 
less CSD in IUDE as compared to ADHD at BA 39, 
angular gyrus.  Beta CSD showed significant 
elevations in IUDE as compared to ADHD in left BA 
9, superior frontal gyrus, and less CSD in right BA 18, 
cuneus.   

 
 

 sLORETA Regions of Interest Contrasts IUDE > ADHD 
 

 

Theta   
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 sLORETA Regions of Interest Contrasts IUDE > ADHD  
 

Alpha 1  
 

Alpha 2  

 

Beta  

 

 
 

Figure 2. sLORETA contrast images for IUDE group compared to ADHD group.  From left to right 
are horizontal, sagittal, and coronal slices from the MNI atlas.  The brighter the colors the greater the 
CSD amplitude difference between groups (red, yellow, orange) whereas the darker the colors 
indicate less CSD amplitude between groups (light blue, blue).  Delta showed no differences between 
groups.  Theta CSD levels between groups neared significance with p = .096.  The lower end of alpha 
power showed significantly elevated CSD in IUDE as compared to ADHD with p = .047.  Alpha 2 
showed significantly less CSD in IUDE as compared to ADHD with p = .027.  Beta CSD showed 
differences between groups with elevated CSD in left BA 9 superior frontal gyrus (SFG) with p = .042, 
and less CSD in right cuneus, BA 18 with p = .030.  The last row in the figure shows the scale for the 
contrast results for IUDE compared to ADHD. 
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Discussion 
 
The present findings are the first of their kind showing 
differences between children with IUDE compared to 
children with ADHD using sLORETA.  The current 
data show children with IUDE perform less well than 
children with ADHD on the Conners CPT.  
Specifically, IUDE children showed more omissions, 
to a statistically significant degree.  Given the CPT 
and classification procedures T-scores of 60 or above 
would produce atypical results for the test and 
increase the likelihood of positive classification in the 
ADHD index.  With the pattern of results, it is not 
surprising that 99% of the IUDE population had 
received a prior diagnosis of ADHD at or before the 
age of 5, even though 96% of the IUDE population 
was taking medications for ADHD at the time of 
admission to the program.  These medications 
included Clonidine, Adderall, Concerta, Tenex, 
Straterra, and combinations thereof.  Prior research 
has shown that IUDE children exhibit extreme 
difficulties with self-regulation across numerous 
domains associated with attention including arousal, 
emotional reactivity, sustained attention (Accornero 
et al., 2007; Gabriel & Taylor, 1998; Garavan et al., 
2000; Gendle et al., 2003; Jaeger et al., 2015; Noland 
et al., 2005; Slinning, 2004; Willford et al., 2018), and 
in some cases at our clinic a lack of understanding 
about the importance and significance of giving an 
appropriate effort on these types of tests.  Close 
monitoring during test administration in these children 
and clear instructions are good clinical practice to 
increase the accuracy of the results.  It is also 
important to consider that the IUDE children will not 
meet all criteria for ADHD, and in many cases the 
more pronounced issues are impulsivity and 
emotional reactivity, motor slowing (reaction time), 
and difficulties with sustained attention (Nygaard et 
al., 2016). 
 
The sLORETA contrasts show significant CSD 
differences between IUDE and ADHD groups in the 
alpha and beta bands.  Theta (4.0–8.0 Hz) showed a 
nonsignificant trend toward elevated CSD in IUDE as 
contrasted with the ADHD group at BA 19 and 
associated posterior regions.  This is an important 
finding given the indications that excess theta power 
has been associated with a higher likelihood of having 
ADHD and the potential comodulated slowing 
between theta and alpha power (Bink et al., 2015; 
Gloss, Varma, Pringsheim, & Nuwer, 2016; Koehler 
et al., 2009; Tye, Rijsdijk, & McLoughlin, 2014).  
Mazaheri and colleagues (2010) found a functional 
disconnection between frontal and occipital regions in 
children with ADHD as contrasted with normal 

controls and suggested a deficit in top-down 
regulated attentional processes.  Cannon (2014) 
showed specific inverse correlations between 
posterior alpha and frontal theta in children with 
ADHD.  
 
Maturation of the alpha rhythms is associated with an 
increase in frequency and reduction in amplitude 
between ages of 3 and 10.  The significant difference 
between IUDE and ADHD groups in lower alpha CSD 
is found at BA 19 (precuneus and associated 
posterior areas).  Interestingly, alpha and theta power 
showed elevations in the same area with differing 
effects in a hypothesized self-regulation network 
(SRN) ipsilateral and contralaterally (Cannon, 2014; 
Cannon, Strunk, Carroll, & Carroll, 2018), although 
not reaching significance.  Alpha rhythms are 
suggested to perform as other EEG phenomena and 
exhibit an opposite relationship between amplitude 
and frequency.  For example, the higher the 
amplitude the slower the signal becomes.  One can 
think of this in terms of information being carried along 
a signal.  The greater the peaks and valleys, the 
slower the information travels.  This carrier signal and 
these patterns are important to numerous processing 
speed and learning processes (Cannon, 2015).  
Certain drugs of abuse and conditions may cause 
reductions of alpha frequencies together with 
increased amplitudes, while others may be more 
associated with increased amplitude of low-frequency 
beta activity superimposed on scalp alpha rhythms 
(Nunez, 2006; Sokhadze, Cannon, & Trudeau, 2008).  
Although it is difficult to ascertain specific EEG 
patterns related to exposure to drugs of abuse in 
children, adolescent and adult populations provide 
replicable information concerning these patterns.  
Alpha 2 (10–13 Hz) shows a significant deficit in IUDE 
children as contrasted with the ADHD group in BA 39 
and associated cortex.  The angular gyrus (BA 39) 
has broad implications associated with receptive 
language, perceptual, memory, and sensory 
processes as well as learning (Bonnici, Cheke, 
Green, FitzGerald, & Simons, 2018; Boylan, 
Trueswell, & Thompson-Schill, 2017; Bravo et al., 
2017; Matchin, Liao, Gaston, & Lau, 2019; Thakral, 
Madore, & Schacter, 2017; van der Linden, Berkers, 
Morris, & Fernández, 2017; van Kemenade, Arikan, 
Kircher, & Straube, 2017).  Studies have examined 
alpha EEG power in attentional, saccadic, and 
cognitive processes, although the higher band of 
alpha power is often described as having no 
association with the maintenance of  attention 
(Babiloni et al., 2004; Dockree, Kelly, Foxe, Reilly, & 
Robertson, 2007; Jaime et al., 2016; Klimesch, 
Doppelmayr, Russegger, Pachinger, & Schwaiger, 
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1998; Kornrumpf, Dimigen, & Sommer, 2017; 
Sauseng et al., 2005) and therefore may play are 
more important role in encoding the stream of 
information being attended to (e.g., related to 
learning; Fell et al., 2011; Lenartowicz et al., 2016; 
Molle, Marshall, Fehm, & Born, 2002; Wang, 
Kamezawa, Watanabe, & Iramina, 2017), and 
associated language and working memory indices.  
 
Beta CSD shows elevations in IUDE as compared to 
ADHD in left superior frontal gyrus (SFG) and insular 
cortex, and in the right cuneus (BA 18).  The SFG and 
associated cortex has been implicated in motor, 
language integration, impulse control, and speech 
production, as well as executive and social functions 
(Fujii et al., 2015; Hu, Ide, Zhang, & Li, 2016; W. Li et 
al., 2013; Ookawa et al., 2017; Tsujii, Sakatani, 
Masuda, Akiyama, & Watanabe, 2011; Vogel et al., 
2016).  BA 18 and associated regions are implicated 
in visual and perceptual processes, as well as 
symptoms of anxiety, panic, posttraumatic stress, and 
other psychiatric issues (Heesink et al., 2017; Lai & 
Wu, 2013; Parise et al., 2014; Whitford et al., 2012; 
Yu et al., 2018). 
 
The insular cortex is typically divided into three 
subsections—the anterior, middle, and posterior.  The 
anterior insula is proposed to be associated with 
subjective intensity and self-awareness concerning 
experience and perception.  The middle insula is 
suggested to be associated with polymodal 
integration and may also play an important role in 
motor processes and regulation.  The posterior insula 
is proposed to be associated with interoceptive 
processes and awareness of the bodily state, as well 
as potential in attention, sensory, and social 
processes (Di Cesare, Pinardi, et al., 2018; Duval, 
Joshi, Russman Block, Abelson, & Liberzon, 2018; 
Schiff et al., 2018; Wang et al., 2018; Zhang et al., 
2019).  It is of note that most differences, even those 
not reaching significance, were found in the left 
hemisphere.  In prior research it has been shown that 
important interactions exist between frontal theta and 
posterior alpha power distributions in ADHD (Cannon, 
2014).  It appears that IUDE children show an inverse 
pattern of EEG CSD levels as contrasted with ADHD 
samples, distinct parietal and associated network and 
parieto-frontal interactions, and associated social and 
emotional issues found in ADHD samples 
(Castellanos, 2015; Castellanos & Elmaghrabi, 2017; 
Castellanos & Hyde, 2010; Castellanos & Proal, 
2012; Cortese et al., 2012; Petrovic & Castellanos, 
2016).  
 

Further, data have shown that prenatal exposure can 
alter development of opioid and dopaminergic 
systems in striatal and mesocorticolimbic areas given 
there is a rapid and massive growth and organization 
process during prenatal development (Wang, Dow-
Edwards, Anderson, Minkoff, & Hurd, 2006).  Data 
have reported reductions in bilateral caudate and left 
anterior insula connections with the cerebellum, as 
well as right caudate connectivity disruptions with 
occipital and fusiform regions in IUDE as contrasted 
with nonexposed infants (Grewen et al., 2015; 
Salzwedel et al., 2016).  Additional data have shown 
disruptions in connectivity amongst frontal, amygdala, 
insula, thalamus, and anterior cingulate regions.  
These functional associations involving the thalamus 
are important to arousal regulation, sustained 
attention, detection of salient qualities of stimuli, and 
working memory (Salzwedel et al., 2016).  
 
The current data are in line with other neuroimaging 
data concerning IUDE and its effects on the brain and 
attentional processes.  There have been numerous 
studies indicating substance exposure in utero 
impacts the developing brain in significant fashion.  
The orbitofrontal region has been implicated in 
learning, sensory processing, reward prediction, and 
behavioral responses (McDannald, Jones, 
Takahashi, & Schoenbaum, 2014; Sadacca et al., 
2018; Wikenheiser, Marrero-Garcia, & Schoenbaum, 
2017).  Social cognition and the perception of social 
interactions and behavioral and emotional responses 
are also reported to involve orbitofrontal, insula, and 
default network engagement and potential integrity 
anomalies (Li et al., 2011; Weng et al., 2010) that 
persist into adolescent years.  Social and emotional 
processes involve a complex interaction between 
brain regions and networks, and substance exposure 
creates a complex disruption in these processes that 
delays the maturation and adaptive development of 
these vital functions (Estelles, Rodríguez-Arias, 
Maldonado, Aguilar, & Miñarro, 2005; Fernandes, 
Rampersad, & Gerlai, 2015; Greenwald et al., 2011; 
Kabir, Kennedy, Katzman, Lahvis, & Kosofsky, 2014; 
Kully-Martens, Denys, Treit, Tamana, & Rasmussen, 
2012; Sobrian & Holson, 2011).  There are data 
suggesting IUDE impacts the maturation of the brain 
and its contributions to behavior and attentional 
processes (Chiriboga, Starr, Kuhn, & Wasserman, 
2009; Church, Overbeck, & Andrzejczak, 1990; 
Hammer & Scheibel, 1981; Tamnes et al., 2010; 
Walhovd, Tamnes, & Fjell, 2014); however, there are 
few data providing behavioral and standardized 
assessment examples of what these deficits may 
resemble in the clinical setting.  
 

http://www.neuroregulation.org/
http://www.neuroregulation.org/
http://www.neuroregulation.org/
http://www.neuroregulation.org/
http://www.neuroregulation.org/


Kelley et al. NeuroRegulation

  

 

 

32 | www.neuroregulation.org Vol. 6(1):23–37  2019 doi:10.15540/nr.6.1.23 
 

In the clinical environment, one of the most prevalent 
issues reported by parents and teachers is the 
discrepancy between age-expectation of behavior 
and actual social/emotional regulation maturation 
which can differ by years in context.  For example, a 
10-year-old throwing tantrums, hitting, or breaking 
things in response to environmental demands and not 
getting what he/she wants is age inappropriate.  
Likewise, there may be behaviors present such as 
taking others’ property, or performing acts that are 
dangerous with an impairment in understanding the 
inherent danger (e.g., why is it dangerous to play with 
fire in your bedroom?  “It is against the rules and I am 
not 18 yet”).  In future research paradigms it would be 
useful to attempt to determine the greatest common 
factors impacted by IUDE including regional brain 
differences, cognitive or attentional processes, and 
social and emotional delays.  These issues are 
present in most studies examining the effects of 
IUDE.  However, in order to begin the first step in 
planning interventions these commonalities across 
substances must be uncovered and targeted 
(McDannald et al., 2014; Morrow et al., 2006).  In this 
study’s sample, the first intervention in 99% of the 
IUDE children was for ADHD.  This is an important 
finding due to the lack of specific criteria for diagnosis 
and treatment for this growing population with IUDE.  
It is also important to consider the increased risk in 
IUDE of cognitive deficits, antisocial behaviors, 
substance abuse, academic and educational failure, 
and emotional/mood disorders (Li et al., 2011), not to 
mention the side effects of medications on these 
children.  
 
The current study has several limitations, which 
suggest steps for subsequent research.  First, a 
larger sample size for both IUDE and ADHD groups 
will provide statistical tests with greater power to 
detect real differences between groups.  Second, a 
healthy normal control group will also provide a 
contrast that shows the clinical significance of the 
IUDE group.  Third, a contrast between subgroups of 
IUDE children with and without exposure to adverse 
childhood experiences (ACE) would be of interest.  
Last, eyes-closed resting states are relevant to 
evaluate.  
 
Prenatal drug exposure is not a new problem; 
however, over the past few decades more attention 
has been directed to it.  The numbers of children 
exposed to drugs prenatally is growing, not all of 
whom are born addicted.  IUDE children do exhibit 
attentional difficulties that strongly increase the 
likelihood of an ADHD diagnosis.  Sensory and 
auditory processing issues may also be present.  

There are also major delays in social cognition and 
emotional regulation associated with a frontal, insula, 
and amygdala dysregulation that have been noted in 
numerous studies including this study data.  The 
sLORETA findings in this study provide some insight 
into regions of the brain and frequency distributions 
that may serve as markers to monitor treatment 
methods or develop novel approaches to help this 
population including neurofeedback-based models 
(Cannon, Strunk, Carroll, & Carroll, 2018). 
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