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Abstract 

Introduction. In high-contact sport athletes, repetitive head trauma might be linked to permanent brain damage. 
In particular, findings in professional American football players indicate that brain injury is often associated with 
long-term cognitive slowing. In this context, hemp extracts might have beneficial effects.  

Methods. Forty-two former professional American football players were recruited (age = 49.6 ± 9.8 years). Before 
or immediately after the oral administration of a THC-free hemp extract, the following measures were acquired: 1) 
the median theta/beta ratio and posterior peak alpha frequency (PAF) during resting state; 2) P200 and P300b 
latencies as well as reaction times (RT) during performance of a Go/NoGo task.  

Results. After treatment, a smaller median theta/beta ratio (p < .01) was detected. An onset latency reduction 
was also found for the P200 (p < .01) and P300b (p < .05) measures, which was accompanied by smaller RT 
variances (p < .05). Finally, a positive correlation between RT measures and P300b latencies was found only 
after treatment.  

Conclusion. The administration of THC-free hemp extracts in former professional high-impact athletes might 
have beneficial effects on both cognitive performance and emotion regulation. Also, recent technological 
advances in EEG detection and analysis could play an important role in the management of patients with sport-
related brain injuries. 
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Introduction 

 
Neurobiological Abnormalities in Former 
Professional American Football Players  

In recent years, studies with contact sport athletes 
(including American football, ice hockey, soccer, 
baseball, rugby, boxing, and wrestling) have 
provided support for early findings indicating a link 

between repetitive head trauma and the risk for 
permanent brain damage (Changa et al., 2018; Ling 
et al., 2015; McKee et al., 2018). Emerging evidence 
suggests that retired professional players of 
American football often exhibit mild cognitive 
impairment (Guskiewicz et al., 2005; Randolph et al., 
2013), neuroimaging abnormalities (Hart et al., 
2013; Strain et al., 2013) and reduced neuronal 
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energy metabolism (Alosco, Tripodis, Rowland, et 
al., 2020), disproportionately to their age. Key 
insights are also offered by studies with this 
population suggesting Alzheimer’s-like changes in 
the brain, such as increased microglial activation 
associated with higher t-tau concentrations in the 
cerebral spinal fluid (Alosco, Tripodis, Fritts, et al., 
2018). Postmortem studies have also shown 
perivascular deposition of abnormal phosphorylated 
tau (p-tau) in neurons and astroglia at the base of 
cortical sulci (Manley et al., 2017). 
 
Neuroprotective Properties of Endocannabinoids  
In recent years, astrocytes have gained 
considerable interest as a potential target for 
pharmacological interventions and, while more 
research is needed to understand how their activity 
can be differentially manipulated (Ridet et al., 1997), 
a number of candidate molecules and systems have 
been proposed as targets for astrocyte-mediated 
neuroregulation or neuroprotection. Accumulating 
evidence indicates that cannabinoids, including 
phytocannabinoids (naturally found in plants of the 
genus Cannabaceae), endocannabinoids, and also 
synthetic ligands can modulate gliosis reactivity and 
exert neuromodulatory, anti-inflammatory, and 
neuroprotective effects in the brain (Navarrete et al., 
2014; Stella, 2010; Vázquez et al., 2015; Walter & 
Stella, 2004).  
 
The endogenous cannabinoid system consists of 
two Gi/o-coupled cannabinoid receptors anchored in 
the plasma membrane (CB1 and CB2), their 
endogenous ligands [N-arachidonoylethanolamine 
(anandamide) and 2-arachidonoylglycerol (2-AG)] 
and specific synthesis or degradation enzymatic 
complexes (Lu & Mackie, 2016). Remarkably, the 
CB2 receptor density detected in microglia and 
astrocytes has been found to be increased in 
neuroinflammatory conditions (Benito et al., 2005; 
Cassano et al., 2017), in parallel with greater levels 
of endocannabinoids (Panikashvili et al., 2001; 
Shohami et al., 2011), which might provide support 
for the involvement of the cannabinoid system in 
brain pathology or recovery. 
 
Preparations derived from Cannabis sativa are a 
source of a wide variety of cannabinoid chemicals 
with differential affinities for CB1 and CB2 receptors. 
In particular, the psychoactive compound Δ9-
tetrahydrocannabinol (THC) as well as the 
nonpsychoactive cannabidiol (CBD) and 
cannabigerol (CBG) have been receiving growing 
attention from the scientific community in recent 
years. While these preparations have shown to have 
neuroprotective and antineuroinflammatory effects, 

only THC has affinity for CB1 and CB2 receptors, 
although its neuroprotective effects are likely to be 
driven by CB1 mediated mechanisms (Gómez del 
Pulgar et al., 2002; Molina-Holgado et al., 2002). 
However, concerns have been raised about the 
clinical use of THC because of the deleterious 
effects on cognitive functions linked to the activation 
of CB1 receptors (Borgan et al., 2019).  
 
While it is less clear how CBD induces its 
neuroprotective effects, there is common agreement 
that its mechanism of action does not involve the 
recruitment of either CB1 or CB2 receptors, and 
there is evidence indicating that it indirectly 
influences the endocannabinoid system through its 
affinity for transient receptor potential vanilloid-1 
(TRPV1) receptors (Muller et al., 2018), which are 
thought to play a role in the transmission of 
nociceptive impulses along pain pathways (Immke & 
Gavva, 2006). Further, increasing preclinical 
evidence demonstrates that CBD provides 
neuroprotection against acute and chronic brain 
injury (Campos et al., 2016; Fernández-Ruiz et al., 
2013; Hayakawa et al., 2010), most likely exerting its 
modulatory effects on astrocyte activity (Kozela et 
al., 2017). 
 
In many ways, CBG exhibits pharmacological 
characteristics that fall between Δ9-THC and CBD. 
Like Δ9-THC, CBG activates CB1 and CB2 
receptors but with much lower affinity (Cascio et al., 
2010; Navarro, Varani, Lillo, et al., 2020; Navarro, 
Varani, Reyes-Resina, et al., 2018; Pertwee, 2008; 
Pollastro et al., 2011; Rosenthaler et al., 2014). On 
the other hand, CBD and CBG exert comparable 
activity at six transient receptor potential cation 
channels (TRPA1, TRPV1, TRPV2, TRPV3, TRPV4, 
and TRPM8; De Petrocellis, Ligresti, et al., 2011; De 
Petrocellis, Orlando, et al., 2012; Muller et al., 2018; 
Pollastro et al., 2011). Importantly, CBG also has 
high affinity for the α2-adrenoceptor (Cascio et al., 
2010), which supports its beneficial effects on 
cognitive functions (Arnsten, 2010) and suggests 
that it might as well have antihypertensive, sedative, 
and analgesic properties (Ernsberger et al., 1990; 
Gertler et al., 2001; Hunter et al., 1997). 
 
While there is evidence that both CBG and CBD 
modulate 5-HT1A receptor activity, antagonistic 
effects have been reported for CBG, while CBD has 
been found to exert indirect stimulation (Cascio et 
al., 2010; Rock, Bolognini, et al., 2012; Rock, 
Goodwin, et al., 2011; Russo et al., 2005). The 
modulatory effects of CBD on 5-HT1A receptor 
activity have been suggested to stimulate 
neuroprotective mechanisms that prevent cellular 
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apoptosis, suggesting a role for this cannabinoid in 
the treatment of neurodegenerative diseases 
(Echeverry et al., 2021).  
 
Finally, it has been proposed that Cannabis extracts 
should also include naturally occurring terpenoids to 
obtain optimal standardized synergistic compositions 
and improve clinical outcomes. Recognized as safe 
by the U.S. Food and Drug Administration (FDA) and 
other regulatory agencies, terpenoids are fragrant 
essential oils that bind neurotransmitter receptors, 
muscle and neuronal ion channels, G-protein 
receptors, enzymes, cell membranes, and second 
messenger systems (Bowles, 2003; Husnu Can 
Baser & Buchbauer, 2015; Russo, 2011). They 
display unique therapeutic effects that could 
meaningfully contribute to the “entourage effects” of 
Cannabis-based medicinal extracts that may 
enhance the effects of cannabinoids on migraine, 
headache, pain, inflammation, anxiety, and 
depression (Baron, 2018; Lorenzetti et al., 1991). 
 
EEG Anomalies in Traumatic Brain Injury 
Several studies indicate that following traumatic 
brain injury (TBI) patients may exhibit cognitive 
deficits and also a variety of psychiatric symptoms, 
including affective disorders, substance abuse, 
psychosis, and personality changes (Jorge et al., 
2005; E. Kim et al., 2007; Pelegrín-Valero et al., 
2001; Sachdev et al., 2001; van Reekum et al., 
2000; Zeilig et al., 1996). 
 
Over the last two decades, studies using 
electrophysiological methods have significantly 
gained further insight into the mechanisms that 
underpin cognitive slowing in individuals with TBI. 
While rapidly evolving neuroanatomical imaging 
techniques have improved anatomical resolution in 
the quantification of the tissue loss associated with 
TBI, recent technological advances in 
electroencephalogram (EEG) data acquisition and 
analysis have allowed researchers to investigate 
neural activity with gradually greater sensitivity and 
higher temporal resolution. This has contributed to 
unveil functional abnormalities and brain-behavior 
relationships that could not be reliably identified in 
this clinical population using neuroimaging methods 
(Levine et al., 2006). In this context, a range of 
resting-state EEG measures and event-related 
potentials (ERPs) recorded during performance of 
behavioral tasks offer valuable insights into cognitive 
processes, and numerous studies have 
demonstrated that they can also be used to detect 
neuropathology. 
There is general agreement that the alpha frequency 
in the EEG is an indicator of cognitive and memory 

performance (Klimesch, 1999). However, 
interindividual and age-related fluctuations of 
spectral boundaries in this frequency band can 
make the interpretation of spectral analysis 
problematic (Klimesch, 1999). A suggested 
approach to more accurately define individualized 
alpha frequency boundaries is to compute the 
average frequency of the highest power between 6 
and 13 Hz across all the electrodes of the EEG 
montage (Angelakis, Lubar, & Stathopoulou, 2004). 
The result is called peak alpha frequency (PAF), 
which has been found to be a highly heritable 
physiological feature (Grandy et al., 2013; Posthuma 
et al., 2001; Smit et al., 2006) that typically 
increases throughout the first 20 years of life, starts 
slowing from age 40 (Aurlien et al., 2004; Bazanova 
& Vernon, 2014; Chiang et al., 2011) and is reduced 
in patients with TBI (Angelakis, Lubar, Stathopoulou, 
& Kounios, 2004) when compared with healthy 
controls. 
 
Moreover, the ratio between the average EEG 
magnitude in the frequency bands theta (4–8 Hz) 
and beta (13–25 Hz), namely the theta/beta ratio, 
has been proposed as a resting-state measure of 
attention, logical thinking, concentration, memory, 
and emotional regulation (Clarke et al., 2001; 
Markiewcz, 2017). Increased frontal midline theta 
power and reduction of frontal beta power have 
been demonstrated to correlate with executive 
attention impairment in TBI subjects (Shah et al., 
2017), a pattern that could reflect reduced excitatory 
synaptic activity in the medial frontal neuronal 
population (McWilliams & Schmitter-Edgecombe, 
2008). Importantly, a decrease of the theta/beta ratio 
can be associated with improvements in both 
cognitive performance (Marlats et al., 2019) and 
emotion regulation (Sari et al., 2016). 
 
One of the most observed impairments associated 
with brain injury is the reduction of cognitive 
processing speed (Ferraro, 1996; Mathias et al., 
2004; Mathias & Wheaton, 2007), which has been 
associated with diffuse axonal damage and altered 
interhemispheric functional connectivity 
(Felmingham et al., 2004). Patients with brain injury 
are over 1.5 times slower than healthy controls, as 
measured by reaction time (RT) in a range of 
cognitive tasks (Ferraro, 1996). However, since RTs 
are70ffectted by both perceptual and motor 
execution processes, more specific measures are 
needed to identify the origins of processing speed 
deficits during task performance. In this regard, ERP 
research has revealed important differences 
between TBI patients and healthy persons. 
Specifically, the P300 measure (a positive going 
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deflection appearing in the EEG 250–500 ms after 
the attendance of rare target stimuli; Polich, 2007) 
has been shown to be a highly sensitive measure of 
cortical synaptic transmission deficits. The P300 
deflection consists of two components: 1) a P3a 
component appearing in the EEG 250–280 ms after 
stimulus presentation, thought to originate from 
stimulus-driven frontal attention mechanisms during 
task processing and 2) a P3b component, with peak 
latency falling in the 250–500 ms time window after 
stimulus presentation, originating in the temporal-
parietal region and thought to be associated with 
attention and subsequent memory processing 
(Polich, 2007). Importantly, these components can 
show significant changes even in mild cases of TBI 
or even in asymptomatic patients with history of 
sports concussion (Baillargeon et al., 2012; Moore et 
al., 2017; Thériault et al., 2009). The P200 (a 
positive deflection in the EEG waveform that peaks 
between 150 and 275 ms after stimulus onset) has 
also been shown to offer highly valuable insights on 
cognitive processes. It is thought to reflect the 
modulation of attention by nontarget stimuli and 
stimulus classification (Key et al., 2005). Reduction 
of P200 Go/NoGo amplitude has been linked to 
slower RTs and reduced accuracy in stimulus 
classification (Hampton & Weber-Fox, 2008).  
 
Finally, emotional responses are also altered in TBI 
patients (Tateno et al., 2003, 2004), which has been 
proposed to be linked to the reduced ability of the 
anterior prefrontal cortex to regulate orbitofrontal 
activity (Ghajar & Ivry, 2008; Rule et al., 2002). 
Interestingly, in Go/NoGo tasks, patients with TBI 
make more errors than healthy controls, and 
patients with faster RTs exhibit greater level of alpha 
power synchronization over the fronto-central 
midline region, suggesting prefrontal down-
regulation (Garavan et al., 2002). 
 
State-of-the-Art Technological Innovations Allow 
to Automatically Detect EEG Markers of 
Cognitive Functions and Drug Response 
Since its first discovery (Collura, 1993), EEG 
technology has dramatically evolved, allowing for 
gradually more accurate and reliable measurements 
of electrophysiological activity in the brain, which 
has significantly contributed to numerous scientific 
breakthroughs and to the development of highly 
sophisticated clinical applications (Borck, 2005). 
 
State-of-the-art EEG machines today allow not only 
for resting-state, region-specific spectral analysis of 
the EEG but also for the automatic detection of a 
wide range of ERPs elicited during performance in 

well-established behavioral tasks (Miranda et al., 
2019). 
 
Made gradually more accessible to researchers and 
clinicians, modern EEG detection and analysis 
technology offers the opportunity to carry out 
accurate diagnoses and also evaluate or monitor the 
effects of pharmacological interventions. This has 
opened new avenues in psychopharmacology, 
contributing to the development of biomarkers that 
can help clinicians make more informed decisions 
and more reliable predictions of treatment outcomes. 
 
In this context, while preliminary research suggests 
that nonpsychoactive cannabinoids might induce 
modulatory effects on EEG power (Alvarez et al., 
2008), more research is needed to establish their 
effects on specific EEG markers of cognitive 
performance. 
 
With this in mind, the aim of the present study was 
twofold: 1) to investigate the effects of orally given 
cannabidiol (CBD) and cannabigenol (CBG) on both 
resting-state EEG and ERP markers of cognitive 
performance in former professional American 
football players with a history of head injury, and 2) 
to demonstrate the ability of the computerized 
electroencephalograph BrainView NeuralScan Pro to 
automatically detect and measure posttreatment 
changes in target metrics. 
 

Materials and Methods 
 
Participant Recruitment and Demographics 
Male former professional American football players 
were approached for enrollment, and those who 
consented to participate in the study were 
interviewed up to a week before the experimental 
session would take place (also depending on the 
participant’s availability). During the interviews, the 
experimenter offered information on the study, 
providing a short introduction on EEG, the metrics 
that would be computed and analyzed before and 
after the administration of the experimental protocol, 
and the nature of the supplements to be 
administered.  
 
Participants were selected if they had normal or 
corrected-to-normal vision and no current or history 
of neurological or psychiatric conditions, alcohol 
dependence, or drug misuse. Next, all the 
interviewed subjects who met the inclusion criteria 
were asked to sign consent to participation.  
 
The interview process culminated with the 
recruitment of 42 participants (age = 49.6 ± 9.8 
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years). Other than age, no other demographic 
information could be acquired, to comply with the 
personal conduct policy of their former professional 
association. All data acquisition was carried out in 
accordance with the ethical standards laid down in 
the 1964 Declaration of Helsinki, in two different 
locations and times, namely the Marriott Conference 
Center in Allen, TX (777 Waters Creek Blvd) 
between January 17–19, 2020, and the Hyatt 
Regency Hotel in Miami, FL (400 SE 2nd Ave) 
between January 27–30, 2020. 
 
EEG Data Acquisition 
Continuous EEG (0.5–40 Hz bandpass; notch filter: 
60 Hz) was acquired from 19 AgAgCL scalp-
electrodes during resting state or task performance 
using the FDA-cleared BrainView NeuralScan Pro 
workstation (Medeia Inc., Santa Barbara, CA; 
https://www.brainview.com), consisting of a 21-
channel EEG cap (using distance ratios consistent 
with the 10–20 System) and a 21-channel EEG 
amplifier (input impedance > 200 MΩ; common 
mode rejection ratio > 110 dB at 10 Hz, kept 
consistent across all participants) controlled by EEG 
data acquisition software recording at a sampling 
rate of 500 Hz.  
 
At the time of recording, the ground electrode was 
located at Cz and the reference electrode at Pz. All 
recordings took place in a quiet room while the 
participants were seated in comfortable chairs that 
provided adequate support for the neck and 
shoulder muscles.  
 
Spontaneous EEG (acquired at rest for 5 min while 
the participants’ eyes were open or closed) and 
ERPs elicited during performance of a visual 
Go/NoGo task were acquired before and 
immediately after the oral administration of 1 ml of 
the hemp extract FOCUS (Sacred Ally, Missoula, 
MT), containing 11.3 mg cannabidiol (CBD) and 0.6 
mg cannabigerol (CBG), sonicated into 20–30 nm 
liposomes (batch ID: PMB-FOCUS-FIN1.024; 
certificate number: 011020SR001; certificate of 
analysis prepared by PrimeMyBody, LLC, Carrolton, 
TX; Table 1). 
 
Go/NoGo Task 
Participants were presented with a series of blue 
circles (standard stimuli) appearing on the center of 
a white computer monitor and were asked to press a 
button (Go) only when a bigger circle of the same 
color (deviant stimulus) was randomly shown 
(duration of each stimulus: 400 ms; interval between 
each stimulus: 3000 ms; total task duration:  
approximately 6 minutes). The task included 110 

trials, with approximately 72 deviant stimuli (65.45% 
of total trials). 
 
 

Table 1 

The Tested Sample of FOCUS, Analyzed by Liquid 
Chromatography-Mass Spectrometry, LC-MS for Plant-
Based Cannabinoids.  

ID Conc. (mg/ml) 

D-9 THC  0.0 

CBD 11.307 

CBG 0.611 

β-Caryophyllene 4.401 

Geraniol 2.722 

Limonene 4.164 

Linalool 1.342 

Myrcene 0.602 

Humulene 0.571 

Terpinolene 0.333 

All collected data were compared to laboratory certified 
reference standards at known concentrations. Compounds 
present in traces (< 0.15 mg/ml) or not detected (≤ 0.001 
ng/ml) are not shown on the table. Modified after the 
original report by PrimeMyBody (ID: PMB-FOCUS-
FIN1.024; Certificate number: 011020SR001). 
Abbreviations: D-9 THC = tetrahydrocannabinol; CBD = 
cannabidiol; CBG = cannabigerol. 

 
 
EEG Signal Processing 
Offline, the data were filtered between 1–50 Hz with 
a notch filter set at 60 Hz, while no change was 
applied to the sampling rate (500 Hz). Next, 
individual EEG files were automatically edited to 
remove non-EEG artifacts (blinks, pulse artifact, MR 
gradient artifact, ballisto-cardiogram, and bad 
blocks) using the built-in custom scripts and 
functions available in Brainview NeuralScan Pro 

(Fast Fourier Transform, Wavelet, and Independent 
Component Analysis; Al-Fahoum & Al-Fraihat, 2014; 
Iriarte et al., 2003; Jiang et al., 2019). The cleaned-
up data were then used to compute absolute power 
in 4 different frequency bands: delta (1–4 Hz), theta 
(5–7 Hz), alpha (8–14 Hz), and beta (15–30 Hz). 
 
To extract ERPs, continuous EEG was automatically 
segmented by BrainView into 1200 ms epochs 
including activity recorded 200 ms before stimulus to 
1000 ms after stimulus, and baseline corrected by 
subtracting the mean amplitude of the prestimulus 
signal. Epochs with EEG or EOG amplitudes 
exceeding 100 μV were removed and the average 
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peak latencies of target components were computed 
for each subject. 
 
Resting-State EEG, ERP, and Behavioral 
Measures 
The median of the ratio between theta and beta 
absolute power detected from all electrodes at rest 
during an eyes-open condition was automatically 
computed by BrainView NeuralScan Pro. The PAF 
during an eyes-closed condition was also obtained 
by automatically computing the median frequency of 
the highest power in the 8–14 Hz frequency range at 
the O1 electrode site.  
 
During performance of the Go/NoGo task, ERP 
onset latencies were acquired for the measures 
P200 (100–175 ms) recorded at O1 (Kothari et al., 
2016) and P300b (370–390 ms) recorded at T5 
(Polich, 2007). Also, RTs were acquired and RT 
variances computed. 
 
Statistical Analysis 
Statistical analysis was performed to test for 
before/after treatment changes, as measured by the 
selected resting state EEG (theta/beta ratio and 
PAF) and ERP (P200 and P300b latencies) 
measures. To do so, we first applied a Shapiro-Wilk 
test (Shapiro & Wilk, 1965) to all measures in order 
to verify whether values were normally distributed. 
Since only the data relative to the P300b and 
theta/beta ratio measures were found not to be 
normally distributed, we explored within-group 
differences for all measures using a nonparametric 
Wilcoxon signed-rank test (Whitley & Ball, 2002). 
 
Moreover, a Pearson correlation was used to 
investigate the relationship between EEG/ERP 
measures and RTs or RT variances. For each 

statistical analysis, the significance threshold was 
set at 0.05 and, for each measure, the mean ± 
standard deviation (SD) was reported. All statistical 
analyses were performed using custom code based 
on python libraries (ADD). 
 

Results 
 
Theta/Beta Ratio 
The median theta/beta ratio was reduced after 
treatment (before treatment = 0.71 ± 0.18; after 
treatment = 0.65 ± 0.20; p < .01; Figure 1, Table 2).  
 
PAF 
After treatment, there was no change in average 
posterior PAF (before treatment = 9.4 ± 1.3, after 
treatment = 9.5 ± 1.2, Figure 1, Table 2). 
 
P200 and P300b 
The average P200 latency was found to be shorter 
after treatment (before treatment = 212 ± 50.8; after 
treatment = 179 ± 55.7, p < .01). Similarly, the 
median P300b latency was shorter after treatment 
(before treatment = 370.95 ± 59.50; after treatment = 
341.31 ± 58.31, p < .05, Figure 1, Table 2). 
 
RT 
There was no difference between the average RTs 
recorded during performance in the Go/NoGo task 
before and after treatment (before treatment = 
526.26 ± 108.45; after treatment = 516.00 ± 103.64). 
However, a before/after treatment difference was 
found for the average RT variances (before 
treatment = 17.7 ± 11.7; after treatment = 14.5 ± 
12.7; Z = −2.07, p < .05,). These results are shown 
in Figure 2 and summarized in Table 2. 

 
 

Table 2 

Changes (Mean ± Standard Deviation) of Resting State (Eyes Open) Electroencephalogram, Event-related Potentials and 
Reaction Times Recorded During Performance of a Go/NoGo Task Before and After the Administration of FOCUS. 

EEG/ERP Before After p 

Theta/beta ratio (RS – eyes open) 0.71 ± 0.18 0.65 ± 0.20 < .01 

PAF (RS – eyes closed) 9.4 ± 1.3 9.5 ± 1.2 n.s. 

P200  212 ± 50.8 179 ± 55.7 < .01 

P300b  370.95 ± 59.50 341.31 ± 58.31 < .05 

Reaction Time    

Speed 526.26 ± 108.45 516.00 ± 103.64 n.s 

Variance 17.7 ± 11.7 14.5 ± 12.7 < .05 

Abbreviations: EEG = electroencephalogram; ERP = event-related potentials; RS = resting state; PAF = peak alpha frequency. 
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Figure 1. Resting State (Eyes Open) EEG and ERP Differences Before and After the 
Administration of FOCUS.  

 
Note. Asterisks indicate statistical significance. Abbreviations: PAF = posterior alpha 
frequency; T/B = theta/beta.  

 
 

Figure 2. Reaction Times and Reaction Time Variance (Go/NoGo Task) Differences Before 
and After the Administration of FOCUS. 

 
Note. Asterisk indicates statistical significance. Abbreviations: RT = reaction time.  

 
Correlations Between RT and EEG/ERP 
Measures 
A positive correlation (Figure 3) was found between 
P300b latencies and RTs after treatment (r = 0.34, p 

< .05). No other correlation was found before or after 
treatment. 
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Figure 3. Correlation Between P3b Latencies and Reaction Times After the Administration of 
FOCUS. 

 
Note. Abbreviations: RT = reaction time. 

 
 

Discussion 
 
The present study found that the administration of 
the hemp extract FOCUS induced a number of 
changes in the EEG of former professional American 
football players and might add to previous evidence 
indicating that manipulations of the endocannabinoid 
system could contribute to ameliorate TBI pathology 
(Schurman & Lichtman, 2017). While we could not 
exactly determine which of the compounds in the 
preparation drove the observed resting-state EEG 
changes, we nonetheless confirmed the ability of a 
Cannabis extract to induce beneficial effects on 
brain activity in the absence of THC.  
 
The present study also provides further support for 
the use of well-established EEG and ERP measures 
of cognitive performance, as detected by the FDA-
cleared BrainView NeuralScan Pro workstation, in 
adult individuals with a history of head injury 
associated with a high-impact sport (Clark & 
Guskiewicz, 2016), suggesting that regular 
automated EEG-based assessments might 
contribute to reveal subclinical functional anomalies 
in this population and also assist clinicians in regular 
drug response evaluations.  
 
The decrease in the theta/beta ratio we found after 
treatment during resting state suggests improved 
cognitive performance and emotion regulation 

(Gomes & Damborská, 2017; Papathanasiou et al., 
2018). The interplay of cognitive functions and 
emotion is of particular relevance in TBI, with 
particular respect of its role in modulating the 
reductions in attentional control that may be found in 
this clinical population (Ríos et al., 2004), which 
could in turn affect their resilience to stress (Yao & 
Hsieh, 2019). Importantly, it has been reported that 
the administration of noradrenaline or dopamine 
agonists normalizes the theta/beta ratio (Clarke et 
al., 2003; Schutter & Van Honk, 2005). Given the 
evidence suggesting that both CBD and CBG might 
indirectly affect noradrenergic or dopaminergic 
transmission in the brain through the inhibition of 
CB1/CB2 receptors (Szabo & Schlicker, 2005) or 
selectively modulating gene expression (Gugliandolo 
et al., 2020), our results might suggest the ability of 
FOCUS to affect these mechanisms and future 
research should investigate the neurochemical 
substrates and pathways involved in region-specific 
slow versus fast wave EEG power regulation, in 
normal conditions and also in populations with a 
history of head injury. 
 
Our results might also add to previous pilot findings 
in healthy subjects suggesting some beneficial 
effects of THC-free hemp extracts on both 
autonomic nervous system regulation and brain 
function (Gugliandolo et al., 2020), although our 
participants exhibited no change in a measure of 
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alpha activity (PAF). While more research is still 
required to more confidently determine the 
differential effects of hemp extracts on resting-state 
EEG rhythms, the present study might suggest a 
treatment resistant frequency-specific anomaly in the 
participant cohort we investigated. Interestingly, 
while little or no research has explored the 
differential effects of endocannabinoid receptor 
modulation on resting-state alpha EEG frequency, 
there is evidence indicating that increases in PAF 
associated with improved cognitive performance can 
be achieved through learning-based interventions 
(Angelakis et al., 2007; Dobrakowski & Lebecka, 
2020). This remarks the ability of targeted EEG-
based assessments to provide valuable feedback on 
treatment efficacy, also suggesting that EEG data 
acquisition and analysis platforms like BrainView 
NeuralScan Pro may easily automate this process, 
offering clinicians the opportunity to devise 
appropriate protocols on the basis of objectively and 
reliably measured biomarkers. 
 
We also detected changes in ERP latencies after 
treatment. In particular, the P200 latency reduction 
suggests an improvement in attention and stimulus 
classification (Key et al., 2005), which have been 
found to be linked to TBI (Gomes & Damborská, 
2017; Papathanasiou et al., 2018. Reduced latency 
was also found for the P300b response, suggesting 
an improvement in stimulus evaluation and 
classification speed (Duncan-Johnson & Donchin, 
1982; Kutas et al., 1977), previously found to be 
altered in individuals with sports concussion 
(Baillargeon et al., 2012). Again, given the evidence 
indicating that Cannabis users and persons 
administered with THC exhibit prolonged latencies of 
multiple ERPs, including the P300 component 
(Roser et al., 2008; van Tricht et al., 2013), our 
results remark the importance of using only low-
concentration or THC-free hemp extracts, and also 
strengthen the importance of regular ERP 
investigations in high-contact athletes, even when 
conventional neuropsychological tests reveal little or 
no cognitive slowing (Gosselin et al., 2012). 
Importantly, while we found no posttreatment 
difference in response speed, the reduced RT 
variability suggests improved cognitive performance 
(Gorus et al., 2008). Also, the correlation between 
RTs and P3b latencies might reflect greater 
association between stimulus processing time and 
expectancy, perhaps resulting from an improved 
response strategy in relation to the nature of the task 
(Duncan-Johnson & Donchin, 1980). 
 
Finally, “entourage effects” due to the terpenoids 
present in the FOCUS preparation cannot be ruled 

out, given the evidence indicating the ability of these 
natural compounds to induce EEG changes. For 
example, quantitative EEG research with healthy 
persons suggests that changes in resting-state EEG 
detected after the inhalation of the essential oil 
Abies koreana (Jeong et al., 2007) may contribute to 
the enhancement of relaxation and 
alertness/attention states (Seo et al., 2016). 
Importantly, α-pinene, one of the major components 
of Abies koreana, has shown to have 
acetylcholinesterase inhibitory activity with 
associated memory enhancement (K. Kim et al., 
2006). Of note, limonene highly influences the 
human autonomic nervous system and mental 
conditions (Heuberger et al., 2001), and recent pilot 
research has shown that the inhalation of a 
Cannabis sativa extract containing 35 different 
essential oils induced a reduction of diastolic blood 
pressure, an increase in heart rate, and an increase 
in skin temperature (Gulluni et al., 2018). Also, the 
analysis of resting-state EEG in the same 
participants showed generalized and region-specific 
shifts in slow versus fast frequency power, which 
were associated with greater self-rated relaxation 
and calmness.  
 
Further research in larger sample sizes is needed to 
evaluate the differential effects of nonpsychoactive 
endocannabinoids and terpenes on both resting-
state EEG and ERP measures of brain activity. 
 

Limitations 
 
While the present study revealed a number of 
important EEG changes in the population examined, 
a number of limitations must be remarked.  
 
Unfortunately, given the necessary restrictions 
imposed by personal privacy guidelines, we could 
not gather any further demographic information 
(other than age and sex) on participants, or even 
use standard psychiatric questionnaires to acquire 
data on their cognitive abilities and emotional state. 
Also, it was not possible to access the medical 
history of any of the participants recruited, including 
information on the number and nature of the 
concussion episodes reported throughout their 
career, past and current medication, or any other 
officially diagnosed neurological and/or psychiatric 
conditions. Importantly, in assuming that all 
participants had a history of brain injury, we could 
not control for symptom heterogeneity and severity.  
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Conclusions 
 
The present study suggests that the administration 
of the hemp extract FOCUS in former professional 
American football athletes induced a number of key 
changes in both resting state EEG and ERP 
measures. We found that the theta/beta ratio, a 
measure that is thought to reflect the interplay 
between cognitive performance and emotion 
regulation, was decreased immediately after the 
administration of the preparation, suggesting 
improved resilience. Additionally, our ERP results 
suggest an improvement in attention and information 
processing speed. Further research is needed to 
investigate the long-term effects of the FOCUS 
preparation in a similar cohort and to also explore its 
suitability in other clinical populations. 
 
Finally, we also confirmed the ability of BrainView 
NeuralScan Pro to detect the above-mentioned 
changes, suggesting its suitability for day-to-day 
drug response monitoring in patients with sport-
related brain injuries.  
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