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Abstract  

Introduction: Visuospatial ability may explain individual differences in the extent of motor skill learning. This 
study tested whether frontoparietal functional connectivity at rest, measured by resting-state 
electroencephalography (EEG) coherence, is related to both visuospatial performance and motor skill acquisition 
(an early stage of motor learning). Methods: Across 21 participants, the following data were retrospectively 
analyzed: 2-min eyes-closed resting-state EEG, the Visuospatial/Constructional Index score from the Repeatable 
Battery for the Assessment of Neuropsychological Status (RBANS), and five practice trials of a functional motor 
task. Right frontoparietal coherence in the alpha band (8–12 Hz) was computed with imaginary coherence (IC) 
between electrodes F4 and P4, with ICs from left and midline electrodes included as negative controls. Results: 
F4–P4 alpha IC was highly correlated with the RBANS Visuospatial/Constructional Index, while left and midline 
alpha ICs were not. However, there was no correlation between right frontoparietal alpha IC with skill acquisition. 
Conclusion: This study supports that right frontoparietal IC is positively related with visuospatial function, yet the 
limited dose of motor practice (five trials) in the retrospective dataset was not inherently designed to investigate 
motor skill acquisition per se. However, results show proof of concept for developing right frontoparietal alpha IC-
based neurofeedback applications for visuospatial training. 
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Introduction 

 
The process of motor skill learning has widespread 
implications across motor rehabilitation, sports, 
surgical training, and brain–computer interface 
control. However, some individuals learn slower than 
others with the same amount of practice, or not at all 
(e.g., Brooks et al., 1995). Recently, we have 
demonstrated that individual differences in the 
extent of motor skill learning can be explained by 
variation in visuospatial ability, such that better 
visuospatial scores correlate with more skill retention 
(Lingo VanGilder, Hengge, et al., 2018; Lingo 

VanGilder, Lohse, et al., 2021; Regan et al., 2021; 
Wang et al., 2020).  
 
A potential underlying mechanism may be the 
degree of connectivity between right frontoparietal 
network, which may be critical for the interaction 
between motor learning and visuospatial processes. 
Frontoparietal neural structures, such as the 
superior longitudinal fasciculus, have been shown to 
underlie skilled motor performance (Steele et al., 
2012), and both cognitive and visuomotor control 
(Brandes-Aitken et al., 2019). Further, 
neuropsychological findings suggest that many 
visuospatial processes are specialized to the right 

http://www.isnr.org/
http://www.neuroregulation.org/
http://www.isnr.org
https://doi.org/10.15540/nr.9.2.82
mailto:sydney.schaefer@asu.edu


Wang et al.  NeuroRegulation  

 

 

83 | www.neuroregulation.org Vol. 9(2):82–90  2022 doi:10.15540/nr.9.2.82 
 

parietal cortex (Corbetta et al., 2000; Foxe et al., 
2003). Based on the structural findings, this study 
aimed to test whether functional connectivity 
between right frontal and parietal regions at rest, 
measured by resting-state electroencephalography 
(EEG) coherence, is related to both visuospatial 
function and motor skill acquisition, which is an early 
stage of motor learning. EEG coherence is a 
correlation measure based on the frequency 
spectrum, which measures the degree of 
synchronization between oscillations of different 
neuronal ensembles underlying any two scalp 
electrodes (Nunez & Srinivasan, 2009). Recent 
studies have suggested that resting-state EEG 
coherence is linked to motor learning (Wu, Knapp, et 
al., 2018; Wu, Srinivasan, et al., 2014; Zhou et al., 
2018). Coherence in the alpha band (8–12 Hz) is of 
particular interest in this study, because higher alpha 
power has been linked with improved performance 
in a spatial rotation task (Zoefel et al., 2011), while 
resting-state EEG coherence of the motor network in 
the mu (11–14 Hz) frequency band may also predict 
motor skill acquisition (i.e., within-session changes; 
Wu, Srinivasan, et al., 2014).  
 

Methods 
 
Experimental Design 
This study utilized an existing dataset (Pathania et 
al., 2022). The original data collection was approved 
by the University of Utah Institutional Review Board 
(IRB), in which participants provided informed 
consent prior to study enrollment. This retrospective 
analysis was approved by the Arizona State 
University IRB.  
 

The dataset contained data from 21 healthy younger 
adults (aged 23.29 ± 3.47 years, 10 females). Eyes-
closed resting-state EEG data was recorded for 2 
min prior to completing the RBANS test battery and 
five trials of a functional motor task, as illustrated in 
Figure 1. More detail about the EEG data collection 
and processing is provided below. Visuospatial 
ability was measured using the Visuospatial 
/Constructional Index of the Repeatable Battery for 
the Assessment of Neuropsychological Status 
(RBANS; Randolph et al., 1998), which was scored 
according to the test manual. 
 
Motor Task 
As described previously (Lingo VanGilder, Hengge, 
et al., 2018; Lingo VanGilder, Lohse, et al., 2021; 
Regan et al., 2021; Wang et al., 2020), the 
functional motor task in this study involves reaching 
and fine motor control. Briefly, the experimental 
apparatus is comprised of four plastic cups adhered 
to a board; three of the cups are “target” cups that 
are located radially around a center “home” cup that 
is aligned with the participant’s midline (Figure 1, 
right panel). The participant must use a standard 
plastic spoon with their nondominant hand to acquire 
two beans at a time from the home cup and 
transport them to one of the target cups. The 
participants are instructed to transport the beans first 
to the target cup located ipsilateral to the 
participant’s nondominant hand. They then scoop 
two more beans from the home cup and transport 
them to the middle target cup, then another two 
beans to the contralateral cup. The home cup 
contains 30 beans, resulting in 15 total reaches (five 
target cycles) per trial. Trial time is the measure of 
performance for each trial, which is the elapsed time 
from when the participant picks up the spoon until 
the last of the beans are deposited into the last 
target cup. In this dataset, participants completed 
five training trials only. 

 
Figure 1. Experimental protocol. 
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Modeling Motor Skill Acquisition 
To quantify motor skill acquisition, trial time data (in 
seconds) from each individual were fit with a linear 
model1: 
 

𝑇𝑟𝑖𝑎𝑙 𝑇𝑖𝑚𝑒𝑖 = 𝐴𝑖 − 𝐵𝑖𝑡 (1) 
 
where t is trial number, A intercept term, and B the 
slope term. Individual participant was specified as i. 
Initial performance was estimated with A, where 
smaller A values indicates better initial performance. 
The rate of improvement was estimated with B, 
where larger B values indicates a faster rate of 
improvement. 
 
EEG Acquisition and Preprocessing 
Scalp EEG was collected from 32 electrodes of a 
64-channel EEG cap housing a Brain Vision actiCAP 
system (Brain Products GmbH, Gilching, Germany), 
labeled in accord with an extended International 10–
20 system (Oostenveld & Praamstra, 2001) and 
amplified and digitized using a BrainAmp DC 
amplifier (Brain Products GmbH, Gilching, Germany) 
and BrainVision Recorder software (Brain Products 
GmbH, Gilching, Germany). Eyes-closed resting-
state EEG data were collected for 2 min. Data were 
online referenced to the right earlobe, and the 
ground electrode was placed on the left earlobe. 
Sampling rate was 1000 Hz. Preprocessing was 
done via the EEGLAB toolbox (Delorme & Makeig, 
2004) and the ZapLine package (de Cheveigné, 
2020) in MATLAB. Continuous data were high-
passed at 1 Hz with a zero-phase noncausal window 
sinc FIR filter (EEGLAB function “pop_eegfiltnew”), 
which had a filter order of 3300 and a cutoff of 0.5 
Hz at 6 dB. 
 
As the current dataset contains heavy line noise, 
ZapLine was used to remove line for its superiority in 
specifically cleaning 60 Hz noise while preserving 
signals at other frequencies (de Cheveigné, 2020). 
Faulty channels and data segments with heavy 
muscle artifacts were manually rejected. Channels 
whose power spectrum did not demonstrate 1/f 
decline or with power less than other channels were 
removed. This resulted in 1.94 ± 1.24 removed 
channels for each participant, mostly temporal 
electrodes (T7, T8, TP9 & TP10, 83.9%) and FT 
electrodes (FT9 & FT10, 9.7%). The continuous data 
were then visually inspected to reject segments with 
spatially widespread muscle artifact. This resulted in 

 
1 A mixed-effect model was not used here because it failed to 

capture the individual variabilities for the slope term (B). That is, 
the random effect of slope is zero for all subjects when the data 
were fit with a mixed-effect linear model. 

average data length of 107.63 ± 8.61 s for the 
sample. Following data rejection, data were then 
submitted to an infomax ICA (Delorme et al., 2007).  
The validity of ICA artifact removal (e.g., eye 
movement artifact, muscle artifact) has been tested 
via numerous publications (Delorme et al., 2007; 
Hoffmann & Falkenstein, 2008; Plöchl et al., 2012) 
and recommended by consensus guidelines (Keil et 
al., 2014). In one paper (Plöchl et al., 2012), 
comparing ICA-identified artifacts with real eye 
tracking data, the authors concluded that rejecting 
ICs from the data resulted in complete removal or 
significant reduction of the eye and eyelid movement 
artifacts, while leaving the relevant signal emerging 
from neural sources intact. Furthermore, previous 
research that inspired this study (Wu, Knapp, et al., 
2018; Wu, Srinivasan, et al., 2014) have used ICA 
analysis along with visual inspection. Therefore, this 
study utilized ICA as recommended by guidelines 
and to be consistent in preprocessing methods with 
similar studies. ICLabel (Pion-Tonachini et al., 2019) 
was used to identify and remove independent 
component(s) with eye artifacts and muscle artifacts. 
Any IC components with eye and muscle artifacts 
over 90% probability as identified by ICLabel were 
removed. On average, 2.3 ± 1.5 independent 
components were removed from the sample. After 
ICA artifact correction, rejected channels were 
interpolated with spherical splines interpolation 
(Perrin et al., 1989). Data were then segmented into 
nonoverlapping 1-s epochs.  
 
Lastly, to appropriately perform electrode-level 
connectivity with EEG, the preprocessed data (scalp 
potentials) were submitted to a reference-free 
surface Laplacian algorithm to mitigate volume 
conduction (Kayser & Tenke, 2015). The surface 
Laplacian is a current source density measure that 
estimates the spatial second derivatives of scalp 
EEG potentials as an approximation for the 
amplitudes of underlying current generators (Tenke 
& Kayser, 2012). Due to the nature of taking 
derivatives, the EEG data at this point were 
reference free. A spline Surface Laplacian was used 
with default flexibility (m = 4) and regularization 
(lambda = 10− 5) parameters (Cohen, 2015; Perrin 
et al., 1989). The Surface Laplacian step was 
completed in MATLAB with code from Cohen (2014). 
 
EEG Coherence  
Imaginary coherence (IC) was chosen as the 
primary coherence measure because it avoids 
inflated and artifacted coherence values caused by 
volume conduction, and thus provides a robust 
estimate of EEG connectivity (Nolte et al., 2004). IC 
was estimated with the frequency spectrum, and 
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reflects the amount of phase synchronization 
between two time series. However, IC only 
measures time-lagged synchronizations by taking 
only the imaginary part of the complex cross-power 
spectrum of the two EEG signals (see Equation 3). 
IC was computed using customized codes in 
MATLAB as described in the following paragraphs.  
 
Laplacian-referenced, preprocessed 1-s data 
segments were submitted to Fourier transforms 
using the MATLAB fft function and normalized by 
segment length to yield Fourier coefficients. No 
windowing function was used. Frequency resolution 
was 1 Hz. The Fourier coefficients were then used to 
calculate auto- and cross-power spectra via Welch’s 
method:  
 

𝑆𝑥𝑦(𝑓𝑛) =  
2

𝐾
  ∑ 𝑋𝑘(𝑓𝑛)𝑌𝑘

∗(𝑓𝑛)𝐾
𝑘=1  𝑛 = 1, 2, … ,

𝑁

2
− 1  (2) 

 
where 𝑛 stands for the index of frequencies after the 

Fourier transform, 𝑁  is the total number of time 

points for each segment, 𝑘  indicates the index of 

segments, and 𝐾  the total number of segments. 
𝑋𝑘(𝑓𝑛)  is the complex Fourier coefficients of time 

series 𝑥(𝑡)  at frequency 𝑓𝑛 , whereas 𝑌𝑘
∗(𝑓𝑛)  is the 

conjugated complex Fourier coefficients of time 
series 𝑦(𝑡)  at frequency 𝑓𝑛 . The notation and 

definition for 𝑆𝑥𝑦  is consistent with that from Nunez 

(Nunez & Srinivasan, 2009) in which a factor of two 
of only the positive frequencies (as the 
corresponding negative frequencies have the same 
Fourier coefficients) was included and the DC signal 
(f = 0) and Nyquist frequency (f = N/2) were omitted.  
 
Thus, the cross-power spectrum 𝑆𝑥𝑦  between 

signals 𝑥 and 𝑦 was estimated from the average of 
individual power spectra of all segments. This 
estimation can increase signal-to-noise ratio and, 
therefore, obtains robust estimates (Nunez & 
Srinivasan, 2009). When the two signals are the 
same, 𝑥(𝑡) = 𝑦(𝑡) , the complex-valued cross 

spectrum 𝑆𝑥𝑦  is reduced to a real-valued auto 

spectrum for that signal, noted as 𝑆𝑥𝑥.  
 
IC is calculated with the magnitude of the imaginary 
part of cross-power spectrum normalized by the 
square root of both auto power spectra (Nolte et al., 
2004): 
 

𝐼𝐶𝑥𝑦 =
𝐼𝑚(𝑆𝑥𝑦(𝑓𝑛))

 √𝑆𝑥𝑥(𝑓𝑛)𝑆𝑦𝑦(𝑓𝑛)
 𝑛 = 1, 2, … ,

𝑁

2
− 1   (3) 

 

where 𝐼𝑚 denotes taking the imaginary part of the 
complex cross spectrum. IC reflects the level of 
consistency of the phase difference between two 
channels of interest and is valued from 0 to 1. A 
higher IC value indicates that the two channels are 
more connected. By definition, the IC between a 
channel and itself is zero, because there is no time-
lagged coherence. Thus, IC avoids inflated and 
artifacted coherence values caused by volume 
conduction, and can provide a robust estimate of 
EEG connectivity. Based on Zoefel et al. (2011), 
only the alpha band was examined in this study.  
 
Statistical Analysis 
Brain-behavior correlations between coherence and 
motor or visuospatial variables were tested with 
bivariate correlation. All bivariate correlation 
analyses were tested using Spearman Rank 
correlation. Significance level was set to 0.05. 
Multiple comparisons were not adjusted for to 
minimize the potential of rejecting true positives in 
this proof-of-concept study with a relatively small 
sample size. Instead, statistics are reported 
comprehensively for all analyses, including those for 
null results. 
 

Results 
 
Data from 21 participants were analyzed. One 
participant was excluded for missing motor 
performance data and four participants were 
excluded due to substantial artifacts in the EEG data 
(neither alpha peaks in power spectra nor not 
following typical 1/f shape). This resulted in a final 
sample of 15 participants (8 females; age 22.73 ± 
2.69 years old).  
 
On average, motor performance improved from the 
first trial to the fifth trial by a reduction of 9.15 ± 4.77 
in trial time, t(14) = 7.42, p < .001, 95% CI [6.50, 
11.79] seconds. The distribution of trial times is 
presented in Figure 2, showing that motor 
performance improved across participants with 
considerable individual variability. Individual model 
fits (Figure 3) demonstrated an average intercept of 
52.05 ± 5.97 s for baseline performance, and an 
average slope of 1.80 ± 1.30 for rate of improvement 
over trials. Modeled baseline performance and slope 
were correlated (r = 0.78, p < .001). 
 
Right Frontoparietal Imaginary Coherence Did 
Not Correlate with Motor Variables 
Right frontoparietal (F4-P4) imaginary coherence, 
the primary coherence measure of interest, did not 
correlate with the modeled initial performance  
(p = .271) or the rate of improvement (p = .474)
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Figure 2. Progression of motor performance over five trials. 

 
 
 

Figure 3. Individual model fits for motor performance over five trials. 

 
 
 
On the contrary, initial motor performance was 
strongly correlated with both control imaginary 
coherence measures (Figure 4, middle and right 
column). Left frontoparietal (F3-P3) imaginary 
coherence correlated with initial motor performance 
(r = −0.77, p = .001). Midline frontoparietal (Fz-Pz) 
imaginary coherence also correlated with initial 
performance (r = −0.64, p = .012). Although two 
control ICs also demonstrated correlations with rate 
of improvement (r = −0.51, p = .052 for left imaginary 
coherence; and r = −0.52, p = .051 for midline 

imaginary coherence), this relationship was driven 
by the innate relationship between initial 
performance and rate of learning. When follow-up 
regression analyses used both IC and baseline 
performance to predict rate of improvement, IC was 
no longer correlated to the rate of improvement (p 
= .812 for left IC, p = .712 for midline IC) while 
baseline performance was (beta = 0.74, p = .019; 
and beta = 0.83, p = .005 for the two models 
separately). 

http://www.neuroregulation.org/


Wang et al.  NeuroRegulation  

 

 

87 | www.neuroregulation.org Vol. 9(2):82–90  2022 doi:10.15540/nr.9.2.82 
 

Figure 4. Relationship between frontoparietal alpha ICs and initial motor performance.  
 

 
 
Note. Color blue indicates the analysis between the right frontoparietal coherence (primary 
IC measure) and motor performance. Color grey indicates control analyses with left and 
midline frontoparietal coherence. 

 
 
Right Frontoparietal Imaginary Coherence 
Correlated with RBANS Visuospatial Index 
Spearman Rank correlation revealed that right 
frontoparietal (F4-P4) alpha IC correlated with the 
RBANS Visuospatial Index (r = 0.55, p = .035; 

Figure 5 left column). Control analyses using left 
(F3-P3) and midline (Fz-Pz) alpha IC did not reveal 
any correlations between ICs and the RBANS 
Visuospatial Index (all ps > .140; Figure 5 middle 
and right column).  

 
 

Figure 5. Relationship between frontoparietal alpha ICs and Visuospatial Index.  
 

 
 
Note. Color blue indicates the analysis between the right frontoparietal coherence (primary 
IC measure) and visuospatial performance. Color grey indicates control analyses with left 
and midline frontoparietal coherence. 

 
 

Discussion 
 
This study tested whether right frontoparietal EEG 
resting-state connectivity was associated with 
visuospatial function (measured as the RBANS 
Visuospatial/Constructional Index) and motor skill 
acquisition. F4-P4 alpha IC, measured at rest with 
eyes closed, was highly correlated with the RBANS 
Visuospatial/Constructional Index, while left and 
midline alpha ICs were not. In terms of motor skill 
acquisition, F4-P4 IC did not correlate with motor 
skill acquisition (measured as within-session rate of 
improvement), nor with baseline motor performance. 

However, F3-P3 and Fz-Pz IC were highly correlated 
with baseline motor performance. No IC measure 
correlated with rate of improvement (i.e., how quickly 
motor performance improved).  
 
Current results indicate that the right frontoparietal 
coherence, not left or midline coherence, is highly 
correlated with visuospatial function. This study 
extends previous structural neuropsychological 
findings that frontoparietal networks underlie 
visuospatial function (Brandes-Aitken et al., 2019; 
Corbetta et al., 2000; Foxe et al., 2003; Steele et al., 
2012) by showing that functional connectivity at rest 

http://www.neuroregulation.org/


Wang et al.  NeuroRegulation  

 

 

88 | www.neuroregulation.org Vol. 9(2):82–90  2022 doi:10.15540/nr.9.2.82 
 

between right frontal and parietal cortical regions 
also predicts visuospatial function. This study 
provides support that the link between alpha 
coherence and visuospatial function could be causal. 
Rizk et al. (2013) showed that continuous theta-
burst stimulation (cTBS, which is thought to be 
inhibitory) to the right posterior parietal cortex 
reduced visuospatial attention and induced neglect-
like behavior, with fewer cumulative fixations in the 
leftward direction (selective-focused attention was 
not considered in this cited study); the same cTBS 
stimulation to the right frontal eye field did not show 
the same effect. After right posterior parietal cortex 
cTBS stimulation, alpha coherence between the 
parietal stimulation site and other cortical regions 
decreased, suggesting that right frontoparietal 
coherence may be an important visuospatial 
biomarker with clinical implications. For example, 
F4-P4 alpha coherence (8–12 Hz) could be a 
therapeutic target in neurofeedback training for 
patients with visuospatial deficits, in which they 
could learn to self-regulate the coherence signal 
directly and potentially improve visuospatial function. 
Neurofeedback approaches that provide feedback of 
dynamic brain networks (such as coherence signals) 
are considered to be more effective in achieving 
neural regulation than those providing signals from 
one single brain region (Sitaram et al., 2017). The 
feasibility and efficacy of alpha imaginary coherence 
neurofeedback has been demonstrated previously 
(Mottaz, Corbet, et al., 2018; Mottaz, Solcà, et al., 
2015). Alpha coherence can be successfully 
modulated via neurofeedback (Mottaz, Solcà, et al., 
2015) and upregulating alpha coherence between 
the motor cortex and the rest of the cortical regions 
can improve motor performance after stroke (Mottaz, 
Corbet, et al., 2018). Given the prevalence of 
visuospatial deficits following stroke (Jokinen et al., 
2015; Jongbloed, 1986) and in preclinical 
Alzheimer’s disease (Caselli et al., 2020; Johnson et 
al., 2009), there is a clinical need for effective 
visuospatial training paradigms. Results from the 
current study warrant follow-up studies that directly 
test the feasibility of a frontoparietal alpha 
neurofeedback intervention for improving 
visuospatial function. 
 
Contrary to the hypothesis, this study did not find a 
correlation between right frontoparietal alpha IC with 
motor skill acquisition, or baseline motor 
performance. One potential reason for this could be 
the limited dose of motor practice (only five trials) in 
this retrospective dataset, which was not inherently 
designed to investigate motor skill acquisition per se. 
In previous studies using the same motor task, 
visuospatial function correlated with 1-month motor 

retention after 50 or more trials of practice (Lingo 
VanGilder, Lohse, et al., 2021), as well as with 1-
week retention after at least 10 trials of practice 
(Lingo VanGilder, Hengge, et al., 2018; Schaefer & 
Duff, 2017). The dose of practice in the current 
dataset may be too small to accurately evaluate 
motor skill acquisition and the learning process, but 
future studies are needed to test whether right 
frontoparietal coherence correlates with skill 
acquisition over a larger training dose, as suggested 
by the multisession motor training paradigm reported 
in Zhou et al. (2018). 
 
This study did, however, identify a relationship 
between left and midline frontoparietal coherence 
with baseline motor performance. This is particularly 
provocative since 14 out of 15 participants used their 
left (nondominant) hand on the motor task, for whom 
the dominant (left) cortex is the ipsilateral cortex. 
Other studies have demonstrated that the alpha 
coherence in the left, but not right, hemisphere was 
related to visuomotor learning (Manuel et al., 2018) 
and motor skill acquisition (Wu, Srinivasan, et al., 
2014) when using the right (dominant) hand. 
Moreover, alpha and beta coherence between left 
M1 and the rest of the cortical regions predicts motor 
skill acquisition (Wu, Srinivasan, et al., 2014; Zhou 
et al., 2018). Because this dataset used in the 
current study did not include any dominant hand 
motor data, we cannot directly test whether our data 
are consistent with these previous studies. However, 
our data do suggest a left parietal specialization for 
motor planning regardless of which effector is used, 
consistent with Kumar et al. (2020). 
 
We acknowledge that the current study only focused 
on a single EEG frequency band (the alpha band). 
This was because this retrospective dataset 
included substantial artifacts that contaminated the 
beta band even after rigorous preprocessing 
(described in Methods), preventing the analyses of 
the beta frequency. Beta-band oscillations are 
strong sensorimotor rhythms (Hari & Salmelin, 1997; 
Jensen et al., 2005) that have been shown to predict 
performance both during task and at rest. Beta 
coherence at rest may also play a role in predicting 
motor learning. Wu, Srinivasan, et al. (2014) found 
that beta coherence from M1 to other parts of the 
brain predicted motor learning in high accuracy, 
while alpha coherence demonstrated a weaker 
correlation. It is worth pointing out that Wu, 
Srinivasan, et al. (2014) also showed that left 
premotor-parietal beta coherence was not related to 
motor learning. In further support of the beta 
frequency band, beta coherence can predict 
training-related behavioral gains in stroke patients 
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(Zhou et al., 2018) and beta oscillations at rest were 
confined to sensorimotor cortex, inferior parietal 
lobes, as well as the dorsolateral prefrontal cortex 
(Hillebrand et al., 2012). These findings suggest that 
frontoparietal beta coherence should be investigated 
as a biomarker for motor learning in future studies.  
 
In conclusion, this retrospective analysis used 
imaginary coherence in the alpha frequency band to 
measure frontoparietal functional connectivity with 
EEG, and demonstrated that right frontoparietal 
connectivity is positively related with visuospatial 
function. This finding has implications for developing 
right frontoparietal alpha IC-based neurofeedback 
applications for improving visuospatial function, 
which could be used on its own as a form of 
cognitive training, or as a concurrent therapy to 
motor rehabilitation that would benefit slow- or 
nonlearners. Future studies are needed to test the 
relationship between alpha IC and motor learning 
with more extensive motor training.  
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