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Abstract 

Addictive disorders are characterized by cognitive, behavioral, and neurological impairments caused by 
dysregulations of brain structure that can extend well beyond early withdrawal in the months and years of 
recovery. The present study aimed to examine the efficacy of neurofeedback rehabilitation on anxiety in 
methamphetamine abusers. The sample consisted of 14 male methamphetamine drug addicts who were 
randomly assigned to an experimental group (n = 7) and a control group (n = 7). Participants were assessed for 
Axis I disorders (SCID) and the Beck Anxiety Inventory (BAI). Mixed repeated ANOVA, independent t-tests, and 
chi-square were used for data analysis. The experimental group received 18 sessions of neurofeedback 
rehabilitation and standard psychological interventions treatment as usual, while the control group received only 
standard interventions. Results showed that neurofeedback significantly reduced anxiety in methamphetamine 
abusers at posttreatment and during a one-month follow-up. Along with other psychological interventions, 
neurofeedback rehabilitation is recommended for methamphetamine abusers. 
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Introduction  

 
Addictive disorders are characterized by cognitive, 
behavioral, and neurological impairments caused by 
dysregulations in brain structure that can persist well 
beyond early withdrawal through the months and 
years of recovery (Doostian et al., 2019). Research 
on psychological and neurophysiological dimensions 
of substance use disorders has recently attracted 
considerable attention (Mallorquí-Bagué et al., 2020; 
Richter et al., 2020). Patients suffering from 
substance use have been found to have a higher 
incidence of co-occurring Axis I and Axis II 
disorders, especially when stimulants are 

methamphetamine. Anxiety is the most common 
comorbid Axis I disorder in substance users. Anxiety 
disorder in young adults doubles the risk of later 
substance use (Albini et al., 2020). Emotional 
response levels at diagnosis of substance abuse are 
often lower with clinical comorbidity (Doostian et al., 
2019). Self-medication in the form of amphetamine 
use occurs in patients with anxiety disorder, which is 
a risk for subsequent substance use. Psychological 
distress increases dropout rates during substance 
abuse treatment (Elkington et al., 2010; Roche et al., 
2020). 
 

http://www.isnr.org/
http://www.neuroregulation.org/
http://www.isnr.org
mailto:r.noori@alzahra.ac.ir
mailto:nooripour.r@gmail.com


Nooripour et al. NeuroRegulation  

 

 

129 | www.neuroregulation.org Vol. 8(3):128–136  2021 doi:10.15540/nr.8.3.128 
 

The early onset of mental illness, particularly 
anxiety, increases the likelihood of substance abuse. 
However, evidence suggests that pharmacotherapy 
in ADHD patients does not increase the risk of 
substance use disorder (Albini et al., 2020). Co-
occurring anxiety disorders should be considered 
when treating substance abuse. Symptoms of 
methamphetamine dependence, such as craving, 
impulsivity, and psychological abnormalities, are 
associated with pathological neurophysiology 
(Fitzpatrick et al., 2020). Eugene Peniston first 
proposed treating addictive disorders with 
neurofeedback in 1991 (Imperatori et al., 2017). 
Research has shown that this method effectively 
reduces the psychological symptoms and effects of 
substance abuse (Askovic et al., 2020; Gruzelier et 
al., 2014; Kelley, 1997; Rostami & Dehghani-Arani, 
2015). 
 
Neurofeedback based on electroencephalography 
(EEG) has recently been shown to be an efficient 
rehabilitation for substance abuse disorders 
(Nooripour et al., 2018). Feedback allows patients to 
change their rhythm and frequency of brain waves. 
Neurophysiological studies suggest that EEG 
provides information about the relationship between 
basic cortical brain mechanisms and psychological 
states in the field (Kosmyna & Maes, 2019). 
Neurofeedback rehabilitation is a method that has 
recently been studied for its efficacy in 
psychopathological disorders such as stress and 
anxiety (Askovic et al., 2020; Harris et al., 2021; Hou 
et al., 2021). The method aims to help people 
change brainwave patterns without using invasive 
methods (Niv, 2013).  
 
Neurofeedback rehabilitation is a way to condition 
the brain's electrical system, rewarding patterns that 
work well and inhibiting undesirable activities. It is 
also believed to stimulate growth and alter the 
efficiency of brain cells, improving brain function and 
cognitive-behavioral function (Davelaar, 2018). 
During neurofeedback rehabilitation, individuals 
learn to change the patterns of their brain waves 
through conditioning (Luctkar-Flude et al., 2017). 
Neurofeedback rehabilitation has been shown to 
promote relaxation, reduce stress, and alleviate 
psychological abnormalities in patients who are 
addicted to drugs and alcohol (Gray, 2017).  
 
One method of neurofeedback rehabilitation is 
alpha/theta wave conditioning. Alpha brainwaves of 
frequency 8–12 Hz are associated with feelings of 
well-being (Gruzelier et al., 2014; Imperatori et al., 
2017). Theta brainwaves of frequency 4–7 Hz have 
been associated with presleep state or 

daydreaming, including traumatic anxiety-provoking 
events with spontaneous hypnagogic imagery and/or 
abreaction (Gregory et al., 2020; Ticci et al., 2019). 
Alpha-theta rehabilitation is primarily designed to 
increase alpha and theta waves. Increasing the 
frequency of these waves enhances relaxation and 
the effects of conscious awareness (Imperatori et al., 
2017). This relaxed state is referred to as the twilight 
state, in which the offender creates hypnagogic 
images or mental perceptions of repressed feelings 
and memories. These perceptions play a central role 
in the healing process. Few studies have examined 
neurofeedback rehabilitation for anxiety in substance 
abuse disorders (Chen & Lin, 2020; Hammond, 
2005; Simkin et al., 2014). 
 
Hanslmayr et al. (2005) reported better performance 
in a cube rotation task after rehabilitation with upper 
alpha neurofeedback. Participants who were able to 
increase upper alpha amplitude (10–12 Hz) through 
neurofeedback rehabilitation showed better results 
in this task than participants who were unable to do 
so. Similarly, Vernon et al., (2003) reported that 
healthy participants were able to increase 
sensorimotor rhythm (SMR) activity after only eight 
neurofeedback rehabilitation sessions, and that this 
increase was associated with improvements in a 
cued recall task. Finally, Egner et al. (2004) trained 
participants to increase either SMR (12–15 Hz) or 
low beta rhythm (15–18 Hz). Previous studies 
recommended the SMR protocol as a training 
program through which participants could increase 
SMR and beta and downregulate theta (Avirame et 
al., 2016; Karageorghis et al., 2018). Increasing 
SMR to C4 (based on the international 10–20 
system) is associated with a decrease in impulsivity 
symptoms and a facilitation of thalamic inhibitory 
mechanisms. In addition, increasing beta waves and 
decreasing excessive left hemisphere theta waves 
to C3 is recommended to improve responding. 
Although SMR training resulted in increased 
perceptual sensitivity, low beta training resulted in 
faster reaction times (Gruzelier, 2014).  
 
Imaging techniques, such as SMR, functional 
magnetic resonance imaging (fMRI), and EEG, offer 
a window into the functioning brain, providing a 
unique opportunity to examine the neurobiological 
effects of these interventions in addiction. Imaging 
studies can be used to describe the brain systems 
involved in select interventions, clarify which 
mechanisms are dysfunctional, offering the 
opportunity to explore differences and 
commonalities between different interventions. 
Imaging-based neurobiological indicators entail 
information that goes beyond self-report or behavior 
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alone and have been shown to be good predictors of 
relapse following treatment (Brewer et al., 2008; 
Janes et al., 2010; Moeller & Goldstein, 2014). In 
SMR training protocol on the Cz area, the active 
electrode was placed at Cz with a left-ear reference 
(A1). The right earlobe was connected to circuit 
ground. In this program the reinforcement band was 
SMR (12–15 Hz) frequency band, and the 
suppressed frequency were delta (2–5 Hz), theta (5–
8 Hz) and high beta (18–30 Hz) frequency bands. 
Thresholds were adjusted in a way that if the 
participant maintained the reinforcement band above 
the threshold for 80% of the time during at least 0.5 
s, and the suppressed band under the threshold for 
20% of the time, feedback was received. Whenever 
participants could maintain the reinforcement bands 
above the threshold for 90% of the time during two 
continuous trials, the threshold was changed 
automatically so that it was closer to the optimal 
threshold (Scott et al., 2005). 
 
Due to the lack of sufficient research, neurofeedback 
rehabilitation is not yet recognized as a treatment for 
substance abuse problems; it is of interest to provide 
additional evidence of the efficacy of neurofeedback 
rehabilitation on anxiety in methamphetamine 
addicts. 
 

Method  
 
Participants  
The population studied included a group of 
methamphetamine addicts in Tehran. Twenty-five 
participants who met the Diagnostic and Statistical 
Manual of Mental Disorders (5th ed.; DSM-5; 
American Psychiatric Association [APA], 2013) 
criteria for methamphetamine use disorder were 
selected. They were selected from Tehran drug 
rehabilitation centers between March 2019 and 
December 2019. Subjects were selected based on 
the following inclusion criteria:  
 

1. They met DSM-V criteria for 
methamphetamine use disorder.  

2. They showed interest in participating in the 
intervention.  

3. They were between 20 and 50 years old.  
4. They had at least a 12-month history of 

methamphetamine use.  
5. They had no other substance-related 

disorders except smoking.  
6. They could speak and write fluent Farsi.  

 
The exclusion criteria were: Any history of 
psychiatric (bipolar disorder or major depression, 
psychosis) or neurological disorders. 

Participants were randomly assigned to the 
neurofeedback rehabilitation group or the control 
group. Three subjects from the neurofeedback 
rehabilitation group and four from the control group 
dropped out before the study was completed. 
Therefore, the final analysis was performed on 
seven participants in the neurofeedback 
rehabilitation group (n = 7) and seven participants in 
the control group (n = 7; see Figure 1). 
 
Procedure 
All participants were asked to complete the 
instruments (Structured Clinical Interview for DSM-IV 
[SCID] and Beck Anxiety Inventory [BAI]) before, at 
the midpoint, and after the intervention, and at a 
4-week follow-up period. The neurofeedback 
rehabilitation group received the treatment protocol 
for 2.5 months. The protocol consisted of 18 
sessions and two sessions per week, with each 
session lasting 25–30 minutes. The neurofeedback 
rehabilitation protocols in each session were based 
on SMR, Cz area (central cortex) rehabilitation 
(Scott et al., 2005), and Pz area (parietal cortex) 
alpha-theta (Gregory et al., 2020), performed in 20 
min using the ProComp2 system (Thought 
Technology Ltd, Montreal, Canada; Scott et al., 
2005). 
 
Measures 
Structured Clinical Interview for DSM-IV (SCID). 
The interview assessed the first Axis I Disorders in 
SCID-I. This included seven groups characterized by 
mood disorders as psychiatric issues, substance 
dependence, anxiety, eating complications, and 
compatibility problems. This instrument's reliability 
and validity are 0.81 to 0.84, respectively (Sharifi et 
al., 2009). 
 
Beck Anxiety Inventory (BAI). Beck Anxiety 
Inventory was used for rapid detection and 
differentiation from other disorders, particularly 
depression and anxiety (REF1988). This inventory 
assesses individuals’ anxiety status during the last 
week on a 21-question multiple-choice self-report, 
where each answer is scored on a scale of 0 (not at 
all) to 3 (severely). Osman et al. (1997) reported a 
test–retest validity of 0.75. Studies have indicated 
that this inventory's psychometric properties are 
desirable in Iran (Khesht-Masjedi et al., 2015). 
 
Data Analysis. Data were analyzed by the mixed 
repeated ANOVA, independent t-test, and chi-
square, using the statistical software SPSS-26. 
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Figure 1. Summary of Patient’s Flow Diagram. 

 

 

 
 

 
 
 
Ethical Consideration. The applied method is 
consistent with the National Research Committee's 
ethical standards, the Helsinki Declaration of 1964, 
subsequent revisions, or equivalent ethical norms. 
All participants in the study embraced informed 
consent to participate in the study. 

 

Results 
 
As for demographic variables, including age, marital 
status, job status, and substance use 
characteristics, there were no significant differences 
between the two groups (Table 1). 

 

Table 1 

Comparisons of Demographic Characteristics Across Groups 

 Neurofeedback (n = 7) Control (n = 7) Statistical Analyses 

Job status (unemployed/part time/employed) (1/4/2) (2/4/1) χ2(2) = 0.66, n.s. 

Marital status (single/married/divorced) (2/4/1) (2/3/2) χ2(2) = 0.47, n.s. 

Age (SD) 37.14(4.56) 37.57(5.06) t(12) = 0.16, n.s. 

Age of unset of substance use (years) 18.82(4.06) 19.35(4.47) t(12) = 0.23, n.s. 

Methamphetamine abuse duration (years) 3.23(1.43) 4.11(1.67) t(12) = 1.04, n.s. 

Note. Values represent mean scores (SD between brackets); n.s. = no significant differences between groups. 

 
 

 

Eligibility (n = 30) Assessed for 

25 people with METH abusers 

Randomized (n = 10) 

Allocated to neurofeedback group  
(n = 10) 

Allocated to control group (n = 10) 

▪ Missing more than 3 sessions (n = 1) 
▪ Lost to posttest (n = 1) 
▪ Lost to follow-up (n = 1) 

Analyzed (n = 7) Analyzed (n = 7) 

▪ Lost to posttest (n = 1) 
▪ Lost to follow-up (n = 1) 
▪ The personal reasons (n = 1) 

Excluded: (n = 5) 

• Out of age range (n = 1) 

• Not diagnose as MA use (n = 2) 

• Not living in Tehran (n = 1) 

• Other reasons (n = 1) 
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Repeated measures ANOVA was performed to test 
differences between the neurofeedback and control 
groups in anxiety. The group (neurofeedback vs. 
control) as between-subjects and the measurement 
time point (preintervention, midintervention 1–3, 
postintervention, and follow-up) as within-subjects 
were tested. There were no differences between the 
two groups on the pretest. There was a significant 

main effect between the neurofeedback and control 
groups, F(1, 12) = 5.85, p ≤ .05, η2 =.33; a main 
effect of time (within-subject), F(5, 60) = 25.8, p ≤ 
.001, η2 =.68 (Table 2 and Figure 2); and an 
interaction effect of time (within-subject) with group 
(between-subjects) TIME x GROUP, F(5, 60) = 
19.69, p ≤ .001, η2 = .62. 

 

 

Table 2 

Summary of Beck Anxiety Inventory (BDI) Score in Pre-, Mid-, Postintervention, and 1-month Follow-up Measures and Mixed 
Repeated ANOVA 

Group  T0 T1 T2 T3 T4 T5 Intervention Time Intervention*Time 

Experiment 

(n = 7) 

M 39.00 37.14 35.14 33.71 32.85 33.71 F = 5.85 F = 25.80 F = 19.69 

SD 2.94 3.02 2.91 2.56 2.41 2.13 p ≤ .05 p ≤ .001 p ≤ .001 

Control 

(n = 7) 

M 38.28 38.28 38.14 37.85 38.14 37.71    

SD 2.28 1.88 1.77 1.67 2.03 1.79    

Note. T0 = preintervention (week 0); T1 = midterm (week 2); T2 = midterm (week 4); T3 = midterm (week 6); T4 = 
postintervention (week 8); T5 = 1-month follow-up (week 12). 

 
 

Figure 2. Comparison of the Levels of Anxiety in Experimental (Neurofeedback) and Control Groups at Different 
Time Slots. 

 

 
 

Note. T0 = preintervention (week 0); T1 = midterm (week 2); T2 = midterm (week 4); T3 = midterm (week 6); 
T4 = postintervention (week 8); T5 = 1-month follow-up (week 12). 
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Control 
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Discussion 
 
The current research examined the effectiveness of 
neurofeedback rehabilitation on anxiety in 
methamphetamine abusers. The results showed that 
neurofeedback rehabilitation significantly reduced 
anxiety among methamphetamine abusers during 
the posttreatment period. The same finding was also 
collected during a 1-month follow-up. 
 
Neurofeedback rehabilitation is based on the idea 
that the mind can regenerate, change, and learn to 
heal itself. The mechanism associated with 
neurofeedback rehabilitation can be linked to a 
neurophysiological level. For example, a relationship 
between electroencephalograms and the 
thalamocortical mechanisms is responsible for the 
rhythms and frequencies of the 
electroencephalogram. Disrupted rhythms and 
frequencies of electroencephalograms can be 
normalized by neurofeedback rehabilitation, and 
these clinical effects are sustained (Niv, 2013). Our 
results on reduced anxiety are consistent with some 
studies, such as (Khajehpour et al., 2019; Liu et al., 
2020). 
 
Aliño Costa et al. (2017) found that EEG alpha had 
an anxiety-reducing effect on the experimental 
group. The use of an alpha-theta protocol in patients 
with anxiety disorder depends on the extent of the 
alpha area in the brain, especially in the parietal and 
occipital lobes. When the alpha range (8–12) is low, 
alpha enhancement may reduce anxiety symptoms. 
When the alpha range is high, a decrease in alpha 
can lead to anxiety-related symptoms. In the present 
study, the alpha enhancement protocol was used. 
According to Raymond et al. (2005), the alpha-theta 
protocol left the patient in theta mode. 
 
Several studies, such as Gregory et al. (2020) have 
suggested that the most active and transformative 
properties of neurofeedback protocols teach 
substance abuse patients to intentionally intensify 
the amplitude and coherent interaction of their alpha 
and theta brainwave frequencies. The alpha-theta 
neurofeedback mechanism may allow participants to 
better tolerate stress, anxiety, and anxiety-provoking 
situations, especially during initial recovery periods. 
 
Increased SMR amplitudes are associated with 
enhanced control of somatosensory and 
sensorimotor pathways, which could explain more 
accurate and even faster processing in reaction time 
paradigms. The basic idea is that individuals learn to 
self-regulate bioelectrical brain processes through 
operant conditioning, as measured by 

neurofeedback. Electrodes are placed on the scalp 
and specific parameters such as slow cortical 
potentials, alpha rhythm, SMR are extracted from 
the signal in real time. The participant is presented 
with easy to understand displays with simple shapes 
or video games. He is instructed to change the 
feedback display (e.g., increase or decrease the 
parameters of a bar or circle), which changes the 
associated brain activity. It would be interesting to 
conduct an SMR-NFT study that includes recording 
of neurofeedback during reaction time paradigms 
(Reichert et al., 2015). This would allow an analysis 
of SMR changes in relation to fast and slow 
responses, both within a session and across the 
entire experiment. 
 
Schönenberg et al. (2017) also found no superiority 
of a theta/beta neurofeedback training over a meta-
cognitive therapy or even a sham neurofeedback 
condition. Both (Bink et al., 2015; Schönenberg et 
al., 2017) applied the training in subjects with a 
single, well-defined disorder without any 
comorbidities. It is better the mechanism of SMR 
could be explored more. This pattern of results 
generally confirms that chronically hypoactive 
regions implicated in prefrontal control in drug 
addiction (Goldstein & Volkow, 2011) can be 
normalized through cognitive and 
motivational/emotional interventions. Results also 
demonstrate that different cognitive interventions 
act, at least partly, through a common mechanism, 
supporting a previous meta-analysis that posited the 
recruitment of the inhibitory control network as a 
shared therapeutic mechanism between cognitive 
and pharmacological interventions (Konova et al., 
2013). 
 
Spectral amplitude estimates were calculated for the 
active site (Cz) on raw 1-s EEG segments. A 
bandpass filter was used to extract the reward 
neurofeedback frequency band for SMR (12–15 Hz), 
and feedback was provided when the participant 
increased their SMR (12–15 Hz) by 10% for each 
baseline measured. Visual feedback was provided in 
the form of a graphic image animation. There was 
also a respiratory pacemaker with six cycles per 
minute, and the wave of heart rate and respiratory 
rate was measured to obtain physiological data from 
heart rate variability (HRV). This was done because 
the training of resonant frequency breathing affected 
the action of the somatic system (Vaschillo et al., 
2006) and influenced the bottom-up circuit that 
produced SMR (Reid et al., 2013). 
 
Drugs disrupted cognitive processes involving and 
affecting the hippocampal region and frontal cortex 
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structures. Drugs have been shown to increase the 
process of apoptosis (planned cell death) and may 
exacerbate inhibition of neurogenesis (formation of 
neural tissue). One possibility is that neurofeedback 
reduces the cognitive deficits caused by substances 
by counteracting the apoptosis process and 
promoting neurogenesis. Limitations of the present 
study are using a self-report survey and the lack of a 
Sham or placebo group (fictitious stimulation). The 
SMR neurofeedback training can be considered as a 
training protocol to reduce anxiety in 
methamphetamine abusers. However, applying a 
cross-sectional design was a limitation to our study. 
Future studies are recommended to examine the 
obtained results through longitudinal designs. The 
results obtained suggest that therapists could use 
neurofeedback as an intervention method to treat 
methamphetamine addicts. Incorporating biological 
and neurological levels into future studies may be 
another step toward improving substance abuse 
treatment. Additionally, the specific significant 
changes during this neurofeedback protocol on 
neurological pathways can be studied with fMRI and 
PT scans in future studies. 
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