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Abstract  

The combination of modern machine learning and traditional statistical methods allows the construction of 
individual regression models for predicting the blood oxygenation level dependent (BOLD) signal of a selected 
region-of-interest within the brain using EEG signal. Among the many different models for motor cortex, we chose 
the EEG Fingerprint one-electrode approach, based on rigid regression model with Stockwell EEG signal 
transformation, used before only for the amygdala. In this study we demonstrate the way of finding suitable model 
parameters for the cases of BOLD signal reconstruction for five individuals: three of them were healthy, and two 
were after a hemorrhagic stroke with varying degrees of damage according to Medical Research Council (MRC) 
Weakness Scale. The principal possibility of BOLD restoring using regressor model was demonstrated for all the 
cases considered above. The results of direct and indirect comparisons of BOLD signal reconstruction at the 
motor region for healthy participants and for patients who suffered from a stroke are presented. 
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Introduction 

 
There are certain advantages of combining 
functional magnetic resonance imaging (fMRI) and 
electroencephalographic (EEG) modalities. The 
EEG data has an excellent submillisecond resolution 
which allows for an adequate representation of rich 
temporal dynamics of the neural ensembles’ activity 
recorded from the scalp surface. The issues arising 
from the limited number of electrodes used to record 
2D signals and facial skin and muscles’ conductivity 
result in a limited spatial resolution of the signal and 
inadequate signal-to-noise ratio. This is also known 
as an ill-posed inverse problem of reconstruction of 
the source of EEG activity (Custo et al., 2014). FMRI 
allows to improve the spatial resolution to a 
submillimeter level, while temporal dynamics of the 
blood oxygenation level dependent (BOLD) signal is 
generally recorded with few seconds repetition time 

(Ogawa et al., 1990) ⁠. It should be noted that the 

BOLD signal does not directly represent a neural 

activity, but rather is a currently poorly understood 
combination of hemodynamic response and 
metabolic processes characterized by a relatively 
slow temporal dynamic (Logothetis, 2002). 
 
In addition, the analysis of BOLD signals reveals 
spatial patterns that are correlated by time and may 
represent functional connectivity (Beckmann et al., 

2005; Smith et al., 2009) ⁠. Lastly, it is a known fact 

that the parameters of the hemodynamic response 
function (HRF) differ depending on a certain brain 
area and varies from subject to subject (Handwerker 
et al., 2012). Thus, perspectives of studying 
dynamics of brain metabolic response on the smaller 
time scale will result in a better understanding of 
various basic brain processes. 
 
Traditional methods of EEG signal reconstruction 
using EEG band power-based regressors 
convoluted with the HRF do not fully reflect the 
whole picture of nuances and complexities of the 
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EEG phenomena (Laufs et al., 2003; Murta et al., 
2017; Yin et al., 2016). Due to limitations of the time 
scale and the number of available electrodes, as 
well as predetermined frequency ranges (e.g., alpha, 
beta, gamma, etc.), the resulting structure of the 
EEG becomes oversimplified (Marecek et al., 2016). 
The authors consider a model presented in the study 
by Meir-Hasson et al. (2016) to be one of the most 
promising models. A group of subjects underwent 
scanning during the so-called “emotional regulation,” 
and the resulting data showed the efficacy of the 
authors’ method of reconstruction of BOLD signal 
from the region of interest (ROI) based on EEG data 
recorded during the biofeedback (Keynan et al., 
2016, 2019). In the described approach, there were 
no limitations to HRF shape, and respective time 
delays were factored into the model. The authors 
used the Stockwell transformation (ST) of EEG 
signal followed by a down sampling of frequency in 
the time-frequency domain (Stockwell, 2007). The 
increase of the temporal resolution of reconstructed 
BOLD signal was discussed as a part of the model 
which created the possibility of better understanding 
its temporal dynamics. This method was claimed as 
a universal one that could be applied for various 
functional brain networks and, more importantly, 
allowed for the simulation of signal of intracerebral 
ROIs and not just cortical structures. 
 
However, to the best of our knowledge, the model 
was tested only for the amygdala; therefore, its 
versatility and applicability to other brain structures 
and predictive power in that case require further 
investigation. Several methodical issues such as 
specific frequency ranges, bands, electrodes, or 
other model hyperparameters are subject to further 
research and adjustment. The aim of the current 
study based on the aforementioned Meir-Hasson 
model (2016) was to investigate possibility and 
accuracy of the sensorimotor (SMR) BOLD signal 
reconstruction that reflects hand motion from EEG 
recordings. Relative homogeneity and simplicity of 
motor action should lead to effective prediction with 
adequate determination coefficients. We expect that 
in a case of motor area activity the predicted impact 
of specific EEG bands such as mu- and SMR-bands 
will be the greatest one. 

 

Methods  
 
Equipment, Materials, and Subjects  
The study was performed at the tomography center 
using an Ingenia magnetic resonance machine 
(Philips, Amsterdam, Netherlands) with a magnetic 
field induction of 3.0T equipped with iViewBold 
software for real-time fMRI results. A head coil with a 

slanting mirror based on dStream technology and a 
mobile pixels-compatible monitor (NordicNeuroLab, 
Bergen, Norway) were used. Reference anatomical 
images were obtained using the T1 Mapping 3D 
turbo field echo (TFE) method, TR (repetition time) / 
TE (echo time) = 7.5 / 3.7 ms with a field of view of 
250 x 250 x 180 mm3 and a reconstructed voxel size 
(3D image element) of 1 x 1 x 1 mm3. The 
reconstruction included the creation of three packs 
of slices oriented along the main orthogonal planes 
(Multiplanar Reformation Procedure [MPR], i.e., 
multiplanar reconstruction). The main working T2 
weighted images (T2WI) were obtained by the  
secure shell (SSH) protocol, Standard Portable 
Intermediate Representation (SPIR) echo planar 
imaging (EPI) method, TR / TE = 2500 / 35 ms with 
a sagittal orientation of a packet of 25 slices 5 mm 
thick and a field of view of 220 x 220 mm2, with a 
resolution on a 2 x 2 mm2 plane. The uniform 
distribution of the slices in the TR interval provided a 
constant recording rate of 100 ms per slice, and their 
nonstandard sagittal arrangement simplified the 
identification of target zones. The relatively large 
thickness of the slices made it possible to limit their 
number and achieve optimal sensitivity at a time of 
TE = 35 ms. BrainVision (Brain Products GmbH, 
Gilching, Germany) encephalograph and a BrainCap 
MR-compatible helmet for EEG BrainCap MR 
(EASYCAP GmbH, Wörthsee, Germany), 
32-channel/128-channel Ag/AgCl electrodes 
including the reference one, using an extended 
10-20 system, were synchronously monitored for 
electrical activity of the brain. An electrode for 
recording ECG was placed under the shoulder blade 
of the subject. Before placing the participants in the 
tomograph, the level of electrode impedance < 20 
kOhm was achieved. 
 
In total, five right-handed subjects took part in the 
experiment, see Table 1. Three of five subjects were 
healthy individuals (S1, S2, S3 in Table 1), two 
subjects had left-sided poststroke paresis (I1 and 
I2). Subject I1 had a mild motor impairment (4 points 
on the Medical Research Council Weakness Scale 
[MRC] for muscle strength assessment), subject I2 
had a severe motor impairment (2 points on the 
same scale). All study participants signed informed 
consent form approved by the local institutional 
ethics committee. 
 
The experiment included two phases. During the first 
phase, simultaneous EEG and fMRI signals were 
recorded at the tomography center. Each subject 
participated in a similar session: the EEG signal was 
recorded using BrainVision 32-channel system with 
a 5000 Hz sampling rate and 250 Hz bandwidth. The 
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experiment had a block design: each subject used 
his hand in response to the stimulus on the monitor 
screen (the task was to squeeze a ball for the entire 
duration of stimulus). During the session, time of 
stimulus presentation was equivalent to 25 s, 
followed by a rest period of the same duration, and 
the total number of scan recordings was 240 s; i.e., 
600 s per session, in total 24 blocks per session. 
This paradigm was repeated for the left hand only. 
The data obtained in each experiment (first phase) 
was subsequently used to build the EEG–fMRI 
regression model. 
 
 

Table 1 

Subjects’ Characteristics 

 Age MRC score* Sex 

S1 21 5 m 

S2 20 5 m 

S3 29 5 m 

I1 38 4 f 

I2 42 2 m 

 
 
The second phase of the experiment was conducted 
outside of the MRI scanner. Same subjects 
participated, and the second session of the first 
phase was executed with the same stimuli along 
with the recording of EEG data using Neuron-
Spectr-5 commercial electroencephalograph 
(Neurosoft, Ivanovo, Russia). In the experiment the 
MCScap textile cap (Medical Computer Systems, 
MCS, Moscow, Russia) with 30 removable passive 
Ag/AgCl electrodes was placed according to the 
10-20 system. Montage was referenced to Cz 
electrode. 
 
Signal Refinement EEG 
Recording EEG signal in the MR scanner is affected 
by gradient exposure due to the fast magnetic field 
alternations. The amplitudes of physiological 
component of the signal decline on a logarithmic 
scale, while prominence of the gradient (MR) 
component does not fade as fast. Thus, during the 
signal processing phase it is necessary to closely 
monitor the process of EEG signal refinement from 
MR gradient, so that the physiological component of 
the spectrum does not degrade. We used an 
EEGLab Software Package for that purpose 
(Delorme & Makeig, 2004). During the refinement 
process, Bergen plugin (Moosmann et al., 2009) 
was used for subtraction of the gradient artifacts, as 

well as Functional Magnetic Resonance Imaging of 
the Brain (FMRIB) plugin was applied for pulse 
artifacts removal (Iannetti et al., 2005; Niazy et al., 
2005) using standard settings. For the signal free of 
magnetic artifact, our cleaning procedure was close 
to the Makoto's preprocessing pipeline steps (Swartz 
Center for Computational Neuroscience, n.d.). To 
remove occasional large amplitude noise/artifact 
subspace reconstruction (ASR), clean raw data 
plugin was chosen (Chang et al., 2018). For the 
constant fixed source noise/artifact signals 
independent component analyses (ICA) was used, 
where an automatic classification label for 
independent components (IClabel) EEGLab plugin 
was run to classify which of the independent 
components had to be subtracted (Pion-Tonachini et 
al., 2019). All algorithms used have their inner 
parameters as the number of principal component 
analysis (PCA) components (FMRIB plugin) or level 
of probability (IClabel plugin); therefore, the cleaning 
procedure was done always under visual inspection 
of signal and its spectral characteristic. 
 
Analysis of fMRI Data  
Data in international DICOM imaging standard 
format were converted to Neuroimaging Informatics 
Technology Initiative (NIFTI) format using the 
MRIConvert utility (University of Oregon, Lewis 
Center for Neuroimaging, n.d.). To obtain BOLD 
signal the statistical parametric mapping (SPM) fMRI 
data analysis were used. Statistical analysis was 
performed in the SPM package (UCL Queen Square 
Institute of Neurology, n.d.). Standard settings were 
applied unless otherwise stated. The following 
processing steps were also performed: correction of 
mutual frame positions (Reslice) to eliminate the 
consequences of subjects’ head movements and 
time differences in obtaining individual slices (Slice 
Timing), coregistration of structural and mean 
functional images (Coregister), division into gray and 
white matter and areas of cerebrospinal fluid with 
simultaneous transformation to the standard MNI 
(Montreal Neurological Institute) coordinate space 
with an isotropic distribution of 2 mm (Segment, 
Normalize: Write) and smoothing (Smooth) of 
functional tomograms using a spatial filter with a 
Gaussian nucleus of half-height width 6 mm. At the 
individual level, tasks were modeled by conversion 
of the standard function of the hemodynamic 
response and the rectangular function 
corresponding to the work and rest blocks. The 
design also included additional regressors: head 
movement correction parameters (three axes of 
displacement and three planes of rotation) to 
eliminate corresponding noise. This stage also 
employed a high-frequency filter with a cutoff period 
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of 128 s. Final analysis based on t-statistic p < .05 
(fwe = 1e-5) were used to determine motor 
activation volume under block design consideration. 
The BOLD signal as the sum of those vowels were 
extracted for all participants in experiment. 
 
Model Description  
Availability of the signals with high spatial resolution 
(fMRI) and high temporal resolution (EEG) made it 
possible to build the model for BOLD signal 
reconstruction. It was shown by Meir-Hasson et al. 
(2014, 2016) that combining these two signals 
recorded from the amygdala, defining a connection 
mathematically, and then computing a regression 
model that predicts BOLD signal based on EEG data 
was possible. The certain steps to build such a 
model are shown in Figure 1. In the case of BOLD 
signal, the transformation procedure is rather trivial; 
the BOLD signal is normalized with a subsequent 
increase of the sampling rate to 4 Hz. 
 
Transformation of EEG signal should be performed 
keeping in mind temporal dynamics of the BOLD 
signal. Hemodynamic response value reaches its 
peak to 5- to 6-seconds point from the stimulus 
onset, the whole response is somewhat about 10 
seconds, and, strictly speaking, this function is 
heterogeneous with respect to a certain brain area. 
Thus, for the further EEG signal processing a 12-s 
time frame was selected for one of the electrodes for 
EEG signal with 80 Hz sampling frequency. For a 
better identification of the relevant EEG signal 

characteristics for a subsequent regression analysis, 
the 12-s frame was transformed into a time-
frequency region using Stockwell transformation 
(ST) procedures implemented in the MNE-Python 
package (Gramfort et al., 2013).  
 
To reduce number of the signal characteristics, the 
frequency band was limited to 30 Hz, and then 
divided into three frequency unknown subbands (to 
be found). In the time region the sampling rate was 
reduced from 80 Hz to 4 Hz, while the BOLD signal 
had the same frequency. After all transformations 
(five steps), one time frame of EEG signal resulted 
into a total of 144 parameters (12 s x 4 Hz x 3 
bands) that could be used as a vector of 
independent values for the ridge regression (Figure 
1); i.e., to one value of the BOLD signal. Moving the 
whole 12-s time frame by 0.25 s, other 144 
parameters (regressors) of transformed EEG signal 
can be used with the next value of the BOLD signal. 
The BOLD signal in this case is a dependent 
variable. 
 
Optimizing Model Hyperparameters  
At the beginning of the construction of the model, it 
was decided to limit the frequency band of the EEG 
signal to 6–30 Hz and consider only three subband 
frequency intervals. Thus, the model is characterized 
by nine unknown hyperparameters including: width – 
ST transformation coefficient; alpha – ridge 
regression coefficient; electrode; and six frequency 
parameters that define three subfrequency intervals. 

 
 

Figure 1. Steps Required for the EEG Signal Transformation. 
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Results 
 
Building Individual Models 
The subjects performed the motor task "squeeze the 
ball" with a simultaneous recording of the fMRI and 
EEG signals. During the first phase, after removal of 
tomographic and miscellaneous artifacts from the 
data, a regression model for each subject was 
created for two halves of experimental data. Prior to 
BOLD signal reconstruction with a commercial 
electroencephalograph, we estimated the accuracy 
of the model using the r2 metric for all subjects. 
 
Electrode Selection, Alpha and ST Width  
The procedure for determining the required values of 
hyperparameters was as follows. At the first stage, a 
restriction was introduced on the number of 
subfrequency intervals, namely, one frequency 
interval of 9–25 Hz was selected related to SMR 
activity, including classical mu-rhythm and upper 
beta rhythm (Emmert et al., 2016). The values of the 
ST width parameter and the alpha parameter of the 
ridge regressor were sorted out for each electrode. 
The model building process went through the cross-
validation procedure with k-fold = 10. Data set was 

split into k = 10 consecutive folds (without shuffling). 
Then each fold was used as a validation set once 
while the k − 1 remaining fold formed the training 
set. The overall model was optimized as the mean of 
five subjects. The following task was set: for each 
value of alpha, ST width and electrode to find such 
values of the coefficient regression models that 
gives the maximum values of the correlations of the 
summary model: 
 

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒𝐺(𝑓1, 𝑓2)

= 𝐶𝑜𝑟𝑟(∑𝑅𝑖𝑔𝑖𝑑𝑖(𝑓1, 𝑓2)

5

𝑖=1

)∀𝑎𝑙𝑝ℎ𝑎, 𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑑𝑒, 𝑤𝑖𝑑𝑡ℎ 

 

where 𝑅𝑖𝑔𝑖𝑑𝑖(𝑓1, 𝑓2) is the individual ridge regressor 
model. 
 
As expected, the best electrode for constructing a 
model for left-hand movement was C4 contralateral 
electrode located closest to the motor region of the 
right brain hemisphere; 0.1 width ST; and alpha 
20.000 (see Figure 2). 

 
 

Figure 2. The upper part represents the classifier work for each of 30 electrodes for each 
subject; the lower part is a contrast map for the C4 electrode of the summary model 
depending on ST width and alpha. 
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Frequency Sub-Bands Selection  
At the second stage for the further optimization of 
previously found hyperparameters C4 electrode, 0.1 
width ST, and alpha 20000 with three subfrequency 
intervals were used, giving six unknown variables. 
To search for a set of hyperparameters that would 
produce the best results the Hyperopt optimization 
library was chosen (Bergstra et al., 2013), that is 
faster than a simple grid search. 
 
The optimization procedure was applied 
simultaneously to five subjects. The number of 
iterations was 5000. The BOLD signal obtained 
directly from fMRI data by extraction of the voxel 
intensities described earlier is highlighted orange. 
The BOLD signal obtained as a result of 
reconstruction is shown in blue; the resulting model 

from the first half of the experimental data was 
applied to the EEG signal of the second half of the 
experimental data. This procedure for constructing a 
model with its subsequent verification with a real 
BOLD signal was applied for the model obtained 
from the data of the second half of the experiment. 
 
Frequency bands for the best result were found to 
be, consequently, 8–12, 12–14, and 16–22 Hz. 
Thus, a complete set of nine hyperparameters was 
found, which made it possible to start building 
individual models. The result of applying individual 
model to the selected frequency band (8–12, 12–14, 
16–22 Hz) is shown at Figure 3. The correlation 
values are shown in Table 2.  
 

 
 

Table 2 

Statistically Significant Values of the Correlation Coefficients for 10 Randomly Constructed Models for the Subjects (Train / 
Test Split). Part I – The Model was Built from the First Half of Data, Part II – From the Second Part of Data. 

 Part I Part II 

 S1 S2 S3 I1 I2 S1 S2 S3 I1 I2 

1 0.74 0.81 0.52 0.85 0.45 0.79 0.61 0.69 0.85 0.73 

2 0.63 0.81 0.64 0.83 0.47 0.78 0.62 0.73 0.81 0.70 

3 0.69 0.87 0.59 0.78 0.43 0.75 0.66 0.75 0.87 0.71 

4 0.70 0.86 0.65 0.86 0.46 0.74 0.69 0.80 0.78 0.61 

5 0.76 0.85 0.60 0.82 0.55 0.79 0.68 0.72 0.79 0.66 

6 0.71 0.82 0.53 0.83 0.47 0.74 0.67 0.79 0.82 0.66 

7 0.58 0.82 0.57 0.79 0.52 0.73 0.65 0.75 0.84 0.71 

8 0.76 0.83 0.63 0.78 0.38 0.78 0.67 0.75 0.87 0.75 

9 0.65 0.83 0.51 0.77 0.50 0.80 0.56 0.80 0.78 0.71 

10 0.72 0.84 0.68 0.80 0.39 0.76 0.60 0.72 0.86 0.67 

mean  0.69 0.83 0.59 0.81 0.46 0.77 0.64 0.75 0.83 0.69 
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Figure 3. Results of Direct Comparison of Reconstructed BOLD Signal (Blue) with the Real One (Orange) for Five 
Subjects S1, S2, S3, I1, I2 from Top to Bottom.  
 

 
 

Note. On the left 1.a) the model was built according to the first half of experimental data, on the right 1.b) according to the 
second half of data. 2.a), the individuals’ models with three selected frequency bands were built according to the first half 
of experimental data, 2.b) according to the second part of data.  

 
 
Reconstruction of BOLD-Dependent EEG Signal 
Building Pseudo-BOLD Signal 
The same subjects further underwent a second 
session outside the scanner with not MR- 
compatible electroencephalograph Neuron-Spectr-5 
used for the signal recording and for implementing a 
previously created model. 
 
Due to the absence of the BOLD signal, it was not 
possible to directly compare the predicted BOLD 
signal with the real one. An averaged BOLD signal 
curve based on the analysis of actual BOLD signals 
was introduced, the middle point of which matched 
the label of the end of hand motor task (Figure 4). 
Correlation coefficient between this pseudo-BOLD 
signal and the reconstructed BOLD signal was 
accepted as an estimated metric of likelihood. 
 
Figure 4. Model of the BOLD signal and its BOLD 
reconstruction. 

 
 
Note. By labels, i.e., the moment when block associated 
with movement starts (dash lines). Left: the real BOLD 
signal; right: the signal reconstruction based on labels. 

Reconstruction  
Previously constructed individual regression models 
were applied to the EEG signals recorded with a 
commercial electroencephalograph. The result is 
presented in Figure 5, where reconstructions of 
BOLD signals built according to individual models of 
subjects according to data obtained with a 
commercial electroencephalograph are shown. 
 

Figure 5. Reconstruction of the BOLD 
Signal by the EEG pattern. 

 

 
Note. Only reconstruction marked by 
asterisks from Table 3 are shown. 
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Orange color shows the model BOLD signal 
reconstructed by event labels. They cannot be 
compared directly; however, the shape time points 
of the signal values that increase and decrease in 
five experiments appear to be very similar to the 
normal dynamics of the BOLD signal registered in 
the MR scanner. 
 

More information on reconstruction is presented in 
Table 3. Left column indicates patients depending 
on I or II part of data. Columns M(I2), M(I1), M(S1), 
M(S2), M(S3) show individual regression models for 
patients S1, S2, S3, I1, I2, where letter M is reserved 
for model. Channel columns (CH) represent EEG 
recording channels used for BOLD reconstruction for 
patients S1, S2, S3, I1, I2. 

 
 

Table 3 

Correlation Coefficients Between the Reconstructed Signal and the Corresponding Pseudo BOLD Signal.  

Model/ 

Patient 
M(I2) CH M(I1) CH M(S3) CH M(S2) CH M(S1) CH ∑ 

S1(1) 0.29 C4 0.68 C4 0.35 C4 0.80 C4 0.80* C4 3 

S1(2) 0.26 C4 0.69 C4 0.32 C4 0.78 C4 0.78 C4 3 

I1(1) 0.57 C4 0.72* C4 0.57 C4 0.68 C4 0.68 C4 5 

I1(2) 0.61 C4 0.60 C4 0.52 C4 0.65 C4 0.65 C4 5 

S2(1) 0.35 C4 0.66 C4 0.37 C4 0.73* C4 0.73 C4 3 

S2(2) 0.29 C4 0.63 C4 0.31 C4 0.81 C4 0.82 C4 3 

I2(1) 0.57* CP2 0.72 CP2 0.57 CP2 0.68 CP2 0.68 CP2 5 

I2(2) 0.61 CP2 0.60 CP2 0.52 CP2 0.65 CP2 0.65 CP2 5 

S3(1) 0.52 C4 0.66 C4 0.47* C4 0.75 C4 0.75 C4 4 

S3(2) 0.40 C4 0.67 C4 0.42 C4 0.69 C4 0.69 C4 3 

∑ 5  10  4  10  10   

Note. p < .001 according to the correlation coefficients with n = 958. 

 
 
Analysis of Results  
From Table 3 it can be concluded that there are 
universal models that can be used for different 
subjects. Specifically, application of the I2 model (1) 
in brackets is indicated for which half of the data the 
model was built and allowed obtaining the BOLD 
reconstruction signal for all five subjects with a 
correlation coefficient greater than 0.5. At this stage 

it is not clear to what extent this model can be used 
to the greater area due to the lack of the data 
(subjects) to make statistically significant 
conclusions. 
 
Subject I2 demonstrated good reconstruction signal 
at the CP2 electrode, but not at C4 as was 
expected. As this electrode is close to the motor 
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area, it can be assumed that the EEG cap was 
applied incorrectly so the electrode may have 
shifted. To avoid such problems in the future, we 
plan to record the coordinates of the electrodes. 
 

Discussion  
 
The new tendencies in the neurological research 
originate from the desire to preserve the benefits of 
the fMRI-EEG data without using MR scanner. This 
research task is labeled as a problem of the BOLD-
dependent EEG. Some research studies involving 
simultaneous records of fMRI and EEG signals 
utilize EEG spectral features that may be useful in 
predicting specific BOLD dynamics (de Munck et al., 
2009; Goense & Logothetis, 2008; Goldman et al., 
2002; Kilner et al., 2005; Mantini et al., 2007; Murta 
et al., 2015; Rosa et al., 2010; Wan et al., 2006). 
Such innovation necessity is motivated by the 
immobility and the cost of bimodal platform. Current 
studies attempt to retain its advantages outside the 
scanner and produce a “shadow” copy of fMRI using 
the BOLD-dependent EEG. The key idea is to use 
the obtained data on fMRI-EEG interdependencies 
with a modern commercial electroencephalograph. 
 
Our study of SMR cortex BOLD signal prediction 
using EEG signal was based on the EEG-channel-
specific BOLD prediction technique described in the 
articles by Meir-Hasson et al. (2014, 2016). Unlike 
the original study, the motor region of the cortex 
responsible for the real movements was chosen. To 
the best of our knowledge, there were not published 
any similar studies targeted to any cortical region of 
the brain except of amygdala. Despite the fact that 
this approach suits to different brain structures, it is 
necessary to adjust unique model hyperparameters; 
namely, certain electrodes, division of the EEG 
spectrum into frequency bands, providing the best 
reconstruction of the BOLD signal, ST width 
parameter, and, finally, rigid regressor alpha 
parameter. Indeed, the results of our study confirm 
the effectiveness of this approach and demonstrate 
that BOLD signal reconstructions by EEG have 
statistically significant levels of correlation 
coefficients with “ground truth” real and pseudo-
BOLD signals. This means that the technique allows 
to avoid or significantly limit the usage of MR 
scanner without dramatic loss of quality of the 
reconstructed BOLD signal and to maintain its 
spatial precision in certain tasks. 
 
In this study the individual EEG-fMRI models were 
built for each participant. A total of five subjects took 
part in the experiment. Three of them were healthy, 

one had a mild motor impairment, and one was with 
a severe poststroke motor impairment.  
 
This article describes the procedure for obtaining 
hyperparameters needed for building a regression 
model for reconstruction of BOLD-dependent signal 
by EEG pattern that is valid for all five subjects. A 
direct comparison of the BOLD reconstruction with a 
real statistically significant correlation coefficient was 
carried out (9 of 10 comparisons have correlation 
coefficients more than 0.59, including a patient with 
severe paresis). An indirect comparison of data 
obtained on a commercial electroencephalograph 
showed correlation coefficients greater than 0.5 for 
all subjects. For patient I2, according to indirect 
comparison, the best electrode was found to be not 
C4, but CP2. A possible reason is different sizes of 
the cap used at the tomographic center where data 
in bimodal EEG + fMRI mode were obtained, and 
the cap used at the clinical electroencephalograph. 
To avoid this problem, it is planned to record 
coordinates of the electrodes in the future. 
 
The next step is moving away from individual models 
to a small number of universal ones (or even to one 
model fitting all) and thus limiting the use of the 
fMRI. According to data from Table 3, we may 
assume that this is possible. At this stage, the 
number of subjects was not sufficient to provide a 
statistically significant answer. Differences in 
individual physiological characteristics of participants 
make the construction of such models a complicated 
task. There are already proposed techniques such 
as hierarchical cluster analysis to overcome these 
difficulties (Meir-Hasson et al., 2014, 2016; Wei et 
al., 2018).  
 
As there are no methods of direct comparison of the 
reconstructed BOLD signal with a real one when 
only one electroencephalograph is used, it is 
planned to include objective monitoring tools (EMG 
sensors) in our future experiments. However, some 
open questions remain: the applicability of the model 
for different temporal designs, the relationship of 
hand’s pressing force and ball manipulation, and 
model’s adequacy in case of motor imaging. 
 
The long-term goal is a usage of the BOLD-
dependent EEG in the rehabilitation of people who 
suffer from a stroke that resulted in damage of the 
motor area. There is a need to improve the existing 
ineffective paradigm of neurorehabilitation which 
results in up to 44% of disability after stroke (Katan 
& Luft, 2018). We hope that the technologies for 
reconstructing the BOLD using one or only a few 
EEG electrodes will potentially make it possible to 
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significantly simplify and reduce the cost of 
rehabilitation of this category of patients using 
BOLD-dependent EEG as a competitive recovery 
monitoring tool. 
 

Conclusion 
 
Demonstration of the possibility of restoring the 
BOLD-dependent signal, not only in healthy subjects 
but also in the patients with stroke, shows that this 
approach can be applicable to people with damage 
to the motor regions of the brain. The question of 
how static the obtained models are and whether 
they can be applied at the entire stage of 
rehabilitation of poststroke patients remains open, 
as well as the question of building universal models. 
 
Our findings demonstrated that the model proposed 
by Meir-Hasson et al. (2016) and the hypothesis of 
its universality with respect to different brain 
structures are generally correct and may be used at 
least for the SMR cortex, although some additional 
tuning of frequencies and subband selection 
procedure, as well as different electrode should be 
used in this case. 
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