
NeuroRegulation http://www.isnr.org 
    

 

121 | www.neuroregulation.org Vol. 8(2):121–126 2021 doi:10.15540/nr.8.2.121 

  

Language Rehabilitation of Traumatic Brain Injury Patient 
by LORETA Z-Score Neurofeedback: A Single-Case Study  
Farnaz Faridi1, Hayat Ameri1*, Masoud Nosratabadi2, Seyed Majid Akhavan Hejazi3, and 
Robert W. Thatcher4 
1Tarbiat Modarres University, Tehran, Iran 
2Department of Psychology, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran 
3Head, Brain, and Spinal Cord Injuries Department, Rofeideh Hospital, University of Social Welfare and Rehabilitation 
Sciences, Tehran, Iran 
4Applied Neuroscience, Inc., St. Petersburg, Florida, USA 
 

Abstract 

Traumatic brain injury (TBI) creates a variety of sequelae such as aphasia that can be highly challenging for 
clinicians when developing rehabilitation interventions. Therefore, the present study aimed to investigate the 
effectiveness of LORETA z-score neurofeedback (LZNFB) on language performance for a 21-year-old male 
suffering from aphasia following TBI. To this end, LZNFB was applied while focusing on the language network for 
15 sessions. The study used an experimental design with a pre–post comparison. Baseline and posttreatment 
comparisons were made on qEEG/LORETA metrics, aphasia symptoms, working memory, and attention. The 
results indicated clinical improvements in language, working memory, and attention performances after 15 
sessions of LZNFB. Our findings suggest that LZNFB may have the potential to aid language performance among 
those with TBI.  
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Introduction 

 
Traumatic brain injury (TBI) is an injury to the brain 
and is typically caused by an acute injury to the 
head, neck, or face (Brown et al., 2019). The wide 
array of problems confronting those with TBI 
includes headache, fatigue, impaired memory, 
reduced attention, depression, aggression, anxiety, 
sleep disturbances, and sexual dysfunction (Barth et 
al., 1983). Several reports indicated that TBI can 
have lifelong impacts including changes in 
personality and behavior (Banks, 2007; Jackson et 
al., 2002).  
 
The consequences of TBI are not limited to those 
changes but also lead to electroencephalographic 
(EEG) abnormalities, which can be focal or 
widespread (Brigo & Mecarelli, 2019; Galovic et al., 

2017). Some studies demonstrated quantitative EEG 
(qEEG) changes in patients with TBI. For example, 
the attenuated alpha frequency in the posterior 
region and increased theta activity are the most 
common qEEG findings of individuals with TBI 
(Arciniegas, 2011; Lewine et al., 2019). Moeller et al. 
(2011) reported increased delta and theta bands and 
a decreased beta band in TBI due to the disruption 
of the cortical-thalamic network. Higher theta-alpha, 
theta-beta, and delta-alpha amplitude ratios and 
reduced EEG coherence were also noted in TBI 
(Modarres et al., 2017). Developing medical 
treatments that ameliorate the symptoms of TBI is of 
great importance, and neurofeedback (NF) is one 
such method.  
A review of the literature shows promise for treating 
some symptoms of TBI with this modality (Gray, 
2017). Ayers (1989) was the first to report positive 
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effects of NF on TBI-related symptoms, finding 
improvements in a number of postconcussive 
symptoms experienced by patients, including 
decreased energy, depression, irritability, 
photophobia, attention deficit, dizziness, headache, 
and short-term memory loss. The role of NF in 
improving cognitive, behavioral, and physical 
dysfunctions among patients with TBI has been 
confirmed in previous studies (Bennett et al., 2018; 
Brown et al., 2019; Gray, 2017; Gupta et al., 2020; 
Hershaw et al., 2020; Kaser, 2020; Koberda, 
2015a).  
 
Although previous studies have shown that NF can 
mitigate many symptoms of TBI, they have not 
specifically focused on language rehabilitation by 
NF. Nevertheless, language therapy produces 
clinically significant improvements in functional 
communication, better mood, and quality of life of 
people with TBI aphasia. Accordingly, the present 
study sought to evaluate the efficiency of LORETA 
z-score neurofeedback (LZNFB) to rehabilitate the 
language deficit in a patient with aphasia following 
TBI. LZNFB is one of the recent advanced 
technologies of NF that increases specificity by 
targeting brain network hubs (e.g., the language 
network) that are referred to as Brodmann areas. 
The advantage of using the z-score in LORETA NF 
is the ability to receive instant comparisons using a 
reference database of healthy individual z-scores 
(Thatcher, 2010). These instantaneous comparisons 
make it possible to find the link between patients’ 
symptoms and the pertinent Brodmann areas 
(Thatcher, 2010). 
 
In this study, it was hypothesized that LZNFB 
intervention could potentially enhance language 
performance in a patient with aphasia following TBI. 
To test this hypothesis at least in a single case 
investigation, 15 sessions LZNFB were applied to 
the language network. 
 

Methods 
 
Case Description 
P.F. was a 21-year-old, right-handed male who 
suffered from aphasia after trauma. Ten months 
prior to our assessment, he had an accident, and his 
head had been hurt at the right inferior frontal area. 
After being unconscious for one month following the 
accident, the patient underwent surgery on his head. 
Table 1 presents the demographic information of the 
patient when he was hospitalized following the 
trauma. At the time of the assessment, he was alert 
and oriented and could follow commands, although 
his language performance was poor. 

Table 1 

Demographic Information of P.F When Hospitalized After 
Trauma 

Severity PTA Age LOC GCS 

7 277 21 30  6 

 
Note. The severity index is a number between 1 and 10, 
indicating the severity of TBI based on discriminant 
classification. Values in the range of 1 to 3, 3 to 5, and > 5 
indicate mild, moderate, and severe head trauma, 
respectively. PTA: Posttraumatic amnesia; LOC: Loss of 
consciousness; GCS: Glasgow Coma Scale. 

 
 
Intervention  
Power spectral analyses were performed on 5-min 
segments of the eyes-closed resting state. An EEG 
was recorded from 19 scalp locations based on the 
international 10–20 system of electrode placement 
using the linked ear as a reference. Using a 
Medicom amplifier and EEG Studio Acquisition 
software, qEEG data were collected. In addition, 
editing and digital analysis of the qEEG data were 
conducted using NeuroGuide software and a 
comparative database. The protocol included 
LZNFB to focus on the language network in the 
symptom checklist, which was developed with the 
goal of linking symptoms to the areas of the brain. 
Brodmann areas (BA) in this language network 
include 22, 39, 40, 41, 42, 44, and 45. Learning 
reinforcement in neurofeedback was provided using 
television shows or animations that increased in size 
when meeting the difficulty thresholds.  
 
The qEEG/LORETA analysis was completed by 
NEUROSTAT and NeuroGuide software. The 
available neurocognitive testing batteries (Persian 
aphasia battery, Stroop test, digit span, and 
word/nonword test) were used before and after 
LZNFB and compared using the Barlow formula. The 
formula for recovery percentage is as follows:  
 

∆𝐴 =  
𝐴2 − 𝐴1

𝐴2
(100) 

 
As suggested by Barlow et al. (2007), if the results 
are greater than 15%, we can conclude that the 
results are clinically significant and treatment is 
successful. 
 

Results 
 
The pretreatment qEEG demonstrated elevated 
levels of all brain waves except alpha in the frontal 
and temporal regions. After 20 LZNFB sessions, 
brain wave amplitudes were closer to values from 
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the database, as reflected by reduced z-scores 
(Figure 1). 
 
The percentage difference between the baseline and 
last session of treatment was computed, revealing 
that the largest changes were found in delta waves 

at F7 and in high beta waves at F8, T4, T5, C3, and 
F7 (Table 2). 
 
Our neuropsychological assessments also indicated 
improvements in the posttreatment score as 
compared to baseline (Table 3). 

 
 
Figure 1. Surface Maps of the Z-score Distribution (Full EEG). 

 

 

 
 
Note. The qEEG map shows the magnitude of deviations from the normal database using colors. The z-score = 0 is defined 
as normal (green color). Scores less or more than the normal database are displayed by blue and red colors, respectively. 
EEG: Electroencephalography; 1 = Baseline qEEG; 2 = After 15 LZNFB sessions qEEG. 

 
 

Table 2 

The Largest Differences Between Baseline and Posttreatment 

Location F8 T4 F7 T5 C3 F7 

Brain wave HB HB delta HB HB HB 

Percentage 
change 

89% 88% 86% 84% 84% 81% 

Note. F = Frontal; T = Temporal; C = Central; HB = High beta. 

 

Table 3 

Neuropsychological Test Scores Before and After LZNFB 

Language test Language Pretreatment Posttreatment ΔA (%) 

Speed of speech  32.9 53.7 38.7% 

Lexical richness 0.79 0.96 17.7% 

Utterance 11 14 21.4% 

Fluency 6 7 14.2% 

Total word number 39 52 25% 
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Table 3 

Neuropsychological Test Scores Before and After LZNFB 

Working memory test Digit span 6 10 40% 

Word span 6 8 25% 

Nonword span 4 4 0 

Stroop test Correct answers 
(congruent) 

28 48 39% 

Correct answer 
(incongruent) 

21 46 54% 

 
Note. LZNFB: LORETA Z-score neurofeedback. Clinically significant differences are shown in red (ΔA% > 15% is clinically 
significant). 

 

Discussion 
 
This study aimed to analyze the efficacy of LZNFB 
intervention for the treatment of aphasia following 
TBI. A qEEG-guided LZNFB protocol was designed 
for this purpose. Previous studies of TBI 
rehabilitation by NF have not focused on language 
performance. This study specifically evaluated the 
efficacy of LZNFB to rehabilitate the language deficit 
in a TBI patient. To this end, changes in 
qEEG/LORETA and aphasia battery metrics after 15 
sessions of LZNFB were analyzed, as were changes 
in working memory and attention scores from pre- to 
posttreatment. The results showed that fifteen 40-
min NF sessions brought the EEG metrics within 
normal ranges and were effective in improving 
aphasia symptoms and cognitive performance. The 
findings of the current case study can be regarded 
as a promising addition to the treatment planning for 
TBI-related language problems in the future. 
 
Our findings are consistent with those of previous 
studies regarding the effectiveness of NF on 
mitigating TBI symptoms (Bennett et al., 2018; Gray, 
2017; Gupta et al., 2020; Kaser, 2020; Rostami et 
al., 2017). 
 
Effectiveness of LZNFB on the 
Electrophysiological Outcome 
At baseline qEEG demonstrated increased delta, 
theta, and beta bands at frontal and temporal 
locations, as well as decreased alpha at the 
posterior area. Increased delta and decreased alpha 
bands are known to be directly correlated with 
cortical metabolism (Szelies et al., 1999). The 
decreased alpha band at the posterior region and 
increased theta found in our study have also been 
seen in other studies (Arciniegas, 2011; Lewine et 
al., 2019). The increased delta and theta in our 
study are in line with those of the study of Moeller et 
al. (2011) and might be due to the disruption of the 
cortical-thalamic network in TBI. While increased 
beta occurred in this instance of TBI, it was not 

found in some similar studies (Leon-Carrion et al., 
2008; Tebano et al., 1988). However, some other 
studies also found increased beta in TBI subjects 
(Randolph & Miller, 1988; Thornton, 2003), with the 
researchers concluding that the increased beta was 
consistently a negative predictor of cognitive 
performance. 
 
After 20 LZNFB sessions, the qEEG map showed an 
overall improvement (Figure 1). Our finding of 
neurological recovery by LZNFB is supported by 
previous studies that have confirmed its 
effectiveness in areas such as cerebrovascular 
accident rehabilitation (Koberda & Stodolska-
Koberda, 2014), depression/anxiety and cognitive 
dysfunction (Koberda, 2015b), addiction (Faridi et 
al., 2020), attention-deficit/hyperactivity disorder 
(Koberda et al., 2014), pain management (Koberda 
et al., 2013), seizure (Koberda & Frey, 2015), and 
TBI (Koberda, 2015a).  
 
Based on the qEEG analysis, the largest differences 
between baseline and posttreatment were 
associated with the F8, F7, T5, and C3 locations 
(Table 2). The F8 and F7 electrodes correspond to 
BA 47, which is part of Broca’s area and associated 
with the processing of syntax in oral and sign 
languages, musical syntax, and semantic aspects of 
language (Ardila, 2014). The T4 and T5 electrodes 
correspond to BA 22, which is located at the 
superior temporal gyrus and is part of Wernicke’s 
area which is involved in speech comprehension. 
Further, the C3 electrode corresponds to BA 2, 
which is located in the primary somatosensory 
cortex, and the main function of this area is the 
cognitive control of language (Mofrad et al., 2020). 
 
Effectiveness of LZNFB on the Clinical Outcome 
Our assessment of the aphasia battery showed that 
P.F. had clinically significant recovery following 
treatment with LZNFB (Table 3). The clinical 
recovery of working memory and attention were also 
evident (Table 3). Several studies have reported the 
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relationship between language and working memory 
(Emmorey et al., 2017; Fitz et al., 2020), as well as 
language and attention (Galassi et al., 2020; Peach 
et al., 2017; Vig et al., 2020; Villard & Kiran, 2017; 
Wang et al., 2019), probably indicating that 
language is not independent of other cognitive 
performances; in other words, there is mutual 
interaction in this regard. 
 
Limitations 
This study had some limitations, including the 
sample size, which was a single case without a 
control group. Future studies would benefit from a 
larger sample size to maximize the power and 
accuracy of their results. In addition, exploring the 
relationship between TBI severity and LZNFB 
training effects may be a beneficial focus in the 
future. 
 

Conclusion 
 
The present preliminary findings suggest that LZNFB 
may have the potential to aid language performance 
among those with TBI. It was also found that the 
rehabilitation of the language network may improve 
working memory and attention in TBI cases. The 
result of this case highlights the need for 
investigating the efficacy of LZNFB not only as a 
treatment for aphasia but also as a tool for improving 
cognitive performance more generally. 
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