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Abstract 

This report describes and briefly characterizes a method for computing quantitative EEG (qEEG) z-scores based 
on a modification of the typical methods used for qEEG reporting.  In particular, it describes using a sample of 
EEG from a single individual, and creating a reference database from the individual sample, in contrast to using 
a population of individuals as the source data.  The goal of this method is to quantify and localize within-subject 
changes that may arise due to time or various factors.  We refer to this approach as “z-builder,” because the 
z-score reference is constructed or “built” on a per-subject basis in the office or laboratory and is not derived from 
a reference obtained from an outside source.  It is confirmed that z-scores for EEG acquired during a test period 
can be calculated based on a single previously recorded reference sample from an individual, and that the 
resulting z-scores obey the expected statistical distribution.  Reference data can be calculated using samples in 
the 1- to 5-minute range, and subsequent static or dynamic z-scores for a test sample can then be computed 
using this reference data in lieu of a population database.  It is confirmed that, in the absence of systematic 

change in the EEG, z-scores generally fall well within the range of 1.0, providing a sensitive indicator when 
changes do occur.  It is shown that this method has value in assessing individual stability of EEG parameters 
and for quantifying changes that may occur due to time effects, aging, disorders, medications, or interventions. 
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Introduction 

 
Z-builder is a method of producing z-scores based 
upon a reference that is computed from a single 
sample of EEG.  The sample can be any length.  The 
method operates in the same manner that would be 
used to estimate z-scores from a population of 
samples, except that it is based on a single sample of 
EEG from one individual, typically 1 to 3 minutes in 
length.  The resulting norms consist of within-subject 
means and standard deviations for specified metrics, 
which are used in place of the typical “normative” 
samples arising from population-based databases 
(Collura, 2014). 
 
In conventional normative databases, mean values 
for designated metrics are computed for each 

individual, and then the individual mean values for 
each subject are combined to produce a population 
statistic, consisting of the population mean and the 
population standard deviation.  This includes only one 
source of variance, that of the difference between 
individual mean values.  The z-scores resulting from 
such an analysis are referred to as “population-static” 
z-scores.   
 
Alternatively, the within-subject variation can be 
included in the analysis, providing a wider standard 
deviation for the z-score calculations.  When 
instantaneous variation is introduced, the result is 
what is referred to as “population-dynamic” z-scores.  
The resulting z-scores are typically smaller in 
absolute value, for reasons explained by Thatcher 
(2008) and explained further below.  To date, EEG 
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mapping for assessment has been typically done 
using population-static z-scores, and EEG 
neurofeedback using live z-scores has used 
population-dynamic z-scores.  In both cases, 
population means and standard deviations are being 
used as the references.  This raises fundamental 
concerns when it is recognized that individuals are 
unique and that using a population-based statistic has 
the undesirable result of causing every subject to be 

compared to a group, raising concerns about the 
validity of these measurements. 
 
When the distributions of individual and population 
metrics are compared, this aspect can be clarified.  
Figure 1 shows the relationship between static and 
dynamic metrics, and the resulting distributions and 
computed means and standard deviations. 

 

 
Figure 1. Live vs. Static Z-Scores. Example of dynamic values of a component metric (log magnitude) for 
three example individuals (left) and resulting statistical distribution ranges (right).  Three individuals (red, 
green, blue) have unique means and standard deviations, which when combined, produce the population 
statistic.  Population ranges can incorporate individual mean values (static), or individual variation as well 
(dynamic). 

 
 
In existing live z-score methods, instantaneous 
z-scores are compared to a reference that is typically 
derived from a population.  If the reference consists 
of static norms, then the z-scores will reflect how the 
instantaneous EEG compares to the mean value of a 
population, using the population variation as the 
standard deviation.  This shows z-scores that, on 
average, will match the values shown in summary 
maps, also made from a static database.  When a 
dynamic reference is used, the individual variation 

within sessions is added to the standard deviation 
using an appropriate formula.  In this case the 
instantaneous z-scores reflect the deviation from the 
full variation within the population, so that z-scores 
are smaller in absolute value.  In both cases, 
however, the target mean values are the same.  It is  
only the variability that differs.  This means that “z = 
0” has the same value in both cases. 
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Because the averaging process is a linear operation, 
it follows that if you take one mean value from each 
individual and compute a group mean, the result will 
be the same as if you were to individually include all 
the instantaneous data into one huge sample and 
average it.  The resulting average value is the same 
for both approaches.  As long as the averaging occurs 
before conversion to a z-score, this equivalence will 
be ensured.  As a result, even when it is intended to 
use dynamic z-scores for training, the target values 
reflect population means.  Thus, each subject is being 
rewarded for having an EEG more similar to one’s 
peers, which is not a truly individualized approach.  
This realization has likely held back acceptance of 
qEEG and z-score neurofeedback for practitioners 
who object to having clients assessed and/or trained 
against a group statistic.  If target means and 
standard deviations can be determined that more 
specifically reflect the individual’s characteristics, 
then assessment and neurofeedback can be 
individualized to each client. 
 
When using the z-builder approach, the reference 
means and standard deviations are derived entirely 
from one individual, and the variability is strictly 
across time, not across individuals.  In other words, 
the approach described here uses exclusively the 
EEG data from the individual subject, and no across-
subject data are used in the process.  While this is 
conceptually different from using z-scores for 
population statistics, the mathematical formalism is 
the same.  When applied to these measurements, the 
intent is not to make a decision related to some 
population.  Rather, it is to determine the typical 
amount of variation in the repeated measures, to 
estimate noise and to test the null hypothesis, which 
in this case is that there is no change in the readings 
across time.  This approach has the further benefit of 
directly answering the question “how stable are the 
data?” which is fundamental to the concept of the 
repeatability of qEEG-based measurements.  As 
pointed out by Messick (1998), the validity of an 
approach does not depend on the properties of the 
measurement, but rather on the inferences that are 
made from the measurement.  In this case, the 
inferences are whether a process is quantifiable and 
stable, what is the variability, and can we test the 
hypothesis that “something happened.” 
 
The key assumption for a z-score to be valid is that 
the reference sample and the computation methods 
ensure that the reference has a Gaussian (normal) 
distribution.  The Gaussianity of single-subject 
statistics is demonstrated below.  This method makes 
use of the concept of “repeated measurements,” 

which has been used and characterized primarily in 
the field of analytic chemistry (Miller & Miller, 2016).  
In such applications, repeated measurements are 
used to reveal the presence of random errors as well 
as to quantify changes in time.  Coming from the 
analog world, this method produces a number of 
samples from a theoretically infinite number of 
measurements we could make, and the set of all 
measurements is then considered to be the 
“population.”  In the present case, we both estimate 
the variability of the metrics of interest and also 
provide a statistical means of detecting statistically 
significant changes in the within-subject design.  We 
shall see that if we take measurements rapidly, the 
mean and standard deviations of our measurements 
will converge to correct values, and that the concepts 
of sample independence and degrees of freedom are 
not applied to this model. 
 
While it may be a useful assumption that the samples 
are independent, it is not relevant in a repeated-
measurement design.  What matters is simply how 
fast the parameters are changing, how fast we can 
measure them, and what is the standard error across 
time.  Indeed, when constructing a dynamic norm, the 
samples that run across the session are not 
necessarily independent, since they come from 
repeated measurements from the same system.  This 
time-dependent source of variability is used in z-
builder to establish reference norms, and to compute 
z-scores for both assessment and for live 
neurofeedback purposes.  Moreover, if there is a 
concern with regard to independence of successive 
samples when using z-builder, then that same 
concern would exist for any dynamic z-score 
reference that includes within-subject variation, 
including those used for many years.  It is true, 
however, that in choosing the recording length and 
epoch size, attention must be paid to the choice of 
reasonable values.  For example, the use of many 
small epochs does not necessarily increase the 
degrees of freedom, so that taking, for example, 
estimates 10 times per second and claiming 600 
degrees of freedom in a 1-min sample would not be 
reasonable.  We therefore dispense with the concepts 
of sample independence and degrees of freedom in 
this design.  In order to help ameliorate this concern, 
we use a consistent sampling rate and computation 
rate of 256 per second, using the quadrature digital 
filters, throughout this work. 
 
In order to justify the use of a digital filter (a form of 
real-time filtering) in lieu of the more common FFT, 
we compared the results of the digital filter outputs 
with the FFT amplitude computations, on 1-s 
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intervals, showing a very strong correlation.  The 
method used is “quadrature filtering” also known as 
“synchronous demodulation,” which was developed 
originally for analog computers.  In the digital version, 
we perform computations on every sample, at a rate 
of 256 per second.  Because the filtering method used 
here allows estimation of signal amplitude and phase 
on every data sample (Collura, 1990), the resulting 
metrics are heavily oversampled.  This results in an 
accurate estimation of means and standard 
deviations, which are known to converge when 
oversampling is used (Host-Madsen & Handel, 2000).  
See the Appendix for the basic equations confirming 
this result. 
 

Figure 2 illustrates the quality of match between the 
static (FFT) calculation and quadrature digital filter 
outputs, which provide a dynamic (JTFA) 
computation.  The degree of fit is 97%, once a 
correction is applied for the difference in the 
windowing techniques.  This result is consistent with 
that reported by Kerson et al. (2019), which 
demonstrated a similar quality of fit across two 
different software and two different hardware 
platforms.  This confirms that we may use digital filter 
amplitudes in this work, without any systematic 
disagreement with the results that would result from 
the conventional FFT method.  When applying these 
calculations, we will restrict our analysis to z-scores, 
avoiding the issue of t-tests and relative degrees of 
freedom. 

 
 

 
Figure 2. Illustration of the statistical agreement between FFT and JTFA computed amplitude values for the 
alpha band (8–12 Hz) from 5 minutes of EEG in one individual.  When scatterplotted against each other, the 
results of an FFT analysis (y-axis) and a quadrature filter implementation of the JTFA (horizontal axis) 
demonstrate a statistical correlation of 97%. 

 
 
Figure 3 illustrates the Gaussian distribution of the 
logarithm of the magnitude of one component (theta) 
for one individual.  The goodness of fit is based upon 
a squared-error comparison of the actual data  

 
 
with an idealized Gaussian with the same mean and 
standard deviation.  
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Figure 3. Demonstration of the Gaussianity of a sample of EEG processed for a single subject.  Shown: log of Cz 
theta magnitude for a time-series of 5 minute, yielding 300 x 256 = 76,800 datapoints. 

 
 
In order to determine the goodness of fit for all of the 
estimated magnitudes, a histogram was created with 
the 171 component estimates used in this study.  
Figure 4 illustrates the distribution of the Gaussianity 
estimates, confirming that Gaussianity is generally 
above 90%, and is centered at 94% Gaussianity.  
Figure 4 shows a histogram of the results of this 

analysis.  93% of the components (159 out of 171) 
have a goodness of fit of 90% or above.  Two 
distributions are evident, one centered at 0.94 Hz and 
a second centered at 0.89 Hz.  The lower distribution 
in this example was found to contain reflect activity, 
particularly from frontotemporal leads. 
 

 
 

 
 
Figure 4. Histogram of the Gaussianity measurements from one individual, 19 channels and 9 frequency bands.  
This produces 171 component estimates.  The Gaussianity of each component was computed for the same data.  
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Adapting Thatcher’s (2008) notation, we denote the 
z-score based upon a population-static as ZPS, 
corresponding to Thatcher’s FFT, and his z-score 
based upon a population-dynamic and using the 
JTFA procedure as ZPD.  In order to compute either of 
these, the current sample is subtracted from the 
population mean, whether it is a static or an 
instantaneous calculation.   
 
In both cases, the target value should be the same, 
after allowing for systematic differences such as 
windowing or other factors.  This agreement in the 
raw values (and hence the mean) is shown in the 
example in Figure 2. 
 
We use the following notation: 
 

ZPS for a population-static z-score 
 
ZPD for a population-dynamic z-score 
 
ZIS for an individual-static z-score 
 
ZID for an individual-dynamic z-score 

 
The sources of variation in a static z-score is solely 
SDs which is the variation between subjects, when 
each subject contributes a mean to the statistic.  The 
sources of variation in a dynamic z-score are SDt due 
to the time-dependent activity, and SDs.  The two 
sources are combined in the average, so that (per 
Thatcher, 2008) SDD = (SDI + SDS) / 2.  This is the 
method that is used when applying what we call 
“population-dynamic” z-scores, which are based on 
population data.  Combining population variation and 
time-based variation in this way elevates the issue of 
combining two different types of variation, arising 
from different mechanisms, in one measurement.  It 
also introduces the question of whether each type of 
variation should be weighted equally as an average, 
or should they be weighted in a different manner.  
  
The approach reported here avoids this concern, 
because we produce z-scores which are based 
entirely on the individual’s instantaneous variation 
and no population statistics are introduced.  We refer 
to these as “individual” dynamic z-scores.  Oddly, this 
approach may be considered database-free, as it can 
be applied to any individual without requiring that a 
“normative” or “standardized” database be 
introduced.  In the case of the static z-score, the 
standard deviation is SDS.  In the case of an 
individualized instantaneous z-score, the standard 

deviation is simply that introduced by the subjects’ 
EEG, variation across time, designated as SDI. 
When working with z-scores computed based on a 
normative sample and using a single individual as the 
measurements, there is a natural expectation that z-
scores will follow the predicted distribution.  That is, 
z-scores between ±1 will occur approximately 65% of 
the time, and scores between ±2 will occur 
approximately 95% of the time.  This allows 
hypothesis testing, using these probabilities.  Type 1 
and type 2 error can be estimated using these 
distributions.  The null hypothesis is that the person is 
entirely “average” and that no unusual z-scores will 
appear.  For usual purposes, a range of ±2.0 is used, 
and for medical determinations, a range of ±2.5 or 
even ±3.0 would be more common. 
 
As stated previously, when working within an 
individual, the null hypothesis is not “this is from a 
normal individual,” but rather that “nothing 
happened.”  That is, there is no change from the 
sample to the current measurements.  Based on this 
consideration and the statistical principles described 
below, individualized z-scores occupy a tighter range 
than those from a normative analysis.  It will be seen 
that a z-score outside ±1 will be important in this case, 
and z-scores much outside of this range will be 
significant. 
 

Static and Dynamic Z-Scores 
 
We now look at the expected behavior of z-scores 
when using static or dynamic references, as well as 
population versus individual references.  We can 
state in general that the expected value (mean target) 
for a population-dynamic z-scores is the same as that 
for a population-static z-scores. 
 

E (XPD) = E (XPS) 
 
While this is desirable from some standpoints, such 
as uniformity when applying either type of analysis, 
the drawback is that the targets used for live z-score 
training for all individuals remain based on a 
population.  That is, even when using current live 
z-score methods, the individual is still being 
compared to others, and his training targets are 
based on other people.  Because of the additional 
variation included in the XJTFA calculation, we can 
state that, necessarily, z-scores from a population-
dynamic process will be smaller in general than those 
from a population-static method: 
 

|ZPD| < |ZPS| 
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That is, dynamically computed z-scores that 
incorporate both the across-subjects and the within-
subjects variation will be smaller than conventional 
static z-scores.  Moreover, we note that, generally, 
the expected value (mean target) of an individual-
dynamic z-score is not the same as that of population-
dynamic z-scores. 
 

E (XID) ≠ E(XPD) 
 
Also, the expected value for an individual-dynamic 
z-score is not the same as that of population-static 
z-scores. 
 

E (XID) ≠ E(XPS) 
 
In other words, when using an individual EEG as a 
reference, there is no reason to expect that the mean 
values will be the same as those from a population 
sample.  Moreover, when an individualized approach 
is taken, and the included samples are from one 
individual only, then the sole source of variation is the 
time variation.  Furthermore, the mean value for that 
individual will generally not be equal to the population 
average.  Indeed, this may never happen.  In general, 
the mean values for each individual will themselves 
follow a Gaussian distribution, which is in fact the 
mean data that is included in the static statistics. 
 
Because this approach uses a different mean value 
(the subject’s own mean value) and a different source 
of variation (equal to the SD for that individual), 
resulting z-scores will have a distribution that no 
longer reflects population statistics; it is solely a 
representation of that individual’s mean values and 
variation across time. 
 
It is reasonable to expect that the same 
transformations that produce Gaussianity in static 
and in dynamic z-scores should suffice to produce 
Gaussian distribution of instantaneous individual 
scores.  This can be verified experimentally by 
applying a suitable test of Gaussian fit.   Figure 3 
demonstrates the Gaussianity of a 1-min sample of 
EEG transformed using the customary logarithmic 
equation used for static or dynamic statistics. 
 
In order to estimate the significance of a z-score 
computed using this method, we can use basic 
statistical principles to determine how likely a given z-
score would be, based on the expected results of the 
computations.  Specifically, the references are based 
upon a specified sample of EEG, which includes the 
short-term variation, as the source of the standard 
deviation. 

In order to compute z-scores, it is sufficient to 
demonstrate Gaussianity of the comparison data, as 
long as the current value is transformed in the same 
manner as the original samples, to follow that 
Gaussian distribution.  The stability and usefulness of 
a short-term statistic is a separate issue, and must be 
addressed experimentally, in order to determine the 
realistic expected variation between samples from 
time to time.  Indeed, repeatability studies of qEEG in 
general have confirmed that a single 1- to 2-min 
sample from an individual at rest indeed provides a 
useful set of estimates.  The repeatability of that 
sample in a second recording minutes, hours, days, 
or even months later is a tacit assumption in the use 
of clinical qEEG, and one that has been evaluated.  
We therefore conclude that a single sample from an 
individual does provide a useful basis for computing 
expected means, as well as the expected standard 
deviation, which can be used for computation of z-
scores at a future time. 
 
In order to assign a probability, that is, a p-value to a 
given outcome, we examine the conditions used to 
produce the reference estimate as well as the details 
of how a particular z-score is being computed.  In a 
case where we use, say, 1 minute to compute the 
mean and standard deviation of key variables, then 
use for example 10 seconds of live EEG to compute 
a semistatic z-score, we can estimate the likelihood 
of deviant z-scores appearing.  As a simplifying 
assumption, we assume the subject is in stable and 
repeatable state; for example, eyes closed, not 
drowsy, etc.  Additional factors such as change in 
conscious state or other EEG-related changes will of 
necessity produce more deviant z-scores.  Therefore, 
this estimate provides a lower-bound to expected z-
scores using this method. 
 
We are now looking at the probability distributions of 
the z-scores themselves.  It might seem intuitive that 
a z-score of 2, for example, indicates a deviation 
equal to 95% of the population, this will not always be 
the case.  As shown by Thatcher (2008), for example, 
we know that dynamic z-scores will be smaller in 
value than static z-scores, when the same population 
is used for both estimates. 
 
Whether the variation due the population is greater or 
less than the variation due to the intersubject variation 
is subject to measurement.  It is clear that neither of 
them is insignificant; that is, neither the intersubject 
variation nor the intrasubject variation may be taken 
to be small.  To calculate the significance of a 
particular individualized z-score, we make 
adjustments to the standard z-score probability 
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ranges, based upon the sampling details.  As a first 
approximation, we can use the statistics of the t-test 
to provide an estimate.  In a t-test, we compare two 
populations with different means and standard 
deviations, using the t value which is the difference in 
means divided by their joint standard deviation.  This 
is similar to a z-score, which is the difference between 
two means, divided by the standard deviation of the 
reference population.  When using individualized z-
scores, if the standard deviation of a variable is 
assumed to remain constant as that variable varies in 
value, the z-score provides identical information as a 
t-score.  When applied in this way, we are computing 
t-tests for “dependent means.”  This is valid as long 
as (1) the data are normally distributed, (2) the scale 
of measurement is an interval or ratio, and (3) the 
measurements are matched in some way.  In these 
circumstances, a t-test on dependent means can test 
a null hypothesis that there is no difference between 
the two means (Social Science Statistics, 2019). 
 
Significance of t-scores is based on a computation 
that takes into account the number of samples 
(degrees of freedom) in the two samples.  Similarly, 
when computing z-scores, the reference as well as 
the current value carry with them their respective 
degrees of freedom.  When working with a time-
series, successive samples are not independent in 
the same manner as samples from a population.  As 
stated by Miller and Miller (2018), when taking 
successive samples from a process, the assumption 
of statistical independence is not made, and degrees 
of freedom are not comparable.  Rather, successive 
samples serve to estimate the noise in the system, as 
well as the repeatability of measurements over time.  
Despite being based on a single individual, such a 
time-series is nonetheless a random variable and can 
be studied as such.  In our analysis, we observe that 
the bandwidth of the filters is generally 4 Hz.  Based 
the inverse relationship of bandwidth and transient 
response (Collura, 2014), this corresponds to a 
transient rise time-constant on the order of 10 ms.  
Therefore, taking 256 calculations per second from 
each filter output should be more than adequate to 
capture the time behavior of the variables.  Appendix 
I further shows that oversampling in this way does not 
compromise the estimate of the mean and standard 
deviation, as they converge when oversampled. 
 
In general, if we compute an average and standard 
deviation from n samples of a random variable, the 
expected value of the mean is precisely the mean 
value, while the expected standard error is divided by 
n, so that the standard deviation is divided by the 
square root of n.  For example, we take n samples of 

EEG and use these to compute the expected mean 
(average) and the standard deviation of the EEG to 
produce the current estimates.  When we take a 
subsequent sample to estimate the new mean, there 
will be averaging over the epoch chosen.  The 
number of samples is not important, as shown in the 
Appendix, but the duration of the retest calculations 
does matter.  The relationship between filter 
bandwidth and rise time-constant is given by 
 

t = 1 / (2 * PI * BW) = 0.35 / BW 
 
So that, with a 4-Hz filter bandwidth, there is a time-
constant of about 90 milliseconds. 
 
The variation in the values will therefore occur with a 
maximum frequency on the order of 11 Hz, due to the 
filter bandwidth used.  We propose that the ratio of 
the epoch chosen to the time-constant provides an 
estimate of how much damping will occur when 
averaging the filter outputs such as power, 
coherence, etc.  That is, 
 
Effective reduction in variability = (approximated by) 

epoch length / time-constant 
 
With a 10-s epoch and a 90-ms time-constant, the 
reduction is on the order of 10 / 0.09 = 110.  This is 
the reduction in the variance, so that this is the square 
of the reduction in standard deviation.  Thus, using 10 
s of subsequent EEG to compute a current value, the 
expected standard deviation becomes divided by the 
square root of 110, which is a scale factor of roughly 
0.1.  Thus, the value averaged over 10 s is expected 
to vary approximately one-tenth as much as an 
unaveraged estimate.  Thus, with an optimally stable 
EEG, we would see 95% of z-scores within the range 
of approximately ±0.3.  We conclude that, when 
taking a sufficient sample of reference EEG to obtain 
a convergence on means and standard deviations 
and then using a subsequent sample of EEG to 
calculate an updated mean value, the resulting z-
score will have a strong tendency to be close to zero.  
In other words, our retest z-scores will typically be 
very low and close to zero.  This is confirmed in the 
example data shown below. 
 

Example Data 
 
The data attached are z-builder comparisons base 
versus 10-min delay and base versus 30-min delay in 
the eyes-closed (EC) condition for three subjects.  
The results using 10 min of baseline EC and 10 s of 
test EEG, are shown in Figure 5. 
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Figures 5 shows three examples of a single-subject 
estimate of the variability in z-scores.  Each histogram 
reflects the z-scores from 11 frequency bands and 93 
sLORETA regions of interest.  Each histogram 
therefore contains 1,023 z-scores.  Reference sample 
of 10 min of EEG, test sample of 10 s of EEG.  
 
 

 
 
 

 
 
 

 
 
Figure 5. Three examples of a single-subject test–retest 
repeat measurements using 11 frequency bands and 93 
sLORETA regions of interest. 

 
 

A total of 12 such exercises was performed with the 
three subjects, with differences in the length of the 
reference sample (10 or 30 min) and the eyes 
condition (closed or open).  The following table 
summarizes the results with these three subjects. 
 
 

Table 1 
Summary of z-score results for three subjects with 
10-min and 30-min reference intervals. 

 Min Mode Max Width 

Subject 

10 EC −0.3 0.1 0.3 0.6 

10 EO −0.5 0.1 1.4 1.9 

30 EC −0.7 0 0.2 0.9 

30 EO −1.0 0 0.3 1.3 

10 EC −1.1 0 0.2 1.3 

10 EO −0.5 0.2 1.2 1.7 

30 EC −1.1 −0.3 0.1 1.2 

30 EO −0.5 0 0.7 1.2 

10 EC −0.7 0 0.4 1.1 

10 EO −0.6 0 −0.6 0 

30 EC −0.5 0 1.0 1.5 

30 EO −0.7 −0.2 0.3 1.0 

Average −0.6833 −0.0083 0.45833 1.14167 

 
 
It is seen that, generally, such z-scores were within 
the range of ±0.6 standard deviations, reflecting the 
stability of the EEG during the procedure.  This 
demonstrates that it is possible to gather some 
minutes of EEG, then retest at some future point, and 
achieve a tight distribution of repeat measurements 
upon retest.  Subjects A and C are quite stable and 
fall within the predicted range of ±0.3.  In contrast, 
subject B is skewed, and appears to exhibit a 
systematic drop in z-scores with a shift to the left of 
0.3 standard deviations, from test to retest.  The 
appearance of z-scores less than −0.5 in this sample 
represents some type of (significant) change. 
 

Estimating Changes 
 
One benefit of using the z-builder approach is that it 
is free of the assumptions and implications of using a 
reference from a population that is purportedly 
“typical” or “normal.”  Rather, this method recognizes 
the fact that everyone is different and has a unique 
set of EEG characteristics.  Thus, this method can 
accurately determine the effects of different 
influences, without having to assume that the subject 
fits somehow into a wider population.  When used for 
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neurofeedback (Collura, Thatcher, Smith, Lambos, & 
Stark, 2009), this approach would allow training to 
reflect any specified individual or state as the 
reference.  This opens the possibility of individualized 
training that can aim to restore previous levels of brain 
activity or to train toward desired goals, such as 
reduction of specific characteristics. 
 
A practical application of this method was reported by 
Siever and Collura (2017) who were able to produce 
sLORETA images of static z-scores for brain 
responses to repetitive photic, auditory, and magnetic 
stimulation.  Examples are shown in Figures 6A–6C.  
Citing their work: 
 

A reference data set was first constructed by 
taking 1 min from a 2-min at-rest baseline, and 
processed using BrainAvatar Z-Builder signal 
processing (Collura, 2012, 2013, 2014a, 2014b) 
to produce amplitude means and standard 
deviations for all frequency bands, for all scalp 
locations, sLORETA voxels, and sLORETA 
Regions of Interest (ROI).  ROIs were computed 
for 97 different homologous regions including the 
Brodmann areas, the named lobes and regions, 
and for the hubs described by Hagmann.  Once 
this data set was computed, it was possible to 
compute metrics for any other selected samples 
and, by comparison, convert all measurements 
into z-scores.  
 
A 10-s sample was taken from the stimulus 
interval for each modality and analyzed using the 
subject’s individual z-score database, producing 
z-score results.  These z-scores show which 
qEEG components and locations have changed.  
These z-scores are not based on a normative 
reference database but are instead based on the 
subject’s own initial EEG.  Thus, z-scores reflect 
change from the initial state, and do not reflect 
“normality” or “abnormality” in any way.  Because 
the use of z-scores in this manner involves 
multiple comparisons of many ROIs (97), 
Bonferroni correction was applied to the results 
shown here.  (Siever and Collura, 2017, p. 82)    

 
The resulting sLORETA images clearly show the 
sensory areas affected by the visual and auditory 
stimulation, as well as the fact that the pulsed EMF 
stimulation produced a frontal response, despite 
having been placed over the motor strip. 
 
 

 
Figure 6A. Reduction in delta activity during binocular 
photic stimulation at 3.5 Hz.  Left-side view.  Affected areas 
include Brodmann 17 and 18 and the cuneus.  These 
comprise the primary and secondary visual sensory areas. 

 
 

 
Figure 6B. Reduction in delta activity during auditory 
stimulation (clicks) at 3.5 Hz.  Left-side view.  Affected areas 
include Brodmann 13, 33, 24, 20, the Insula, and Sub Lobar 
areas.  These areas are involved in auditory sensation, 
perception, awareness, and attentional control. 
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Figure 6C. Reduction in delta activity during pulsed 
electromagnetic stimulation at 3.5 Hz. Left-side view.  
Affected areas include Brodmann 45, 46, 10, and 44.  
These comprise the frontal lobe areas associated with 
executive function, attention, emotion, and decision-
making. 
 

Conclusion 
 
These preliminary results verify that a single-subject 
approach to creating qEEG references and producing 
z-scores based upon time variation is feasible and 
statistically sound.  Both surface and sLORETA z-
scores can be computed in this manner.  
Individualized z-scores use a different theoretical 
foundation than population z-scores and are based 
upon time-effects, not population statistics.  A 
continuous, repeated-measures approach that is 
based upon the analog world is applicable, in contrast 
to a sampling approach based upon population 
statistics.  The population-based concepts of sample 
independence and degrees of freedom are not 
applicable in this situation; hence, they do not limit 
this approach.  This method has shown the ability to 
quantify the stability of an individual’s EEG and also 
to detect, quantify, and map changes that could arise 
due to the effects of time, state changes, disorders, 
or external influences. 
 
Author Disclosure  
Thomas Collura is the founder and an owner of 
BrainMaster Technologies, Inc.  The authors have no 
grant support, financial interest, or conflicts of interest 
to report. 
 

References 
 
Collura, T. F. (2014). Technical Foundations of Neurofeedback.  

New York, NY: Routledge. 
Collura, T. F. (2014, Spring). Specifying and developing references 

for live z-score neurofeedback.  NeuroConnections, 26–39.  
Retrieved from https://docs.wixstatic.com/ugd 
/cba323_b824c922625941808b2d633bc63f3df7.pdf 

Collura, T. F. (1990). Real-time filtering for the estimation of steady-
state visual evoked potentials.  IEEE Transactions on 
Biomedical Engineering, 37(6), 650–652. Accessed from 
https://www.ncbi.nlm.nih.gov/pubmed/2354847  

Collura, T. F., Thatcher, R. W., Smith, M. L., Lambos, W. A., & C. 
R. Stark (2009). EEG Biofeedback training using live Z-scores 
and a normative database. In J. R. Evans, T. H. Budzynski, H. 
K. Budzynski., & A. Arbanal (Eds.), Introduction to quantitative 
EEG and neurofeedback: Advanced theory and applications, 
Second Edition (pp. 103–142). New York, NY: Elsevier.  

Host-Mandel, A., & Handel, P. (2000). Effects of sampling and 
quantization on single-tone frequency estimation.  IEEE 
Transactions on Signal Processing, 48(3), 650–662. Accessed 
from http://www-ee.eng.hawaii.edu/~madsen /papers/48sp03-
hostmadsen.pdf 

Kerson, C., deBeus, R., Lightstone, H., Arnold, L. E., Barterian, J., 
Pan, X., & Monastra, V. (2020). EEG theta/beta ratio 
calculations differ between various EEG neurofeedback and 
assessment software packages: Clinical 
interpretation.  Clinical EEG and Neuroscience, 51(2), 114–
120. https://doi.org/10.1177/1550059419888320 

Messick, S. (1998). Test validity: A matter of consequence.  Social 
Indicators Research, 45(1–3), 35–44. 

Miller, J. N., & Miller, J. C. (2018). Statistics of repeated measures.  
In J. N. Miller & J. C. Miller (Eds.), Statistics and chemometrics 
for analytical chemistry (6th ed., pp. 17–26). Harlow, England: 
Pearson. Retrieved from https://manualzz.com/doc/27792868 
/statistics-and-chemometrics-for-analytical-chemistry 

Siever, D., & Collura, T. (2017). Chapter3 – Audio-visual 
entrainment: Physiological mechanisms and clinical outcomes.  
In J. R. Evans & R. P. Turner (Eds.), Rhythmic stimulation in 
neuromodulation (pp.51–95).  New York, NY: Elsevier. 

Social Science Statistics (2019). T Test Calculator for 2 Dependent 
Means.  Retrieved from https://www.socscistatistics.com/tests 
/ttestdependent/default.aspx 

Thatcher, R. W. (2008, April). Z-Score EEG biofeedback 
conceptual foundations.  NeuroConnections, 9–11. Retrieved 
from https://docs.wixstatic.com/ugd 
/cba323_426c6449511f48968c49c4ee94fa0c7e.pdf  

 
 
Received: September 30, 2019 
Accepted: January 3, 2020 
Published: March 25, 2020

 

 
  

http://www.neuroregulation.org/
https://docs.wixstatic.com/ugd/cba323_b824c922625941808b2d633bc63f3df7.pdf
https://docs.wixstatic.com/ugd/cba323_b824c922625941808b2d633bc63f3df7.pdf
https://www.ncbi.nlm.nih.gov/pubmed/2354847
http://www-ee.eng.hawaii.edu/~madsen/papers/48sp03-hostmadsen.pdf
http://www-ee.eng.hawaii.edu/~madsen/papers/48sp03-hostmadsen.pdf
https://doi.org/10.1177/1550059419888320
https://manualzz.com/doc/27792868/statistics-and-chemometrics-for-analytical-chemistry
https://manualzz.com/doc/27792868/statistics-and-chemometrics-for-analytical-chemistry
https://www.socscistatistics.com/tests/ttestdependent/default.aspx
https://www.socscistatistics.com/tests/ttestdependent/default.aspx
https://docs.wixstatic.com/ugd/cba323_426c6449511f48968c49c4ee94fa0c7e.pdf
https://docs.wixstatic.com/ugd/cba323_426c6449511f48968c49c4ee94fa0c7e.pdf


Collura and Tarrant NeuroRegulation

  

 

 

56 | www.neuroregulation.org Vol. 7(1):45–56  2020 doi:10.15540/nr.7.1.45 
 

Appendix 
 
The following demonstrates that if you sample a signal to acquire real data such as amplitudes, temperatures, etc., 
as you sample the signal more often, the estimated mean and variability can only improve.  It is shown that 
oversampling will not change the expected mean value, and it will only improve the estimate of the variability 
(variance).  Given the following time series: 
 

𝑋 = 𝑥1, 𝑥2,  𝑥3, … 𝑥𝑛 
 
The mean is defined as: 
 

μ =
1

𝑛
∑ x𝑖

𝑛

𝑖=0

 

 
The variance in the data is defined as: 
 

𝜎2 =
1

𝑛 − 1
∑( x𝑖

𝑛

𝑖=0

−  𝜇 )2 

 
We can represent an oversampled version of this signal by replacing each x with a copy, thus doubling the sampling 
rate, under the assumption that there is negligible difference between samples.  That is ensured by the fact that the 
signal is filtered and that we are sampling at a high enough rate.  The oversampled data can be written as: 
 

𝑋𝑜 = 𝑥1, 𝑥1. 𝑥2, 𝑥2 , 𝑥3, 𝑥3  …  𝑥𝑛 , 𝑥𝑛 
 
The mean value of the oversampled signal does not change, as should be intuitively evident, as we are only adding 
more of the same data points.  This can be shown as: 
 

𝜇𝑜 =
1

2 𝑛
∑ 2 x𝑖

𝑛

𝑖=0

 

 
So that when the 2’s cancel, we find that 𝜇𝑜 =  𝜇. 
 

As for the variance estimate, if we designate the variance of the oversampled signal as 𝜎2
𝑜 we have the following: 

 

𝜎2
𝑜 =

1

2 𝑛 − 1
∑ 2 ( x𝑖

𝑛

𝑖=0

− 𝜇𝑜)2 

 
Comparing this with the equation for the original variance, we find: 
 

𝜎2
𝑜  =  

2 𝑛 − 2

2 𝑛 − 1
  𝜎2 

 
Which for large n is a ratio very close to 1.000.  For example, if we incorporate 256 values into our estimate over 1 
second, the values have converged within a factor of (512-2) / (512-1), which is a ratio of 1.002. 
 
Therefore, as the number of samples increases, the estimated variance converges strongly to a final value, which 
can be considered the “true” variance which for very high values of n is essentially independent of the sampling 
rate.  This is superior to methods that use FFTs and sliding bins, because those approaches require compromises 
associated with epoch selection and sliding factors.  The approach of oversampling the data from continuous 
quadrature filter data circumvents these limitations entirely and produces results equivalent to an analog system. 
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