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Abstract 

The purpose of the study was to assess the utility of the spatial vector-based representation of multichannel 
electroencephalography (EEG; when each spatial vector denotes an “instantaneous” sample of cortical activation 
evolving over time) in the analysis of cortical responses to visual stimulation—as opposed to the traditional, 
temporal vector-based approach, when vectors are associated with distinct EEG channels.  This representation 
was used in the analysis of EEG collected in the virtual traffic light environment with the attempt to determine the 
color of traffic light perceived by four participants.  Kruskal-Wallis (K-W) analysis of variance was implemented 
for selected EEG electrodes.  To utilize all available information, discrimination value was evaluated next for 32-
dimensional EEG spatial vectors followed by modified “k nearest neighbors” (knn) classification.  K-W test 
indicated that EEG samples at selected electrodes are different between different colors of traffic light and when 
observed for specific latencies.  The average accuracy of a modified three-class knn classifier was approaching 
60% (the random assignment would yield approximately 33%) for the specific poststimuli latencies.  The 
proposed technique allows analyzing stimulation-synchronized cortical activity with the temporal resolution 
generally determined by the sampling rate of the neuroimaging modality.  The discrimination value appears 
instrumental for predicting the clusterability of data assessed.  Stimulation-evoked cortical responses are often 
of interest in studies of human cognition.  The proposed technique may overcome the low signal-to-noise 
limitation of the traditional evoked response potential (ERP) analysis and possibly provide means to assess such 
responses under the real-time constraint. 
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Introduction 

 
Understanding cognitive processes involved in critical 
tasks may be essential for future scientific and 
technological advances.  Virtual technologies and 
simulated environments utilized during the last 
decade allow studying cognitive mechanisms evoked 
under various perception scenarios in the controlled 
laboratory setting rather than in the real-life scenery.  
Analysis of electroencephalogram (EEG) is an 
established and potentially accurate technique to 
study human cognitive tasks.  Event related potentials 
(ERPs)—distinctive electrophysiological responses 

to specific (usually external) stimuli—are, among 
other applications, used in some neurofeedback 
applications (Strehl et al., 2017) and in studying visual 
perception (Rutiku, Aru, & Bachmann, 2016; Yigal & 
Sekuler, 2007).  Considering letter applications, 
ERPs are usually registered over visual cortices.  
Analyzing visual evoked potentials (VEPs)—the EEG 
components related to perception of visual 
information—permits linking brain electrical activity to 
visual stimulation by studying changes in EEG that 
occur following the stimuli (Walsh, Kane, & Butler, 
2005).  In particular, evidences suggest that VEPs 
may be related to the color that a subject perceives.  
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For instance, Yeh, Lee, and Ko (2013) suggest that 
the images with high preference color combinations 
(blue on white or white on blue) may produce 
significantly faster response in EEG (peak latency of 
P100 component) with significantly greater amplitude 
of P300 component.  Wang and Zhang (2010) 
concluded that images of a red car result in a larger 
amplitude of P300 component compared to blue car 
images. 
 
However, evaluating ERPs or VEPs usually requires 
averaging of multiple EEG epochs recorded in 
response to identical stimulation events and thus use 
of VEPs in real time may be limited.  In the present 
report, we evaluate an alternative approach to the 
traditional VEP analysis that may alleviate the 
underlined limitation.  The proposed approach will be 
applied to the analysis of a driver’s response to 
images of traffic lights. 
 

Evaluating Drivers’ Response to Traffic Lights: 
Literature Review 

 
Analyzing drivers’ cognitive responses may help 
developing an in-car brain computer interface (BCI) 
as possible means for improving road safety.  
Attempts were recently made to relate the perceived 
color of traffic light to the subject’s EEG.  Bayliss and 
Ballard (2000) have reported VEP-based 
discrimination between red and yellow traffic lights.  
Studying the P300 component of VEPs, authors 
suggest that this component “occurs at red and not 
yellow lights” (p. 189).  While reporting an average 
accuracy of 85%, the work leaves the perception of 
the third, green traffic light, unaddressed.  Lin et al. 
(2007) have further developed the yellow or red 
classification, reporting similar accuracy of 85%.  The 
authors also extended their study by including all 
three traffic light signals (Liang, Lin, Wu, Huang, & 
Chao, 2005; Lin, et al., 2008).  However, since the 
participants were instructed to act based on the traffic 
light color they perceive, we may hypothesize that the 
cognitive response to the driving environment may be 
contaminated by the action-related cortical response. 
 
More recent studies by Khaliliardali, Chavarriaga, 
Gheorghe, and Millán (2012) utilized the contingent 
negative variation (CNV) potential for detection of the 
anticipated visual cue, such as the instruction to 
either “go” or “stop.”  A countdown appearing on the 
screen was used as the contingent warning stimuli 
designed to involve the subjects in the anticipating 
state.  However, watching a countdown may not be a 
very realistic scenario.  A required action (applying 
either the brake or the accelerator pedal) may 

produce a more complex cortical response than that 
evoked by viewing a traffic light itself. 
 
Considering ERPs or VEPs, reports suggest that the 
component P100 (occurring within approximately the 
first 100 milliseconds after the stimuli) varies with the 
amount of subject’s attention (Clark & Hillyard, 1996; 
Heslenfeld, Kenemans, Kok, & Molenaar, 1997; 
Kenemans, Kok, & Smulders, 1993; Mangun, 
Hillyard, & Luck, 1993).  P300 was previously 
associated with a red traffic light in a virtual driving 
environment, while being absent when yellow traffic 
lights were perceived (Bayliss & Ballard, 1998).  
N400, observed at poststimulus latencies between 
250 and 550 ms, is usually associated with semantic 
integration (Kutas & Hillyard, 1980, 1984) and with 
pseudo-action (Holcomb & McPherson, 1994; van 
Elk, van Schie, & Bekkering, 2008). 
 
In the present study, participants’ perception will be 
limited to vision only.  Multichannel EEG will represent 
participants’ cognitive response to the virtual traffic 
light environment in the form of static images of traffic 
lights.  We propose utilizing an alternative, spatial 
vector-based, approach in the analysis of cognitive 
responses in terms of VEPs, which comprises the 
novelty of this study.  We expect that different traffic 
light colors may be linked to the specific VEP features 
and that it may be further possible to classify them.  
Not hypothesizing regarding the origins of perceptual 
changes, the primary goal of the present study is to 
validate the proposed technique on detecting 
differences between the drivers’ cognitive responses 
(via EEG) evoked by the specific traffic light color. 
 

Material and Methods 
 
This study followed Lamar University Institutional 
Review Board guidelines and was approved by the 
LU IRB committee.  The informed consent was 
obtained from all study participants prior the 
experimentation.  No identifiable personal information 
was retained in the research data. 
 
Participants, Experimental Setup, and EEG 
Acquisition 
Continuous EEG was recorded from four subjects 
(three males and one female, aged from 25 to 35 
years) with normal color vision, corrected to normal 
vision, at least one year of driving experience, no 
history of known neurological disorders, and without 
being tired or sleepy during data collection.  The 
recordings were performed using the Advanced 
Neuro Technology (ANT, Netherlands) system 
equipped with 32 electrodes positioned according to 
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the extended International 10/20 electrode placement 
map.  EEG was prefiltered in the 0.3–50 Hz range, 
notch-filtered at 60 Hz, sampled at 256 Hz, and stored 
in a computer for an off-line processing.  One to six 
EEG recordings were obtained per each participant 
under the identical conditions; the EEG with less 
visible artifacts was selected for the further analysis. 
 
Visual stimulation consisted of images of traffic light 
signals presented via a multimedia projector on a 
screen at approximately 2 meters in front of the 
subject.  The images were covering most of the 
subject’s visual field and were displayed for 300 ms 
followed by a black screen for 1500 to 2100 ms.  The 
images of traffic light signals of different colors were 
displayed in a randomized order.  A sample image of 
the red traffic light is shown in Figure 1. 
 
 

 
 
Figure 1. A sample image of the traffic light signal. 

 
 
Similar images of green and yellow traffic light signals 
were also used for visual stimulation. 
 
EEG Analysis 
EEG can be viewed as a stochastic, nonstationary in 
time, multichannel process.  Due to its low magnitude 

(generally up to 100 V), EEG is often a subject to 
various artifacts that originate either from the 
surroundings, body functions, equipment (external 
artifacts), or from within the brain (internal artifacts).  
These artifacts are usually reduced to improve 
accuracy of the EEG analysis.  As an example, DC 
offsets are normally removed from EEG before further 
processing.  Additionally, spatial filters that reduce 
surface currents may improve the signal-to-noise 
ratio of EEG potentially improving the classification of 
mental tasks (Mourino et al., 2001).  One of such 

filters, a common average reference (CAR) spatial 
filter, is particularly popular due to its robustness, 
good performance, and computational efficiency 
(Ludwig et al., 2009).  Therefore, CAR spatial filter 
was implemented in this project after DC offsets were 
removed from EEG. 
 
We have recently demonstrated that the discrete 
wavelet transform (DWT) decomposition of the VEPs 
can be instrumental in their classification of the 
perceived color of traffic light (Hoque & Tcheslavski, 
2018).  However, the reported approach requires the 
complete VEP being available for the processing and, 
therefore, may not be suitable for real-time 
applications.  Selection of the most appropriate EEG 
channels/electrodes contributing to the more 
accurate classification is another challenge.  Besides, 
the temporal dynamics of VEPs may be of interest.  
Therefore, we propose an alternative approach to 
analyze EEG data acquired while participants were 
performing cognitive tasks. 
 
The VEP Analysis: Its Limitations and an 
Alternative Approach 
Traditionally, VEPs can be viewed as the time-locked 
responses that are treated as stimulation-specific.  
VEPs can be extracted by averaging the EEG 
segments (epochs) synchronized with the specific 
repetitive stimuli—the color of traffic light images, for 
instance—and for the EEG electrodes associated 
with the visual cortex.  Since differences in cognition 
may be of interest, the VEP components related to 
both cognition and memory may be assessed.  One 
of the objectives of the present project was to 
determine whether the VEP components—such as 
P100, P300, or N400—are elicited in a virtual traffic 
light environment and can be used for the traffic light 
color classification. 
 
From a physics standpoint, discrete-time M-channel 
EEG can be viewed as a sampled in both time and 
space version of a continuous spatial distribution of 
an electric potential that evolves over time; hence a 
spatiotemporal distribution.  From the mathematical 
standpoint, a discrete EEG epoch synchronized with 
the external (visual, in our case) stimulation can be 
viewed as a collection of temporal vectors, where 
each vector corresponds to a specific EEG channel.  
It is safe to assume that only the selected channels 
will contribute to VEPs.  Another, perhaps less 
traditional, approach will be to consider such an 
epoch as a single spatial vector evolving over time.  
In this case, this vector at any time instance is an 
instantaneous sample of continuous electric potential 
represented by EEG that is sampled (in space) at the 
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individual electrodes’ locations.  The cartoon diagram 
in Figure 2 illustrates this dual representation 
concept. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2. A schematic diagram of a dual representation of 
an M-channel discrete EEG. 

 
 
The diagram in Figure 2 shows a traditional temporal 
EEG vector for the channel 3 that starts at the time 
instance n0+1 and is 9-sample long (blue dash–dot 
contour) and a spatial EEG vector for all M EEG 
channels and for the time instance n0+3 (green dash 
contour).  We may argue that the traditional temporal 
vector concept can be utilized to estimate VEPs; 
however, the spatial vector concept may be more 
adequate for the analysis of the perception-related 
alterations in the temporal distribution of the cortical 
activity.  We will be using the latter, spatial vector 
approach. 
 
Selection of the Statistical Analysis Techniques 
Problems involving assessment of statistical 
differences between clusters of multidimensional 
vectors emerge in many areas of science and 
engineering.  Yet, no universally accepted approach 
seems to exist for their solution.  One procedure to 
alleviate this problem is to reduce the assessed 
vectors to scalar quantities, such as vector norm or a 
single judiciously selected coordinate of the 
examined vector.  Traditional statistical tools, such as 
ANOVA, can be applied then to scalars.  Adopting the 
spatial vector representation of EEG, the latter would 
lead to evaluating statistical differences between 

EEG samples recorded from a specific electrode.  
This, however, will considerably reduce the 
information content available for the analysis.  We will 
form the analysis statistics as single-channel EEG 
samples corresponding to the specific poststimulus 
latencies.  Three groups of observations will be 
formed corresponding to red, yellow, and green 
colors of traffic light images; each group will consist 
of 140 observations (4 participants, 35 repetitions of 
each stimulus per participant).  Kruskal-Wallis (K-W) 
one-way analysis of variance will be conducted to 
assess whether samples originate from different 
distributions. 
 
On the other hand, addressing the outlined 
shortcoming, Krauss et al. (2018) have recently 
introduced the quantity referred to as discrimination 
value as means to analyze spatiotemporal cortical 
activations; more specifically, to assess their 
clusterability.  In present study, EEG recordings were 
partitioned into epochs synchronized with stimuli 
presentation allowing pre- and poststimulation buffers 
of 100 ms and 200 ms, respectively.  However, 
instead of the traditional temporal representation, 
epochs were partitioned into spatial vectors of the 
instantaneous EEG; that is, the vectors composed 
from the EEG recorded for a particular time instance 
and for all available 32 electrodes.  Since each 
stimulus was repeated 35 times, three clusters of 
such spatial vectors were formed containing 35 
vectors each.  Intra- and intercluster Euclidean 
distances were evaluated between these vectors and 
the instantaneous discrimination value (IDV) was 
estimated for them as in (1).  Please refer to the 
Appendix for the detailed description of the classifier 
design. 
 
In the present project, the initial k was selected as 10 
and the modified knn was implemented for three 
classes according to Figure A1.  To evaluate the 
performance of the classifier, leave-one-out cross-
validation was applied.  Data analysis was 
implemented using MATLAB R2008a. 
 

Results 
 
After selecting the least contaminated EEG 
recordings, Figure 3 illustrates the VEPs obtained by 
averaging over 35 epochs corresponding to the red, 
green, and yellow images of traffic light evaluated for 
four subjects and for three different EEG channels. 
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Figure 3. VEP amplitudes for four subjects, Oz, Cz, and Fz electrodes, and for three colors of traffic light images; blue 
vertical lines illustrate stimulation on- and offsets.  

 
 
Each column in Figure 3 represents a specific 
participant; the graph color represents the color of the 
corresponding traffic light.  In Figure 3, one can 
observe well-pronounced VEPs evaluated for 
different EEG electrodes.  For instance, those 
evaluated for the first subject and for Oz channel (the 
upper left panel) resemble traditional flash VEPs with 
well-defined P200 (approximate latency of 150 ms), 
N300 (past 200 ms), and P300 (approximately 340 
ms) components, while other participants produced 
somewhat less pronounced VEPs.  We also observe 
clear responses to the stimulation at electrodes, such 
as Cz, not normally associated with the visual system.  
On the contrary, this channel, among other functions, 
is normally linked to the motor cortex.  Similarly, the 
frontal channel, Fz, is usually associated with 
memory-related tasks and high-level information 
processing, rather than just vision.  Perhaps, well-
defined responses at these channels may indicate 
that the stimulation evokes a more complex response 
including motor- and memory-related components in 
addition to those from the vision-related cortical 
regions.  Local extrema in these evoked responses 
evaluated for different EEG channels appear at 
similar latencies for each participant.  Therefore, we 
may hypothesize that fusing information from different 

EEG channels could lead to more comprehensive 
description of perception phenomenon.  
 
Close examination of Figure 3 shows that, although 
VEPs appear somewhat different for different stimuli 
(i.e., the color of traffic light), the observed alterations 
do not appear consistent between participants or 
even between different EEG channels recorded from 
the same individual.  We conclude that neither the 
shape nor the latency of VEPs evoked by images of 
traffic lights of different colors appear contributing to 
the reliable discrimination between cognitive 
responses to the images.  Therefore, we assess the 
utility of the spatial vectors approach next.  EEG 
epochs corresponding to three images of traffic lights 
(i.e., red, yellow, and green) were formed for each 
participant.  EEG was represented as collections of 
instantaneous spatial vectors.  The dimensionality of 
these vectors is determined by the number of EEG 
channels (32 in our study).  The samples 
corresponding to the specific channels—Oz, Cz, and 
Fz—were used as observations in the Kruskal-Wallis 
one-way analysis of variance.  The resulting H-
statistics is shown in Figure 4.   
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Figure 4.  H-statistics evaluated by the Kruskal-Wallis test 
between instantaneous EEG samples corresponding to red, 
yellow, and green color of traffic light images and EEG 
electrodes indicated in the legend, blue vertical lines 
illustrate stimulation on- and offsets. 
 
 
As seen in Figure 4, H-statistics exceeds 6 for the 
specific latencies and EEG electrodes.  Since the 
distribution of H can usually be approximated by the 

chi-square distribution and assuming the significance 
level of 0.05, we may conclude that the null 
hypothesis of equal medians can be rejected for the 
EEG responses to different traffic light color at these 
latencies.  On the other hand, using EEG data from a 
single electrode only may result in discarding 
important information.  Additionally, spikes in H-
statistics after the stimulation off-set (i.e., for latencies 
exceeding 300 ms) may be difficult to explain.  
Nevertheless, we may argue that local maxima in H-
statistics may indicate significant differences in 
cortical activations observed in response to different 
stimuli.  We implement the discrimination value 
utilizing all available EEG data followed by the 
classification of spatial vectors of instantaneous EEG. 
 
Figure 5 illustrates IDVs—according to (1)—and the 
average instantaneous classification accuracies 
(ACA) for the same EEG epochs that were used for 
evaluating VEPs in Figure 3. 

 
 

 
 
Figure 5. Instantaneous discrimination values (IDV) and average instantaneous classification accuracies (ACA) for the three-
class modified knn classifier and for four participants.  Blue graphs illustrate the IDV; red graphs represent ACA of a modified 
3-class knn classifier. 

 
 
One observation that can be made while examining 
Figure 5 is that the IDV and ACA graphs are generally 
opposite to each other; that is, local maxima in ACA 
are seen at approximately the same latencies as local 
minima in the discrimination value.  The latter is 
consistent with the expectation that more negative 
IDV indicates more distinct clusters and, therefore, a 
better classification performance can be expected.  
The ACA was evaluated as the average of the 
percentages of correct classifications for the three 
classes (i.e., three traffic light colors) considered.  For 

such problems, a random assignment to classes 

would lead to ACA of approximately 100/3  33%.  
Therefore, ACA exceeding 50% may indicate that the 
underlying classification features (EEG spatial 
vectors) are indeed dissimilar between the different 
clusters. 
 
We also observe that the classification accuracy 
generally reaches its local maximum at the latency 
between 100 and 200 ms for all participants 
assessed.  Similar results (i.e., the opposite 
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appearance of IDV and ACA and the highest 
classification accuracy within the same latency range) 
were also observed for other EEG sets recorded from 
the same participants and under the identical 
experimental conditions (not included in the present 
report). 
 

Discussion and Conclusions 
 
Although VEPs elicited by traffic light images of 
different colors appear dissimilar, such dissimilarities 
do not seem to be consistent between the experiment 
subjects.  We may thus conclude that the traditional 
VEP-based approach may be insufficient to reliably 
determine EEG alterations that may be related to the 
specific color of traffic light that the individual 
perceives.  On the other hand, the alternative 
technique handling EEG epochs as collections of 
instantaneous spatial vectors that are used as the 
classifier’s feature vectors appears more promising 
for the EEG-based assessment of traffic light 
perception.  Furthermore, this approach appears 
suitable for real-time processing (after the classifier is 
trained with the appropriate library of feature vectors).  
The well-established techniques assessing statistical 
differences, such as ANOVA or Kruskal-Wallis tests, 
can be applied to the instantaneous EEG samples 
evaluated for the individual electrodes prior 
attempting the classification of spatial vectors.  
Additionally, the discrimination value evaluated for 
the feature vectors—spatial EEG—appears 
instrumental for predicting the outcomes of such 
classification. 
 
Positions of local ACA maxima shown in Figure 5 can 
be related to the results of previous studies on human 
cognition.  For instance, we may conclude that no 
reliable detection of traffic light color arises at the 
poststimulus latencies prior 100 ms.  The latter 
agrees with Thorpe, Fize, and Marlot (1996) who 
suggested that the recognition of familiar objects 
generally occurs within 150 ms after stimulus onset.  
Another local maximum in ACA that is evident for all 
assessed participants at the approximate latency of 
300 ms, perhaps, can be attributed to the P300 
component of VEP that was previously reported as 
contributing to the  classification of traffic light color 
(Bayliss & Ballard, 2000; Liang et al., 2005; Lin et al., 
2007). 
 
We have observed that the classification performance 
was greatly affected by the implemented EEG 
preprocessing steps, especially by the baseline 
correction applied to epochs.  Perhaps implementing 
more sophisticated baseline correction methods may 

lead to an improved performance.  Another potential 
improvement could be an incorporation of EEG 
artifact suppression techniques.  Replacing the knn 
classifier with more advanced methods may also 
contribute to a better performance. 
 
Addressing the possible limitations of the present 
study, one such limitation is a relatively small 
participant pool, although it may be sufficient 
considering the pilot nature of the report.  Additionally, 
participants with more diverse background and of 
broader age range could be of interest.  It is unclear 
whether the observed discrimination between EEG 
vectors is due to the mere recognition of colors or to 
more complicated perceptual mechanisms involving 
the environment analysis.  Perhaps using images of 
solid color or colored figures for visual stimulation or 
including participants with no driving experience 
could provide further insight to this question. 
 
We hypothesize that the temporal resolution of the 
proposed technique is mostly determined by the 
sampling rate of the neuroimaging modality used (i.e., 
EEG in the present study).  Therefore, increasing this 
rate may improve the temporal resolution of the 
stimulation-related analysis.  It may also be of interest 
to apply the proposed technique for the 
interparticipants comparison of cortical activations 
evoked by the identical stimulation, although 
individual cognitive specifics may diminish the utility 
of such comparison. 
 
Based on the reported results, we conclude that 
representing stimulation-synchronized EEG epochs 
as collections of spatial vectors may better reveal the 
temporal structure of event potentials and that the 
discrimination value is instrumental for the prediction 
of clusterability (i.e., whether the analyzed data set 
can be partitioned into distinct clusters) of event-
related cortical activity. 
 
Due to the very low signal-to-noise ratio in EEG, 
evaluating ERPs normally requires averaging over 
multiple EEG epochs collected in response to the 
same stimulus.  The latter severely limits the use of 
evoked potentials in real-time applications including 
neurofeedback, in which the effectiveness of operant 
conditioning decreases dramatically with the number 
of seconds between the behavior and the 
reinforcer/punishment (Sherlin et al., 2011). Although 
the spatial vector-based analysis also assumes 
collection of the library of responses (EEG epochs in 
our study) to train the classifier, the classification 
stage may occur in real time.  This advantage of the 
proposed technique may make it attractive for 
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applications requiring instantaneous feedback.  
Finally, we further hypothesize that the spatial vector-
based approach may also be instrumental for other 
multichannel neuroimaging techniques, such as 
magnetoencephalography (MEG). 
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Appendix 

A Three-class Classifier Design 
 
Utilizing the proposed approach and assuming that the data can be partitioned into three clusters A, B, and C (that 
are related to the color of traffic light perceived), the discrimination value of these data can be estimated as (Krauss 
et al., 2018): 
 

( ) ( ) ( ) ( ) ( ) ( ), , , , , ,d A A d B B d C C d A B d A C d B C = + + − + +    (1) 

 
where d(A,A), d(B,B), and d(C,C) are the average intracluster distances, while d(A,B), d(A,C), and d(B,C) are the 
average intercluster distances.  According to Krauss et al. (2018), the more negative IDV is, the more distinct the 
assessed clusters are.  Perhaps, we may argue that IDV can be used to predict the classification success if the 
underlying vectors are used as the classification features.  Next, the “k nearest neighbors” (knn) algorithm was 
implemented for classification.  The following training matrix was used for a three-class problem: 
 

( )( ) ( )( ) ( )( ) ,θ , ,θ , ,θA A B B C CX x x x x x x=  (2) 

 

where the training (feature) sample xn belongs to the nth out of three possible classes—A, B, or C—and (xn) 
represent the class associations.  The Euclidean distances between the test N-dimensional vector z and all training 
vectors constituting to each of three classes was evaluated as (Duda, Hart, & Stork, 2000): 
 

( ) ( )( )
2

0

, ( )
N

n n

i

d z x z i x i
=

= −  (3) 

 
k training vectors were selected that were closest (i.e., having the shortest distances) to the test vector.  Such 
training vectors are referred to as “nearest neighbors.”  The test vector z is assigned to the class, to which the 
majority of its k nearest neighbors belong.  Here, k is a scalar value selected by a user.  Regrettably, the 
performance of knn classifiers may be affected by tied votes.  While tied votes can easily be avoided for two-class 
discriminations by selecting odd values of k (Phyu, 2009), no straight-forward solutions seem to exist for multiclass 
problems.  We propose a simple iterative technique for tied votes’ avoidance in knn classification.  The implemented 
algorithm is summarized in Figure A1. 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

 
Figure A1. A schematic diagram of the modified knn
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Tied votes occur if, among the k nearest neighbors, more than one group produces the maximum number of 
neighbors.  Therefore, we propose monitoring group membership among the k neighbors to detect tied votes and, 
if such votes occur, incrementing k by one, reselecting neighbors, and reevaluating their membership until no tie 
votes arise. 
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