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Abstract 

Epilepsy is a common neurological disorder due to excessive brain cell activity.  It is characterized by 
unpredictable seizures resulting in cognition.  The release of abnormal electric discharge in the regions of the 
brain causes epileptic seizures.  Neurotransmitters play an important role in normal functioning of the brain and 
thus alteration of these neurotransmitters are associated with epilepsy.  Zebrafish model have recently become 
a focus for various neurological disorders because of its high genetic similarity when compared with those of 
humans.  Zebrafish can be grown in large numbers and their embryos are optically clear allowing examination of 
individual genes.  This review will look at the utility of the zebrafish in the study of various therapeutic targets of 
epilepsy such as GABA (gamma-aminobutyric acid), AMPA, NMDA (N-methyl-d-aspartate), histamine H3, and 
phosphodiesters. 
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Introduction 

 
Epilepsy is a common neurological disorder which 
causes biomedical disturbance resulting in abnormal 
electrical activity in certain neurons, which may 
further affect the entire brain.  This abnormal neuronal 
activity has a significant influence in cognitive 
dysfunction and mental health condition (Kwan & 
Brodie, 2001; Meador, 2002; Smith, Craft, Collins, 
Mattson, & Cramer, 1986).  An epileptic seizure is a 
sign of abnormal activity in neurons which is 
spontaneous.  The effect of chemical reaction in the 
brain produces electrical discharges, and thus the 
disturbance of excitation and inhibition in a region of 
brain when moved too far in the direction of excitation 
results in seizures (Dekker, 2002). 
 

The classification of epileptic seizures is divided into 
three categories (generalized, focal, and epileptic 
spasms) depending upon the release of abnormal 
electric discharge in the region of brain.  Generalized 
seizures affect both hemispheres of the brain; focal 
seizures are limited to one hemisphere yet may 
progress to generalized seizures (Berg & Millichap, 
2013).  A seizure is accompanied with imbalance 
excitation and inhibition in the brain, resulting in 
alteration of brain functioning and genes.  The 
imbalance leading to epilepsy can occur anywhere 
from circuit level to receptor level and, in some cases, 
it might be due to abnormal ionic channel function 
(Berkovic, 2015). 
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Figure 1. Classification of epileptic seizures upon abnormal 
electrical discharge in the human brain. 

 
 
Both children and adults with epilepsy are prone to 
long-term forgetting in which newly acquired 
memories fade over days and memory impairment in 
which autobiographical or public facts are forgotten 
(Butler & Zeman, 2008).  Accelerated long-term 
forgetting is a condition where individuals learn and 
initially retain information normally but forget the 
information at an unusually rapid rate (Blake, Wroe, 
Breen, & McCarthy, 2000).  Accelerated forgetting 
has been demonstrated in both adults and children 
(Butler et al., 2009; Martinos et al., 2012). 
 
Neurotransmitters (gamma-aminobutyric acid 
[GABA], glutamate, and acetylcholine) are associated 
with normal functioning of brain.  The alteration of 

these neurotransmitters has a significant role in 
epilepsy (Sancheti, Shaikh, Khatwani, Kulkarni, & 
Sathaye, 2013).  GABA is an inhibitory transmitter 
and helps in suppressing epilepsy, whereas 
glutamate causes neuronal death.  Acetylcholine 
plays the key role in modulating glutamate release 
and memory formation (Ozawa, Kamiya, & Tsuzuki, 
1998). 
 
Zebrafish (Danio rerio) has become a widely used 
model system for the neurobehavioral system.  
Zebrafish are vertebrates and therefore more closely 
related to other model organisms and also share a 
high genetic similarity to humans; approximately 70% 
of all human disease genes have functional homologs 
in zebrafish (Cooper, D’Amico, & Henry, 1999). 
 
Recent studies have proven that zebrafish possess 
several advantages over other animal models.  
Zebrafish are much easier to maintain in a laboratory 
and can also be grown in large numbers (Kimmel, 
1989).  The mode of fertilization is external, and their 
embryos are optically clear allowing examination of 
individual genes (fluorescently labeled or dyed; 
Bernasconi, 2004; Cendes, 2005; Kimmel & Warga 
1988; Solnica-Krezel, Stemple, & Driever, 1995; Tran 
& Gerlai, 2015).  The small size of zebrafish larvae 
allows easy manipulation of gene activities and 
screening of neuroactive compounds (Kuzniecky & 
Knowlton, 2002). 
 
The aim of this systematic review summarizes the 
potential of zebrafish as a model organism to 
examine various therapeutic targets of epilepsy. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. Schematic representation of excitatory and inhibitory neurotransmitter induced changes 
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Therapeutic Targets of Epilepsy 
 
Gamma-Aminobutyric Acid 
GABA is the major inhibitory neurotransmitter of the 
nervous system (Bowery & Smart, 2006).  It acts 
through its receptors known as GABA receptors, 
which are divided into two classes, GABAA and 
GABAB.  GABAA receptors are chloride channels, 
while GABAB receptors belong to class of G-protein 
coupled receptors (GPCR).  GABAA receptors are 
combinations of 19 different subunits (α1–6, β1–3, 
γ1–3, δ, ε, π, θ, and ρ1–3) and are targets for classes 
of clinically important drugs, such as 
benzodiazepines and barbiturates (Chua & Chebib, 
2017; Möhler, 2006; Olsen & Sieghart, 2008).  
 
GABAB receptors are G protein–linked receptors that 
decrease calcium entry and have a slow inhibitory 
effect.  The activation of GABAB receptors is 
associated with a decrease in neurotransmitter 
release, and thus GABAB agonist drugs would have 
an antiepileptic effect (Swartzwelder, Bragdon, Sutch, 
Ault & Wilson, 1986).  GABAergic neurons are 
ubiquitously distributed in the brain that determines 
the integration of all neuronal functions.  Blockade of 
the fast inhibitory GABAA receptors might be the 
major cause of seizures.  It has therefore been 
suggested that dysfunction of the GABAergic system 
may have an influence in the development of acute 
seizures and in the manifestation of epilepsy 
syndromes (Möhler, 2006). 
 
Zebrafish contain at least 23 different GABAA 
receptor subunits.  Although we observed some 
differences between the zebrafish and mammalian 
GABAA receptor subunit gene families, zebrafish 
contain orthologs for most of the GABAA receptor 
subunits found in mammals.  GABAA receptors are 
expressed in larval zebrafish and are essential for 
normal brain function (Baraban, Taylor, Castro, & 
Baier, 2005).  
 
Ampa Receptor Potentiators  
Glutamate is the major excitatory neurotransmitter 
released from nerve cells of the adult mammalian 
brain that mediates numerous processes.  
Glutamates are classified into two large subclasses of 
receptors: the ionotropic glutamate receptors and the 
metabotropic glutamate receptors.  The ionotropic 
receptors can be further subdivided into AMPA, 
kainate, and N-methyl-d-aspartic acid (NMDA) 
receptors (Featherstone, 2010; Meldrum, 2000; 
Seeburg, 1993).  The AMPA receptor comprises four 
subunits, which include at least two of the following 
subunit types: GluA1, GluA2, GluA3, or GluA4 
(Mansour, Nagarajan, Nehring, Clements, & 

Rosenmund, 2001).  AMPA receptors are the major 
excitatory postsynaptic receptor which are expressed 
abundantly throughout the central nervous system 
(CNS; Rogawski, 2011). 
 
Early studies have indicated the pathophysiologic role 
of AMPA receptors in epilepsy.  The blockade of 
AMPA receptors may have a role in abnormal 
electrical activity in the epileptic brain (Mansour et al., 
2001).  The AMPA-receptor subunit expression of 
human epileptic brain revealed high expression of the 
GluA1-receptor subunit in the epileptic hippocampus 
(Graebenitz et al., 2011) which indeed increases the 
levels of homomeric GluA1 receptor, that exhibits 
high conductance compared with the GluA2-
containing Ca2+-impermeable heteromeric receptors 
(Coombs, et al., 2012; Ying, Babb, Comair, Bushey, 
& Touhalisky, 1998).  Neuronal degeneration usually 
occurs with increased expression of GluA2-lacking 
calcium permeable receptors, thus AMPA receptors 
might have a significant role in the pathophysiology of 
epilepsy: not only the expression of seizures but also 
the progression of epilepsy (Grossman, Wolfe, 
Yasuda, & Wrathall, 1999; Liu & Zukin, 2007; 
Swanson, Kamboj, & Cull-Candy, 1997). 
 
The subunits of AMPA receptors have been 
expressed in zebrafish with a high degree of similarity 
when compared to those of humans, rats, and mice.  
AMPA receptors have been found in different regions 
of zebrafish (retina, hindbrain, spinal cord, and 
neurons; Ali, Buss, & Drapeau, 2000; Patten & Ali, 
2007; Yazulla & Studholme, 2001).  They are also 
associated with the neuromuscular junction that 
facilitate acetylcholine release during early 
development in zebrafish (Todd, Slatter, & Ali, 2004). 
 
N-Methyl-D-Aspartate Receptors 
N-methyl-d-aspartate receptors (NMDARs) are 
ligand-gated ionotropic glutamate receptors that are 
important mediators for neuronal events such as 
synaptic plasticity, learning and memory, neuronal 
development and circuit formation, and have been 
implicated in various neuronal disorders (Cull-Candy, 
Brickley & Farrant, 2001; Hua & Smith, 2004).  The 
mammalian NMDA receptor was first cloned in 1991 
(Moriyoshi et al., 1991), and its structure and function 
has been studied widely in mammals.  These 
receptors are highly permeable to calcium and, thus, 
may play important regulatory roles in the response 
of neurons to signaling (Mayer & Armstrong, 2004; 
Riedel, Platt, & Micheau, 2003). 
 
There are five NMDA receptor genes expressed in 
mammals encoding for NMDAR1 (NR1) and 
NMDAR2 (NR2) subunits (Cox, Kucenas, & Voigt, 
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2005).  The NR1 subunit are widely distributed 
throughout the CNS, which plays an important role in 
voltage independent zinc inhibition, whereas the NR2 
subunits exhibit cell-specific expression patterns.  
Pharmacological regulation of the NMDAR depends 
on effects on unique combinations of subunit-specific 
binding sites.  Both the NR1 and NR2 subunits 
contribute to the formation of the NMDAR ion 
channel.  The glutamate-binding site is on the NR2 
subunits, and the glycine-binding site is located on 
the NR1 subunits.  The glycine (and/or D-serine) co-
agonist site must be the pathogenesis of epileptic 
discharges (Carter, Deshpande, Rafiq, Sombati, & 
DeLorenzo, 2010). 
 
The subunits NR1 and NR2 of NMDA receptor have 
been expressed in zebrafish and the similarity 
between subunits of zebrafish when compared to 
those of human showed high degree of identity (NR1 
subunit expressed 90% identity and NR2 receptors 
expressed 50–90% identity; Cox et al., 2005). 
 
Histamine 3 Receptor Antagonists  
The histamine neuroreceptor system is one of the 
major excitatory neurotransmitters exerting key 
neurological functions including alertness and sleep, 
seizure threshold, hormone secretion, and pain 
(Brown, Stevens, & Hans, 2001; Haas & Panula, 
2003; Schwartz, Arrang, Garbarg, Pollard, & Ruat, 
1991).  Histamine belongs to a large superfamily of 
GPCRs that are characterized by the presence of 
seven transmembrane domains (Leurs, Bakker, 
Timmerman, & de Esch, 2005).  The histamine H3 
receptor (H3R), which is particularly expressed in the 
CNS and specifically in the brain, has led to the 
development of numerous antagonists/inverse 
agonists for the potential treatment of brain (Martinez-
Mir et al., 1990).  H3R is a presynaptic auto-receptor 
on histamine neurons and a heteroreceptor which 
modulates the activity of various neurotransmitters 
such as histamine, acetylcholine, noradrenaline, 
dopamine, serotonin, and GABA (Sander, Kottke, & 
Stark, 2008; Schlicker, Betz, & Göthert, 1988).  Low 
levels of histamine are usually associated with 
convulsions (Kiviranta, Tuomisto, & Airaksinen, 1995; 
Tuomisto & Tacke, 1986). 
 
The nonimidazole class has the potential to penetrate 
the brain more easily than those with an imidazole 
ring and, accordingly, H3R antagonists/inverse 
agonists  have been targeted for a broad spectrum of 
brain diseases; for example, Alzheimer’s disease, 
dementia, stroke, mood and sleep disorders, 
attention-deficit disorders, schizophrenia, narcolepsy, 
anxiety, depression, and epilepsy (Bahi, Sadek, 
Schwed, Walter, & Stark, 2013; Bhowmik, Khanam, & 

Vohora, 2012; Inocente et al., 2012; Kuhne, 
Wijtmans, Lim, Leurs, & de Esch, 2011; Leurs, 
Vischer, Wijtmans, & de Esch, 2011;  Sadek et al., 
2013).  Furthermore, ligands for the H3R are now in 
clinical studies and some companies have H3R 
antagonists for phase 1 and phase 2 clinical trials 
under review that could offer potential treatment for 
Alzheimer’s disease, schizophrenia, epilepsy, 
narcolepsy, obesity, neuropathic pain, and allergic 
rhinitis (Micallef, Stark, & Sasse, 2013; Peitsaro, 
Sundvik, Anichtchik, Kaslin, & Panula, 2007). 
 
Histamine receptors have been cloned and 
expressed in zebrafish in which H3R is expressed 
throughout the zebrafish brain especially in the region 
of optic tectum and hypothalamus, and receptor 
peptide sequence showed 50% identity in 
comparison to human (Griffin et al., 2017; Peitsaro, 
Anichtchik, & Panula, 2000).  A recent study has 
demonstrated the role of clemizole (a histamine 
antagonist) as a potent inhibitor of seizures activity in 
zebrafish (Cofiel & Mattioli, 2006). 
 
Phosphodiesterases 
Cyclic AMP (cAMP) and/or cyclic guanosine 
monophosphate (cGMP) are hydrolyzed by 
Phosphodiesterase (PDEs) that contains 11 
isozymes encoded by 21 genes in mammals (Bender 
& Beavo, 2006; Seeger et al., 2003).  PDE10A are 
found in multiple regions of the brain in mammalian 
species.  The upregulation of cAMP and cGMP 
concentrations in different regions of brain is due to 
the inhibition of PDE10A (Francis, Blount, & Corbin, 
2011; Grauer et al., 2009; Suzuki, Harada, Suzuki, 
Miyamoto, & Kimura, 2016).  The presence of 
PDE10A in different regions of mammalian brain, 
suggests that it has various functions in the CNS 
(Leuti et al., 2013; Liddie, Anderson, Paz, & Itzhak, 
2012).  Several studies have clearly demonstrated 
the importance of PDE10A in the treatment of 
neurological and psychiatric disorders.  The inhibition 
of PDE10A has proved as a promising candidate for 
the treatment of schizophrenia in animal or preclinical 
research (Siuciak et al., 2006).  PDE10A may be 
involved in the pathophysiology of various 
neurological and psychiatric disorders (Giralt et al., 
2013).  
 
In zebrafish, 2’,3’-cyclic-nucleotide 3’- 
phosphodiesterase was first reported as being 
induced during optic nerve regeneration study 
(Chang, Chandler, Williams, & Walker, 2010).  
Recent investigations have provided information of 
two enzymes of primary interest PDE4 and PDE10A 
which have a high percentage of identity to that of 
humans (Ballestero, Dybowski, Levy, Agranoff, & 
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Uhler, 1999).  Clearly more investigations are needed 
to elucidate the distribution of PDEs in fish and their 
role epilepsy. 
 

Conclusion 
 
Animal models are considered as a useful tool for 
investigating the cause and pathology of human 
disease, yet to develop an animal model for brain 
disorder, particularly epilepsy, is very difficult 
because of its disease complexity.  It is now 
recognized that zebrafish possess a great deal of 
similarity to mammals and are highly advantageous 
with their unique properties such as external 
fertilization, small size, as well as optical clarity of 
embryos.  The central role of receptors in epilepsy 
demonstrates the potential utility of targets to control 
seizures.  In this review we have discussed various 
pharmacological targets which are being investigated 
preclinically for epilepsy—GABA, 
Phosphodiesterase, Histamine 3, NMDA, and 
AMPA—and have illustrated the use of zebrafish in 
the assessment of these targets. 
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