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Abstract 

The term long-COVID refers to a wide array of psychological impacts arising from infection with the Severe Acute 
Respiratory Coronavirus 2 (SARS-CoV-2). The virus has been reported to attack the nervous system directly, with 
nondirect impacts to organs and systems, such as elevated inflammation, blood pressure, and immune responses 
also damaging the brain. The electroencephalogram (EEG) has been used to image these insults and provides a 
valuable tool to guide understanding of infection mechanisms and, consequentially, therapeutic intervention. Due 
to the high likelihood of neurological complications, neurofeedback and other forms of neuromodulation may be 
particularly well suited to help long-COVID patients recover. However, clinicians providing neuromodulation 
interventions should be aware of, and take adequate steps to minimize, risks to themselves and others in 
providing face-to-face services. This review seeks to provide mental health professionals with an overview of the 
impacts of COVID-19 upon the nervous system, details current EEG findings, and outlines possibly relevant 
neurofeedback and neuromodulation interventions.  
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Although COVID-19 was first described as a 
disease-causing respiratory illness affecting the 
lungs, veins, and arteries, it is now recognized to 
have a far wider reach in the human body (Ni et al., 
2020). As indicated in Figure 1, the virus can infect 
and damage multiple organs including the heart, 
kidneys, liver, intestines, muscles, and skin (Ni et al., 
2020). It has also been implicated in disorders of 
both the brain (Bodro et al., 2021; Satarker & 
Nampoothiri, 2020) and the mind (Hampshire et al., 
2021; Marshall, 2020). 
 
Severe Acute Respiratory Coronavirus 2 (SARS-
CoV-2), the virus that causes the Coronavirus 
disease of 2019 (COVID-19), is increasingly 
associated with neurological and psychological 

impacts. Many people affected have reported the 
loss of smell, headaches, dizziness, anxiety, 
movement difficulties, inattention, and cognitive 
difficulties (Hampshire et al., 2021). In a minority of 
cases, disorientation, confusion (Bodro et al., 2021; 
Satarker & Nampoothiri, 2020), and psychosis can 
occur (Marshall, 2020). However, regardless of the 
severity of psychological symptoms, pathological 
processes can occur in the brain as a result of 
COVID-19 infection. The virus can invade the 
nervous system directly, damaging brain cells 
(encephalopathy, encephalitis, endotheliitis, and 
myelitis) and can be implicated in conditions such as 
epilepsy, stroke, and brain hemorrhage (Bodro et al., 
2021). The virus also can cause psychological 
symptoms by nondirect mechanisms including 
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Figure 1. COVID-19 Can Infect Multiple Organs in the Body. 
 

 
 
Note. Image reproduced with permission from Ni et al. (2020, CC BY-4.0). 

 
 
excessive inflammation, insufficient oxygen levels, 
organ failures, toxicity, and blood clotting produced 
by the virus (Panariello et al., 2020; Satarker & 
Nampoothiri, 2020). In part, these neurological 
impacts contribute to the virus being so deadly, 
especially the stronger and more infectious Delta 
variant (Davis et al., 2021; Farinholt et al., 2021; Roy 
et al., 2021). COVID-19 can infect anyone, but as 
the pandemic goes on it is becoming increasingly 
clear there are certain groups more at risk of serious 
outcomes from contracting it. From the outset, older 
individuals and those with preexisting health 
conditions were considered the most vulnerable 
(Australian Department of Health, 2021). Now it is 
becoming clear that individuals with preexisting 
mental health conditions are more likely to be 
hospitalized or die as a result of being infected by 
COVID-19 (Ceban et al., 2021). However, for those 
lucky enough to survive, the legacy of infection can 
leave lasting physical and mental challenges. 
 

These longstanding mental health challenges are 
being referred to as “long-COVID,” which has been 
described as brain fog, memory issues, perceptual 
fuzziness, fatigue, a lack of clarity, and confusion 
(Hampshire et al., 2021). Long-COVID has been 
reported in 84.1% of individuals who were ventilated, 
12.2% of those hospitalized, 9.2% of those requiring 
assistance at home, 5.8% requiring no assistance, 
and 3.8% without respiratory symptoms (Hampshire 
et al., 2021). This is approximately 24.4% of 
individuals who return positive biological test results 
for COVID-19 (Hampshire et al., 2021). While these 
figures are from one study, it is reasonable to 
assume a substantial number of individuals may 
present with long-COVID given the World Health 
Organization figures indicate there are 194,080,019 
confirmed cases globally as of late July 2021 (World 
Health Organization, 2021). In previous coronavirus 
outbreaks, neurological symptoms were seen in 
0.04% of those infected with Severe Acute 
Respiratory Syndrome 1, and 0.2% of those infected 
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with Middle East Respiratory Syndrome (Marshall, 
2020). Using these figures as an estimate and 
current WHO case estimates, approximately 
7,763,200 to 38,816,003 people may have impacts 
on their nervous systems as a result of COVID-19. If 
we assume 24.4% of the 194,080,019 global 
COVID-19 cases will have long-COVID symptoms, 
this is approximately 46,579,204 individuals. These 
numbers suggest there will be a substantive mental 
health burden from the pandemic that mental health 
professionals will need to understand and find ways 
of addressing to help impacted individuals.  
 
The question of how COVID-19 impacts the brain 
and mind is still being investigated, but several 
possible mechanisms have emerged (Ni et al., 2020; 
Satarker & Nampoothiri, 2020). As shown in Figure 
2, these mechanisms can be broadly classified into 
two main groupings; direct viral damage, where the 
virus impacts brain cells itself, and nondirect 
damage, due to the virus causing blood clots, 
inflammation, and toxins, and starving the brain of 
oxygen and nutrients (Bodro et al., 2021). For direct 
viral damage, how the virus gains entry into the 
nervous system is related to the locations and types 

of impairments caused (Satarker & Nampoothiri, 
2020). Direct infection of the nervous system can 
occur through the sensory nerves in the nose 
responsible for our sense of smell, nerves in the 
eyes responsible for vision, and other nerves of the 
face, mouth, and throat that mediate taste and 
muscle movement (Satarker & Nampoothiri, 2020). 
Additionally, nerves in the body responsible for 
controlling the lungs and other organs, notably those 
of the digestive system can also act as pathways for 
a viral attack on the brain (Satarker & Nampoothiri, 
2020). Via each of these access points, the virus is 
then able to travel to specific locations in the spine 
and brain and cause direct impacts at those 
locations (Satarker & Nampoothiri, 2020). Direct 
infection of the nervous system can also be a result 
of infection of the blood. Blood carries the virus to 
the blood-brain barrier, a protective lining around the 
brain that usually controls what can enter the brain 
(Marcus et al., 2003; Whitley, 1990), which can 
become vulnerable to COVID-19 due to 
inflammation and infection of cells within this barrier 
that allow the virus to directly attack the brain 
(Satarker & Nampoothiri, 2020; Wang et al., 2021).

  Figure 2. Direct and Nondirect Mechanisms of COVID-19’s Nervous System Impacts.  

 
Note. Image reproduced with permission from Bodro et al. (2021, CC BY-4.0). 
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In contrast, nervous system damage via nondirect 
mechanisms does not involve the virus infecting the 
nervous system, but rather infecting and damaging 
organs such as the heart, lungs, and blood vessels 
(veins and arteries) that support the functioning of 
the brain, or as a consequence of overactive 
immune system responses (Bodro et al., 2021). 
These direct and nondirect mechanisms can occur 
independently or together which increases the 
diversity of symptoms between individuals (Bodro et 
al., 2021; Hampshire et al., 2021; Marshall, 2020; 
Satarker & Nampoothiri, 2020). With such a wide 
range of possible mechanisms and impacts of the 
virus, it is worth understanding the trick COVID-19 
uses to enter the body in the first place. 
 
COVID-19 is a trickster; it enters cells in the human 
body a bit like a thief picking a lock to open a door. 
In this analogy, the lock-picking tool used by the 
virus is called a “spike protein” and it can open the 
cellular lock because it mimics the shape of the real 
key, a protein produced by the body called 
Angiotensin-II (Ni et al., 2020). Angiotensin-II is a 
part of a complex system that regulates blood 
pressure and immune responses, the Renin-
Angiotensin-aldosterone System (RAAS). The role of 
Angiotensin-II in the RAAS is to increase blood 
pressure and promote inflammation (Ni et al., 2020). 
Normally, it would bind to the cellular lock used by 
COVID-19, an ACE-II (Angiotensin Converting 
Enzyme 2) receptor, and would be converted into 
Angiotensin-I, which has the opposite effect, 
lowering blood pressure and reducing inflammation 
(Ni et al., 2020). However, when this lock has 

already been picked by COVID-19, Angiotensin-II 
isn’t able to use it and remains in circulation in the 
blood, increasing blood pressure and inflammation 
(Ni et al., 2020). Also, because Angiotensin-II is not 
converted into Angiotensin-I there is less of this 
protein to counterbalance the effects of Angiotensin-
II. The consequence is very high blood pressure and 
inflammation that does damage to the linings of 
blood vessels, lungs, and tissue damage to organs 
(Ni et al., 2020). Critically, these ACE-II locks that 
COVID-19 uses to enter human cells are widely 
distributed in the body, with high concentrations in 
the lungs, heart, vasculature, liver, gastrointestinal 
tract, and kidneys (Ni et al., 2020). These receptors 
are also found in cells in the blood-brain barrier 
(Wang et al., 2021), sensory nerves of the nose and 
eyes, and in certain brain areas, such as the 
brainstem and hippocampus (Panariello et al., 2020; 
Zubair et al., 2020), that are respectively responsible 
for the control of breathing (Nattie & Li, 2012; 
Porges, 1995) and memory formation (DuBrow & 
Davachi, 2016; Fanselow & Dong, 2010). Because 
of the wide distribution of ACE-II receptors and the 
number of different organs they are associated with, 
the mechanisms by which COVID-19 impacts the 
nervous system (described in the paragraph before), 
are fundamentally important in identifying the causes 
of long-COVID and providing the appropriate 
interventions to help repair the associated damage.  
 
The direct transmission of COVID-19 to the brain 
occurs through nerves connected to the eyes, nose, 
mouth, throat, and lungs (Cheng et al., 2020; 
Panariello et al., 2020); see Figure 3.  

 
 

Figure 3. Brain Regions Commonly Impacted by COVID-19. 
 

 
 
Note. Image reproduced from Cheng et al. (2020, CC BY-NC-ND 4.0). 
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Direct transmission results in the virus gaining 
access to brainstem centers associated with the 
control of breathing, heart rate, and areas involved 
in sensory perception and movement (Cheng et al., 
2020; Panariello et al., 2020). Impacts to these 
regions may be associated with classic COVID-19 
symptoms such as dry cough, difficulties breathing, 
and more neurological symptoms such as the loss of 
taste, smell, and vision issues (Cheng et al., 2020; 
Panariello et al., 2020). However, some long-COVID 
symptoms may also be linked to direct viral infection 
mechanisms due to COVID-19’s impacts upon 
neurotransmitters, which are molecules used by the 
brain to send signals between cells. Infection of 
nerves responsible for the sense of smell allows the 
virus to travel to the hypothalamus (Nampoothiri et 
al., 2020), a region responsible for coordinating 
many bodily functions such as regulating body 
temperature (Dampney, 2016; Lechan & Toni, 
2016). Another brain region that can be impacted by 
direct transmission of COVID-19 is called the 
striatum (Cheng et al., 2020; Panariello et al., 2020), 
a structure that is involved in learning and 
movement (Nicola, 2007; Peters et al., 2016). In 
both the hippocampus and striatum, the presence of 
Angiotensin-I increases the concentration of 
dopamine and GABA, while decreasing 
norepinephrine concentrations (Panariello et al., 
2020). These neurotransmitters are critical in a 
range of psychological processes. Dopamine is 
critical for learning and movement, with insufficient 
levels associated with attention deficit disorder (Arns 
et al., 2013; Arns et al., 2014) and Parkinson’s 
disease (Benz et al., 2014; Przedborski, 2017). 
GABA is the main inhibitory or “OFF” signal in the 
brain and low levels are associated with anxiety 
disorders (Agorastos et al., 2015; Wilhelm et al., 
2017) and epilepsy (Taubøll et al., 2015). 
Norepinephrine is a stimulating neurotransmitter, 
with low levels associated with depression 
(Chrousos, 2009) and alterations in consciousness 
(Berridge et al., 2012). There are also ACE-II 
receptors in the substantia nigra (Satarker & 
Nampoothiri, 2020), another structure closely 
associated with dopamine-related functions (Schultz, 
2000). As described before, by COVID-19 binding to 
the ACE-II receptor, there is less Angiotensin-I 
produced, which in the brain may be linked to lower 
levels of dopamine, GABA and increased 
norepinephrine levels (Panariello et al., 2020). 
These neurotransmitter changes may relate to some 
of the psychological changes associated with long 
COVID (Bodro et al., 2021; Hampshire et al., 2021; 
Marshall, 2020; Satarker & Nampoothiri, 2020). 
Consequentially, the presence of neurological 
symptoms, such as loss of smell or difficulties 

breathing may suggest COVID-19 infection of the 
nervous system via a direct mechanism, which may 
be associated with changes to neurotransmitter 
levels. This information could help mental health 
clinicians guide their therapeutic interventions.  
 
The other direct mechanism allowing COVID-19 to 
access the brain is through transmission in the blood 
to the blood-brain barrier (Satarker & Nampoothiri, 
2020). While the blood-brain barrier usually protects 
the brain from infection and toxins, in the case of 
COVID-19, the presence of ACE-II receptors in 
special cells called pericytes within this barrier 
means it becomes susceptible to infection by the 
virus (Wang et al., 2021). Infection of pericytes acts 
as a stepping-stone for COVID-19 to infect brain 
cells connected to pericytes such as astrocytes and 
neurons (Wang et al., 2021). Additionally, pericyte 
infection makes the blood-brain barrier leaky, with 
microbleeds allowing COVID-19 to slip through gaps 
in the barrier into the brain directly (Wang et al., 
2021). Structures like the ventricles and temporal 
lobes are particularly affected by these microbleeds 
(Bodro et al., 2021). Subsequent transmission 
through the ventricles allows COVID-19 to reach the 
frontal lobes and posterior cingulate cortex 
(Panariello et al., 2020), which are core brain 
structures involved in executive and introspective 
processes and are implicated in most psychological 
disturbances (Menon, 2011). In addition, COVID-19 
can damage temporal lobe structures such as the 
hippocampus (Bodro et al., 2021), which is generally 
linked to depression, memory issues, and cognitive 
decline (Panariello et al., 2020). The combined 
damage to the blood-brain barrier, frontal and 
temporal lobes leads to changes in the ability of 
brain signals to be sent around the brain, which 
could be associated with disorientation, confusion 
(Bodro et al., 2021; Satarker & Nampoothiri, 2020), 
and psychosis (Marshall, 2020) seen in COVID-19 
patients. Making matters worse, COVID-19 causes 
microbleeds in the temporal lobes, which are 
associated with epilepsy (Bodro et al., 2021), 
headaches (Charles & Baca, 2013), and anger 
symptoms (Sugahara, 2004). The takeaway is when 
individuals experience symptoms like headache, 
confusion, and psychosis it may suggest direct 
impacts to the nervous system as a result of damage 
to the blood-brain barrier. Moreover, these 
symptoms are cause for great concern as they are 
thought to be associated with more severe 
neurological presentations, such as encephalopathy, 
encephalitis, endotheliitis, myelitis, and 
cerebrovascular disease (Bodro et al., 2021; 
Satarker & Nampoothiri, 2020). However, symptoms 
such as headache, confusion, and psychosis and 
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damage to the blood-brain barrier may be a result of 
nondirect mechanisms, including increased 
inflammation (Wang et al., 2021) and increased 
Angiotensin-II concentrations (Ni et al., 2020). This 
points to the importance of considering the 
functioning of the whole body when addressing 
mental health issues, which may require 
psychological interventions for long-COVID to be 
combined with health interventions to heal nondirect 
mechanisms impacting the nervous system. The 
main nondirect mechanisms through which COVID-
19 impacts the nervous system are 1) by creating 
blood clots, which cause strokes, 2) impairing 
breathing, heart rate, and oxygen supply to the 
brain, and 3) causing organ failure, which leads to 
imbalances in essential systems such as those that 
regulate fluid, salt levels, and clear toxins (Satarker 
& Nampoothiri, 2020). Each of these areas should 
be understood in principle and deserve individual 
attention to understand their effects upon the brain.  
 
In the body, COVID-19 damages blood vessels and 
organs, with the additional insult of increased 
Angiotensin-II levels promoting the formation of clots 
(Ni et al., 2020). Studies have estimated blood clots 
occur in 8% to 15% of individuals hospitalized due to 
COVID-19, which causes stroke in approximately 
2.5% of these individuals (Bodro et al., 2021). 
Disturbingly, stroke is thought to be more frequent in 
COVID-19 patients under 50 years of age and is 
associated with a high probability of severe cognitive 
impairment or death (Bodro et al., 2021). 
Approximately 30–70% of intensive care patients 
develop blood clots in the veins and lungs, with one 
in four developing a clot in the heart that can cause 
a heart attack (Klok et al., 2020; Llitjos et al., 2020). 
COVID-19 can also infect heart cells directly, which 
may increase heart rates or cause heart failure (Ni et 
al., 2020). Elevated heart rates impair the supply of 
blood to the brain and are closely linked to reports of 
dizziness, while heart failure is associated with coma 
and death (Abdo et al., 2021; Klok et al., 2020). In 
combination with the damage to the heart and 
complications caused by blood clots, the linings of 
the lungs are also significantly damaged by the 
virus, which impairs their ability to function (Ni et al., 
2020). The combined effects of all of these impacts 
can starve the brain of oxygen (Bodro et al., 2021). 
Low brain oxygen levels have been associated with 
symptoms of delirium, confusion, and psychosis, and 
have a high association with death in the acute 
illness and long-term cognitive dysfunction following 
the acute stage (Bodro et al., 2021). This may 
suggest breathing exercises and interventions to 
improve oxygen levels could be important in 
addressing long-COVID. 

Organ failure is another nondirect mechanism by 
which COVID-19 can impact the brain (Satarker & 
Nampoothiri, 2020). Beyond the heart, lungs, veins, 
and arteries, COVID-19 can infect the digestive 
system, attacking organs such as the kidneys, 
pancreas, and small and large intestines (Ni et al., 
2020). Approximately 6.7% of COVID-19 patients 
experience kidney damage (Ni et al., 2020) that 
impairs their ability to regulate salt and fluid levels 
and might be linked to some impairments of the 
nervous system (Cassia et al., 2021). In the 
pancreas, the virus can promote the development of 
insulin-dependent acute diabetes (Ni et al., 2020) 
and in some rare cases has been linked to 
widespread sensory neuropathy, where numbness 
to temperature, pain, vibration, and hot and cold is 
developed (Odriozola et al., 2020). Infection of the 
intestines (Ni et al., 2020) and gut microflora can 
also impair the absorption of molecules required to 
produce serotonin (Panariello et al., 2020). 
Consequentially, lower serotonin levels may reduce 
the ability of brain structures like the frontal lobes 
and hippocampus to function, which may be relevant 
for long-COVID symptoms (Panariello et al., 2020). 
This may suggest repairing gut health and gut 
microflora may be relevant in addressing long-
COVID symptoms.  
 
Through direct and nondirect mechanisms, COVID-
19 promotes excessive immune activity, the so-
called “cytokine storm,” illustrated in Figure 4, which 
has been implicated in both acute and long-COVID 
symptoms (Bodro et al., 2021; Karki et al., 2020). 
This “storm” damages cells in the brain and organs 
(Bodro et al., 2021; Karki et al., 2020). During acute 
infection, cytokine storms have been implicated in 
brain cell disorders such as encephalitis, 
encephalopathy, endotheliitis, and myelitis (Bodro et 
al., 2021; Karki et al., 2020), and damage to the 
blood-brain barrier and organs (Ni et al., 2020). 
When the onset of psychological symptoms is 
delayed from the immediate period of infection, 
these symptoms are usually attributed to auto-
immune related processes driven by cytokine storms 
(Satarker & Nampoothiri, 2020). This is the case for 
the development of Guillain-Barré (Zubair et al., 
2020) and Miller-Fisher syndrome (Panariello et al., 
2020), which involve COVID-19 induced auto-
immune damage to nerves that control movement 
producing paralysis symptoms like multiple sclerosis. 
Due to the damage to the brain, nerves, and organs, 
these cytokine storms are a critical factor in the 
generation of many of the psychological symptoms 
associated with acute infection and long-COVID, 
and interventions to reduce inflammation should be 
considered. 
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Figure 4. Cytokine Storm and Inflammatory Cell Death. 
 

 
 
Note. Image reproduced with permission from Karki et al., (2020, CC BY-ND 4.0). 

 
 
Depending on specific individual vulnerabilities and 
direct and nondirect mechanisms of COVID-19 
disease progression, a myriad of nervous system 
impacts and psychological symptoms can emerge. 
In the brain, these impacts on the nervous system 
and the associated psychological symptoms 
correspond to changes in “brain waves” or the 
patterns of electrical communication used by the 
brain that can be measured through recording an 
electroencephalogram (EEG). A review of EEG 
changes observed in COVID-19 patients estimated 
that abnormal background activity was present in 
96.1% of patients, and generalized slowing was 
present in 92.3% of cases (Kubota et al., 2021). 
Epileptiform discharges that were not diagnostic of 
epilepsy were seen in 22.4% of individuals with no 
history of epilepsy or seizures, and in 59.5% of 
individuals with these conditions before they 
contracted COVID-19 (Kubota et al., 2021). Clinically 
relevant seizures, epileptic events that involve 
alterations in consciousness and uncontrollable 

movements, were seen in 2.05% of patients, while 
status epilepticus, a state where individuals are 
unresponsive due to epileptic activity, was seen in 
0.80% of patients (Kubota et al., 2021). Other 
common EEG findings included changes in frontal 
lobe activity and irregular patterns of focal slowing 
found on both sides, and one side of the brain 
(Kopańska et al., 2021). The speed and shape of 
these patterns and their locations in the brain are 
likely to relate to the mechanisms by which COVID-
19 has impacted the nervous system, which could 
hold clues to treating long-COVID symptoms.  
 
EEG patterns observed in the frontal lobes of 
COVID-19 patients included continuous and 
intermittent slow waves, which are thought to be 
related to insufficient oxygen; persistent theta 
activity, which is thought to relate to numerous 
microhemorrhage-related (blood-brain barrier 
damage) insults to brain cells that connect the 
frontal lobes (Kopańska et al., 2021); and frontal 
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sharp waves and sporadic epileptiform discharges 
that are associated with direct infection of the frontal 
lobes (via the sensory nerves for smell) and possibly 
also are involved with diminished organ functioning 
(Galanopoulou et al., 2020). Frontal patterns were 
also observed that developed a widespread sharp 
down-up-down pattern, suggesting organ failure 
related toxicity (Flamand et al., 2020). An irregular, 
unprecedented slow pattern, with a slight dominance 
to the right side of the brain, was also described in 
very severe COVID-19 patients with multiple organ 
failure, low brain oxygen levels, and possibly direct 
viral infection of the brain (Vellieux et al., 2020). 
Other patterns, commonly associated with 
encephalopathies, such as diffuse slowing and 
generalized or focal rhythmic slow content and 
epileptic activity were observed frequently 
(Kopańska et al., 2021; Kubota et al., 2021). In 
critical cases, when individuals were unresponsive 
or comatose, the EEG could have large bursts of 
activity followed by long periods of little activity at all 
(burst-suppression), or persistent epileptic activity 
(status epilepticus), or discontinuous suppression 
patterns (Kubota et al., 2021).  
 
With the myriad of possible mechanisms by which 
COVID-19 can impact the nervous system, it is still 
too early to draw definitive associations between 
reported cases, EEG patterns, and causal 
mechanisms. Speculatively, there may be some 
association between frontal lobe EEG findings and 
direct viral infection mechanisms, most likely through 
nerves mediating smell and vision, in addition to the 
damage to the blood-brain barrier and low brain-
oxygen levels. The presence of focal slowing or 
epileptiform activity to the sides of the head also 
suggests direct infection via the nerves mediating 
smell that eventually reach the temporal lobes close 
to the hippocampus, which is particularly prone to 
epilepsy due to synchronous firing properties of 
dendritically dense hippocampal pyramidal cell 
networks (Isokawa-Akesson et al., 1989; Nakahara 
et al., 2018), excessive neuroplasticity (Bartsch & 
Wulff, 2015), and the effects of stress (Dunkley et 
al., 2014; Gunn & Baram, 2017). The slow content in 
the temporal lobes may also be related to 
impairments in blood supply, such as blood clots, 
which may be more likely to show up in these 
locations. Slowing of the background activity and 
diffuse slowing suggests viral transmission to the 
brainstem, with changes in neurotransmitter levels 
possibly implicated. Although, brain cells that use 
these neurotransmitters, also target the frontal 
lobes, and may also be involved in the EEG patterns 
observed there. When accessing an individual 
experiencing acute or long-COVID symptoms it is 

necessary to consider their specific symptoms to 
understand possible mechanisms by which the 
nervous system has been impacted and to connect 
the resulting EEG patterns and psychological 
difficulties. Once these considerations have been 
made, the question of how to assist these individuals 
recover then arises. During acute and critical stages 
of the disease medical care, with antivirals such as 
Remdesivir or steroids such as Dexamethasone, 
supply of oxygen and use of anticonvulsants might 
be indicated depending on the individual (Zubair et 
al., 2020). However, addressing the psychological 
impairments of long-COVID often falls to 
psychologists and other health professionals outside 
emergency settings. The question then is “Are 
psychologists and other health services ready and 
able to provide these services in the middle of a 
pandemic?” 
 
The emergence of new SARS-CoV-2 variants, such 
as the highly infectious Delta variant (Nunes-Vaz & 
Macintyre, 2021), poses existential questions about 
the future of face-to-face mental health service 
provision (Balcombe & De Leo, 2020). For many 
clinicians, services, and government agencies the 
immediate response involved a shift to greater use 
of telehealth services. At the peak of Australia’s first 
wave in April 2020, about 50% of mental health 
Medicare Benefits Schedule (MBS) subsidized were 
provided remotely, which gradually declined with 
COVID-19 case numbers to 20% of services being 
provided remotely in the equivalent period in 2021 
(Australian Institute of Health and Welfare, 2021). 
Similar patterns were also observed for online 
mental health platforms (Australian Institute of 
Health and Welfare, 2021). While remote services 
can maintain support and assist many individuals 
with mental health difficulties, such as individuals 
that have been traumatized by the stress associated 
with the disease (Rajkumar, 2020) or the stress of 
self-isolation (Xia & Li, 2018), they are unlikely to be 
able to address the neurologically-based 
psychological impacts of COVID-19, including long-
COVID. One potential intervention that may be able 
to address some of these issues is called 
neurofeedback. Neurofeedback, as shown in Figure 
5, involves presenting a person’s EEG brain waves 
back to them in real time, allowing them to learn how 
to change these patterns. For neurofeedback to be 
effective, usually two face-to-face sessions a week 
are required. Given the higher levels of contact with 
clients associated and technology used in 
neurofeedback poses a greater infection risk 
(Hagedorn, 2014) it is critical to understand these 
risks and the behaviors required to reduce such 
risks. 
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Figure 5. Image of Neurofeedback. 

 

 
 
Note. Image reproduced with permission from the 
Australian Neurofeedback Institute (ANFI, 2021 CC-BY 
4.0).  

 
 
In enclosed spaces, normal to loud speech results in 
thousands of airborne fluid droplets per second, 
which remain airborne for 8 to 14 minutes depending 
upon their size, acting as a transmission mechanism 
for COVID-19 (Stadnytskyi et al., 2020). The wearing 
of a face mask prevents the majority of these 
airborne particles from entering the upper airways 
and lungs reducing airborne transmission risk (Xi et 
al., 2020). However, the mask itself, particularly at 
any folds, show increased concentrations of airborne 
material, which poses a possible transmission risk if 
hands are contaminated by touching the mask (Xi et 
al., 2020). In turn, this risk and the general risk of 
viral contamination from touching surfaces on which 
the virus is present can be minimized by hand 
washing and sterilization with 70–90% ethanol or 2-
propanol (Noorimotlagh et al., 2021). Similarly, 
cleaning surfaces and equipment with sterilizing or 
disinfecting agents is also effective in reducing 
transmission risk (Noorimotlagh et al., 2021). 
Arguably, the most important behavior to reduce risk 
is being vaccinated against the virus. This is due to 
the reduced risk of infection or serious illness or 
death to yourself and the reduced risk of 
transmission to other individuals that vaccination 
against COVID-19 provides (Henry et al., 2021; 
Olliaro et al., 2021). Vaccination is still strongly 
recommended despite indications of reduced 
vaccine effectiveness against the Delta variant 
(Davis et al., 2021) and rare instances of infection 
despite vaccination (Farinholt et al., 2021). With the 
likely emergence of new variants in the future, 
booster vaccines are likely to be required (Rubin, 
2021). Consideration of these risks and the 
implementation of risk minimization behaviors are 

required for a safe return to face-to-face service 
provision.  
 
Neurofeedback and other forms of neuromodulation 
have been used to address many neurological and 
psychological issues that have similar origins, 
physiology, and patterns of brain activity to those 
occurring as a result of COVID-19. For instance, the 
origin of epilepsy is often linked to the activity of 
Angiotensin-II (Krasniqi & Daci, 2019), with the 
development of epileptic-like activity is thought to be 
one of the early EEG markers of COVID-19’s 
impacts upon the nervous system (Bodro et al., 
2021). A paper by Sterman and Friar in 1972 titled 
“Suppression of seizures in an epileptic following 
sensorimotor EEG feedback training” was the first 
account of neurofeedback being used clinically 
(Egner & Sterman, 2006; Sterman, 2010; Sterman & 
Egner, 2006). The “sensorimotor EEG feedback 
training” used by Sterman and Friar involved 
rewarding brain waves that occurred between 12 
and 15 times per second near the crown of the 
head, with the reward being prevented whenever 
slower brain waves occurring between 4 to 8 times 
per second became too large (Egner & Sterman, 
2006; Sterman, 2010; Sterman & Egner, 2006). This 
training was repeated two times a week over 2 years 
and resulted in the complete absence of seizures 
and greatly improved well-being (Egner & Sterman, 
2006; Sterman, 2010; Sterman & Egner, 2006). 
Importantly, this account of seizure suppression 
worked when numerous medications had failed to 
achieve this outcome over 7 years before 
commencing neurofeedback (Yucha & Montgomery, 
2008). In the subsequent 49 years since Sterman 
and Friar’s pioneering work, numerous well-
controlled research studies have replicated and 
supported this finding, with approximately 82% of 
individuals reporting seizure reductions greater than 
50% (Sterman, 2010). Another review indicated 79% 
of individuals treated with neurofeedback had 
significant reductions in seizure size for a wide 
variety of epilepsy diagnoses, with these effects 
largely occurring in individuals that had not 
responded to antiepileptic medications (Tan et al., 
2009). These improvements were seen from 
interventions as short as 3 weeks (Tan et al., 2009) 
and have also been documented in children and 
adolescents (Morales-Quezada et al., 2019) and the 
elderly (Reichert et al., 2016). Neurofeedback’s 
ability to reduce epilepsy is one of the most well 
supported, understood, and efficacious applications 
of neurofeedback (Yucha & Montgomery, 2008). 
Importantly, the ability of neurofeedback to reduce 
epilepsy has been associated with increased GABA 
activity in the striatum and thalamus (Egner & 
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Sterman, 2006). As COVID-19, though its impact on 
Angiotensin-II levels, is thought to decrease GABA 
activity in these locations (Panariello et al., 2020), it 
is plausible that sensorimotor neurofeedback at 
central regions may address direct mechanisms by 
which COVID-19 impacts the nervous system. 
However, this is yet to be researched and no 
definitive recommendation can be made yet.  
 
Another neurofeedback pioneer, Margaret Ayers, 
worked with stroke and closed head injury clients; 
her approach involved training one side of the head 
and then the other, focusing on the temporal lobes 
and locations towards the front and crown of the 
head.1 Depending on the injury location, she 
rewarded brain rhythms between 12 and 15, or 15 
and 18 times a second and prevented rewards for 
brain rhythms between 4 and 7 cycles per second 
(Evans, 2007; Hammond, 2005), which when 
reduced are associated with improved blood supply 
and stroke recovery (Ros et al., 2014). In a separate 
study, Ayres helped 250 individuals with closed 
head injuries to return to their preinjury levels of 
functioning by rewarding alpha activity (8–12 cycles 
per second). These stroke survivors also reported 
reductions in mood swings, anger outbursts, anxiety 
attacks, headaches, vertigo, light and sound 
sensitivity, as well as increased energy levels, 
concentration, memory, and cognitive performance 
as a result of the neurofeedback (Budzynski et al., 
2009; Duff, 2016; Evans, 2007). Subsequent 
research has supported the premise of training both 
sides of the brain in stroke rehabilitation as it is 
thought compensatory processes in the opposite 
brain hemisphere lead to damaging overexcitation, 
which can be reduced with neurofeedback (Sitaram 
et al., 2017). These changes to the opposite side of 
the brain from the injury are associated with 
changes in functional connectivity and the synchrony 
of brain waves (Thatcher et al., 2020). In a series of 
case studies, training these connectivity patterns to 
resemble patterns observed in a group of healthy 
individuals led to clinical improvements (Koberda, 
2015; Koberda & Stodolska-Koberda, 2014; 
Thatcher et al., 2020). Similarly, the reward of 
synchronous brain activity around 8 to 12 repetitions 
per second (alpha), between central brain regions 
involved in motor functions and the rest of the brain, 
has been linked to improved recovery and 
performance following stroke (Mottaz et al., 2015). 
This effect might be enhanced by coupling the 
audiovisual neurofeedback reward with 
simultaneous stimulation (Small et al., 2013), muscle 

 
1Ayer’s placement sites included T3-C3 & T4-C4, or C1-

C5, or F8/T4. 

biofeedback (Yucha & Montgomery, 2008), or simply 
imagining movement (Pichiorri et al., 2015) of the 
body areas with impaired movement. Importantly, 
rewarding either alpha activity or faster frequencies 
in stroke survivors is associated with improvements 
in verbal short- and long-term working memory; with 
alpha training specifically improving working 
memory, and training faster activity specifically 
improving short-term visual and spatial working 
memory (Kober et al., 2015), and visual acuity (Cho 
et al., 2015). These improvements were seen 
despite a wide variety of brain regions being 
impacted (Kober et al., 2015). Given the substantial 
overlap in brain regions impacted by COVID-19 
related stroke (Bodro et al., 2021) and these studies, 
the improvements in cognitive performance are 
promising for long-COVID rehabilitation. However, it 
is unclear if improved mobility seen in the studies 
pairing neurofeedback and movement (Mottaz et al., 
2015; Pichiorri et al., 2015; Small et al., 2013) 
occurred independently of the physiotherapy that 
was also provided (Sitaram et al., 2017). This 
uncertainty suggests a similar integrated 
rehabilitation program may be required for COVID-
19 stroke survivors to regain function. Indeed, other 
forms of neuromodulation such as invasive 
stimulation (Elbaum & Benson, 2007; Moore et al., 
2014) and noninvasive brain stimulation with 
electromagnets (Beck et al., 2017) or low-intensity 
lasers (Hamblin, 2016; Naeser et al., 2010) has 
improved motor control and cognitive functioning in 
stroke survivors and may be applicable in COVID-19 
stroke rehabilitation. Although, at this point, no 
research has been undertaken to gauge the validity 
of these interventions in COVID-19 patients.  
 
In the most severe COVID-19 cases, diffuse slowing 
and impairments in consciousness or coma may be 
seen (Abdo et al., 2021). While disorders of 
consciousness are not common presentations for 
neurofeedback, there are several case studies of 
note. Ayers, using similar methodologies as her work 
with stroke survivors, used neurofeedback to bring 
two individuals out of a level 2 coma (Ayers, 1995). 
Another study used neurofeedback to bring a five-
year-old out of a chemotherapy-induced coma, with 
associated damage due to low oxygen levels in the 
brain (Fink et al., 2012). In two patients with 
unresponsive wakefulness, daily neurofeedback 
rewarding the ratio of fast to slow content over 3 
weeks saw two of these patients increase the 
portion of fast brain activity and regain 
responsiveness and some functionality; there was 
no change in the third patient (Keller & 
Garbacenkaite, 2015). Several other case studies 
involving brain damage to deep and cortical 
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structures that produced focal or diffuse slowing, 
which was associated with disorders of 
consciousness, have been remediated quite 
successfully with neurofeedback (Bearden et al., 
2003; Hammond, 2011). Typically, these studies 
involve intensive interventions and it has been 
shown that the initial load of symptoms is correlated 
with the number of sessions required and the 
derived functional improvements (Bounias et al., 
2002). The general prognostic recommendation for 
neurofeedback with diffuse slow patterns is to 
suppress slower activity, particularly at frontal 
locations, and to reward faster activity for increased 
effects (Johnstone et al., 2005). However, when a 
combination of slow and fast activity is present, it is 
likely the faster activity is compensatory and 
rewarding faster activity may paradoxically worsen 
symptoms (Ayers et al., 2000). In these instances, 
the best approach is to focus on the reduction of 
slow content with neurofeedback (Ayers et al., 
2000). It is unknown if this heuristic and style of 
neurofeedback will remain true in COVID-19 
rehabilitation and further evidence will be required. 
 
In less severe COVID-19 cases there may still be an 
increase of slower brain waves in the frontal lobes 
(Bodro et al., 2021; Kubota et al., 2021). This may 
be a result of direct viral transmission to the frontal 
lobe along nerve fibers conducting the sensation of 
smell (Bodro et al., 2021; Hammond, 2007), or may 
be linked to low oxygen levels (Keller & 
Garbacenkaite, 2015) due to COVID-19’s nondirect 
impacts upon the nervous system (Bodro et al., 
2021; Ni et al., 2020). In COVID-19 patients who 
have lost their sense of smell, the frontal slowing 
pattern may be of particular relevance as similar 
patterns have been observed in individuals who 
have injured their olfactory nerves (Hammond, 
2007). In two individuals with this presentation, 
neurofeedback to increase faster activity in the 
frontal lobes led to a reduction of slow content and 
the partial return of the sense of smell within 15 
sessions and its full return in 22 sessions 
(Hammond, 2007). Beyond repairing damage to the 
sense of smell, frontal slowing may also be of 
relevance to the cognitive issues experienced by 
individuals with long-COVID (Hampshire et al., 
2021). Frontal slow content is typically associated 
with cognitive difficulties at the beginning and later 
stages of life and is linked to the diagnoses of 
attention-deficit/hyperactivity disorder (Arns et al., 
2013, 2014) and various forms of cognitive decline 
and dementia (Koberda, 2014; Saltmarche et al., 
2017). In both instances, the type of neurofeedback 
used shares the common goal of reducing slow 
brain waves and increasing faster brain activity 

(Trammell et al., 2017; Wang & Hsieh, 2013), so-
called “brain brightening” (Budzynski et al., 2009). 
Several forms of neurofeedback have been used for 
“brain brightening,” including training the 
synchronicity of brain waves (Koberda, 2014; Simkin 
et al., 2014), rewarding particular frequency bands, 
typically faster brain waves (Arns et al., 2013, 2014; 
Wang & Hsieh, 2013), or the background rhythmicity 
of the brain (Arns et al., 2011; Sherlin et al., 2010) 
and adjusting the underlying base rhythmicity of the 
brain (Gevensleben et al., 2014; Kotchoubey et al., 
2001; Strehl et al., 2017). In the context of COVID-
19, its impacts upon dopamine levels in the 
brainstem (Schultz, 2000) and striatum (Panariello et 
al., 2020), areas that influence frontal lobe activity, 
may be linked to the cognitive issues experienced by 
individuals with long-COVID cognitive symptoms 
(Hampshire et al., 2021; Marshall, 2020) as these 
regions and neurotransmitters are also abnormal in 
attention-deficit/hyperactivity disorder (Arns et al., 
2013, 2014) and cognitive decline (Koch et al., 2020; 
De Marco & Venneri, 2018). Indeed, it has been 
argued that damage to key brain regions such as the 
thalamus and striatum are the common origin for 
cognitive impairments in attention deficit disorders, 
traumatic brain injury, Down syndrome, autism, and 
stroke (Simkin et al., 2014). Consequentially, many 
of the neurofeedback protocols used in attention-
deficit/hyperactivity disorder (Arns et al., 2013, 2014) 
can be applied in cases where the underlying 
processes are thought to be the same (Simkin et al., 
2014). As these areas are impacted by COVID-19 
(Bodro et al., 2021; Zubair et al., 2020), it is 
plausible, but not yet tested, that neurofeedback 
may also improve cognitive function in individuals 
experiencing long-COVID.  
 
Beyond neurofeedback, a range of other 
neuromodulation interventions may be of relevance 
in addressing the neurological impacts of COVID-19. 
These include heart rate variability biofeedback, low-
level laser therapy, audiovisual entrainment, and 
forms of relaxation interventions.  
 
The impacts to veins and arteries caused by COVID-
19 share some similarities to coronary artery 
disease. Heart rate variability biofeedback is a 
similar practice to neurofeedback, which focuses on 
the heart instead of the brain (Lehrer & Gevirtz, 
2014; Shaffer et al., 2014) and may help address 
heart-brain physiology and associated pathologies 
such as hypertension, heart attack, and vascular 
issues caused by COVID-19. In outpatients who had 
been hospitalized due to an irregular heartbeat 
(ventricular fibrillation), this intervention lowered the 
risk of subsequent heart disorders and death by 
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86% (Yucha & Montgomery, 2008). Additionally, 
heart rate variability biofeedback has been shown to 
lower blood pressure and hypertension (Gilbert, 
2003; Schroeder et al., 2003). These findings 
suggest heart rate variability biofeedback could be 
used to help offset COVID-19-related increases in 
blood pressure and heart rate (Ni et al., 2020). This 
is important for the nervous system functioning as 
one of the main impacts of high blood pressure, and 
heart rate is the reduced supply of blood and oxygen 
to the temporal lobes (Inui et al., 2001; Motomura et 
al., 2003). As mentioned before, this is associated 
with headaches and irritability (Bolay & Moskowitz, 
2005; Charles & Baca, 2013; Drenckhahn et al., 
2012; Sugahara, 2004). Prior research indicates 
biofeedback is efficacious and superior to many 
medications in reducing hypertension and 
headaches (Yucha & Montgomery, 2008), having 
been supported by the American Academy of 
Neurology for over 20 years to address these issues 
(Silberstein, 2000). By improving blood and oxygen 
supply to the brain, heart rate variability biofeedback 
can also improve connectivity patterns in the brain 
(Chang et al., 2013; Kumral et al., 2019), emotion 
regulation (Mather & Thayer, 2018), cognitive 
functioning (Chang et al., 2019; Liang et al., 2013) 
and overall mental health and resilience (Perna et 
al., 2019). Heart rate variability biofeedback has also 
been used successfully with a range of 
psychological disorders such as depression, anxiety, 
posttraumatic stress disorder, and substance use 
disorder (Moss & Shaffer, 2017). The mechanism 
underlying this wide range of applications and high 
effectiveness stems from the association between 
the control of breathing and the regulation of 
numerous other processes within the body 
(Cutsforth-Gregory & Benarroch, 2017; Shaffer & 
Venner, 2013; Smith et al., 2017; Thayer & Lane, 
2000). In the context of COVID-19, this is highly 
relevant, as many of the brainstem regions damaged 
by the virus (Zubair et al., 2020) are activated by 
heart rate variability biofeedback and associated 
breathing practices (Jürgens, 2002; Kromenacker et 
al., 2018; Larsen et al., 2010; Vaschillo et al., 2002; 
Zelano et al., 2016), which may suggest this 
intervention could also help reduce the excitability of 
nerves targeting organs in the body (Stute et al., 
2021), regulate body temperature (González-Alonso, 
2012; Ramirez et al., 2019; Simon, 1974; Thayer et 
al., 1997), fluid and salt levels (Frank & Landgraf, 
2008; Gilbert, 2003; Ranpuria et al., 2008) and 
angiotensin levels (Ardell, 2001; Persson & 
Kirchheim, 1991; Schroeder et al., 2003), which are 
disrupted by the virus. Moreover, it has been shown 
to limit inflammation (Huston & Tracey, 2015; 
Tracey, 2002) and improve organ functioning (Park 

& Thayer, 2014; Smith et al., 2017; Thayer et al., 
2010). In particular, this may be of relevance to 
gastrointestinal symptoms caused by COVID-19 as 
bidirectional connections between the brain, heart, 
and intestines are thought to exist (Singh et al., 
2014; Sundman et al., 2017), with gut microflora 
playing an important role in their functioning 
(Kazemian et al., 2020; Mayer et al., 2016; Petra et 
al., 2015; Tang et al., 2017). Together these findings 
may suggest heart rate variability biofeedback is 
particularly well suited to limiting direct and nondirect 
mechanisms by which COVID-19 attacks the 
nervous system and may offer a potential remedial 
intervention. Unfortunately, there seems to have 
been no research into the use of this promising 
intervention with COVID-19 related impacts on the 
body and mind.  
 
A substantial body of research indicates that low-
level laser therapy (also known as cold laser therapy 
or photobiomodulation), which typically uses near-
infrared light frequencies to stimulate the brain (De 
La Torre, 2017) could help reduce inflammation, 
promote the repair of brain cells, and increase blood 
flow in the brain (Hamblin, 2016, 2019; Naeser et al., 
2018). This intervention has been used to heal brain 
tissues damaged by low oxygen levels (Gonzalez-
Lima et al., 2014; Moreira et al., 2011), traumatic 
brain injury (Naeser et al., 2014, 2016, 2018), 
Alzheimer’s disease (Hamblin, 2019; 
Purushothuman et al., 2014), depression (Cassano 
et al., 2016), posttraumatic stress disorder (Naeser 
et al., 2014) and has been used for cognitive 
enhancement (De La Torre, 2017; Gonzalez-Lima & 
Barrett, 2014; Gonzalez-Lima et al., 2014). As many 
of the reported effects of this intervention target 
processes that are impacted by COVID-19, such as 
inflammation and blood flow (Ni et al., 2020; 
Panariello et al., 2020; Satarker & Nampoothiri, 
2020), the wide range of disorders low-level-light 
therapy has been used for, and the reported 
cognitive enhancements associated with its use 
suggest it may be a valuable tool to address acute 
and long COVID. It is also worthwhile noting 
research involving audiovisual entrainment, where 
lights and sounds are used to stimulate the brain at 
particular frequencies, has been used to awaken 
comatose individuals and address a range of 
cognitive and psychological disorders (Budzynski et 
al., 2009; Evans, 2007). These interventions may be 
a useful inclusion amongst heart rate variability, 
neurofeedback, and other integrative health 
therapies to address long-COVID symptoms, but 
remain experimental interventions in the context of 
COVID-19 rehabilitation.  
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Conclusion  
 
COVID-19 can cause significant damage to the 
nervous system through direct and nondirect 
mechanisms (Bodro et al., 2021; Panariello et al., 
2020), which can cause devastating acute (Abdo et 
al., 2021; Liotta et al., 2020; Llitjos et al., 2020) and 
long-lasting (Australian Institute of Health and 
Welfare, 2021; Hampshire et al., 2021; Rajkumar, 
2020) psychological impacts. Current estimates 
suggest between 7,763,200 and 38,816,003 people 
worldwide may have cognitive difficulties and 
impacts to their nervous systems as a result of 
COVID-19. These impacts upon the nervous system 
can be detected with the EEG (Flamand et al., 2020; 
Kopańska et al., 2021; Vellieux et al., 2020). By 
comparing individual symptoms and EEG patterns it 
may be possible to determine the mechanisms by 
which the virus has impacted the nervous system 
and consequentially guide therapeutic intervention. 
Due to its ability to train the nervous system directly 
(Hammond, 2011; Sitaram et al., 2017) and target 
many structures impacted by COVID-19 (Zubair et 
al., 2020), neurofeedback may offer important 
therapeutic opportunities to address the 
psychological impacts of the virus. Given the wide 
range of psychological disorders neurofeedback can 
address (Niv, 2013; Omejc et al., 2019; Ros et al., 
2014; Yucha & Montgomery, 2008) and the shared 
mechanisms underpinning many symptoms (Simkin 
et al., 2014) common to psychological disorders and 
COVID-19, there are strong grounds to include 
neurofeedback alongside other interventions to 
address the psychological impacts of the disease. 
An integrative approach to addressing psychological 
impacts of the COVID-19 should also consider heart 
rate variability biofeedback (Lehrer et al., 2014; 
Shaffer et al., 2014), low-level-light therapy 
(Hamblin, 2016, 2019; Naeser et al., 2018) and 
audiovisual entrainment (Budzynski et al., 2009; 
Evans, 2007), which also address many underlying 
processes, such as inflammation, associated with 
Long-COVID (Bodro et al., 2021). However, despite 
the support for the use of neurofeedback, heart rate 
variability biofeedback, photobiomodulation and 
other forms of neuromodulation in conditions similar 
to those seen with COVID-19 related presentations, 
and anecdotal clinical reports of their usefulness in 
addressing Long-COVID symptoms, there is yet to 
be research published on the use of these 
interventions with this client population. Clinicians 
and researchers should be cautious using the 
suggested forms of neuromodulation for COVID-19 
rehabilitation, which should be considered 
experimental until further research supports their 
efficacy. In providing face-to-face services, clinicians 

should be aware of the risks and take appropriate 
preventative steps to reduce the risk of harm to 
themselves and their clients. 
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