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Abstract  

Research into the similarities and differences between various forms of meditation practice is still in its early 
stages. Here, utilizing functional connectivity and graph measures, we present our work examining three 
meditation traditions: Himalayan Yoga (HT), Isha Shoonya (SNY), and Vipassana (VIP). EEG activity of the 
meditative block is used to build functional brain connections to exploit the resulting networks between various 
meditation traditions and a control group. Support vector machine is employed for binary classification, and 
models are built with features generated via graph theory measures. We obtain maximum accuracy of 84.76% 
with gamma1, 90% with alpha, and 84.76% with theta in HT, SNY, and VIP, respectively. Our key findings involve 
(a) higher delta connectivity in Vipassana meditators, (b) synchronization of theta networks in the left hemisphere 
inspected to be stronger in the anterior frontal area across meditators, (c) greater involvement of gamma2 
processing observed among Himalayan and Vipassana meditators, (d) increased left frontal activity contribution 
for all meditators in theta and gamma bands, and (e) modularity engaged extensively in gamma processing 
across all meditation traditions. Furthermore, we discuss the implication of this research for neurotechnology 
products to enable guided meditation among naive practitioners.  
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Introduction 

 
In recent years, neuroscientific research has 
focused on meditation as a mental practice. This is 
due to the large-scale benefit it offers, observed in 
numerous studies, such as improved attentional 
states, metacognitive awareness, cognitive control, 
compassion, self-regulation, decreased states of 
mind wandering, and so on (Brandmeyer & Delorme, 
2018). Multiple studies determine how long- and 
short-term meditation practice (measured in hours of 
experience) impact the brain (in terms of neural 
oscillation and executive functioning tasks such as 
working memory). This approach is designed to 
integrate mindfulness-based practices like 
meditation in a clinical context to treat anxiety, 
depression, chronic pain, and stress (Yordanova et 

al., 2020). But most of the study misses out on the 
significance of each meditation type on distinct brain 
circuitry, frequency bands, and cognitive functions 
that is unique in itself and cannot be generalized 
fully to other types of meditation practices. As each 
meditation type can uniquely influence the person 
(both psychologically and physiologically) different 
meditation practices require careful observation and 
rigorous examination before making a causal 
interpretation and generalization. With 
neurotechnological advancements, meditation 
researchers are using electroencephalogram (EEG), 
functional magnetic resonance imaging (fMRI), 
magnetic resonance imaging (MRI), and single-
photon emission computerized tomography 
(SPECT). EEG and fMRI techniques are commonly 
employed in meditation research. There are many 
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types of meditation traditions practiced worldwide, 
for example, Himalayan Yoga (HT; focused 
attention), Vipassana (VIP; open monitoring) and 
Isha Shoonya (SNY; open awareness meditation), 
and Loving Kindness meditation.  
 
Spectral analysis used in earlier studies on VIP 
revealed enhanced gamma activity over the parieto-
occipital electrodes (Braboszcz et al., 2017; Cahn et 
al., 2010; van Lutterveld et al., 2017). Gamma band 
has been associated with cognitive processes such 
as attention, working memory, learning, 
consciousness, microsaccades, and visual imagery 
(Fries, 2009; Fries et al., 2007), and long-range 
neural communication (Nikolić et al., 2013). The 
sample entropy (SE) of VIP meditators was higher in 
the study by Vivot and colleagues (Vivot et al., 
2020), especially in the alpha and low/high gamma 
bands. The alpha band (7–11 Hz) was identified to 
have a trait influence as observed in both the 
conditions of mind wandering and meditation in a 
recent study by (Braboszcz et al., 2017). According 
to studies on HT practitioners, their brainwaves are 
reported to have sensorimotor alpha, frontal-midline 
theta, and parieto-occipital gamma (Braboszcz et al., 
2017; Brandmeyer & Delorme, 2018; Vivot et al., 
2020). Working memory has linkages with alpha 
rhythms which are thought to be prevalent in HT 
meditation, since it emphasizes the mental repetition 
of the mantra and the breath (Braboszcz et al., 
2017). SNY was linked to gamma frequency in the 
parieto-occipital, central, and frontal electrodes, 
according to a study by Braboszcz et al. (2017). 
Since the explicit focus is on "nothingness," it is 
unclear what kind of object is sent to the attentional 
system for SNY practitioners. Since higher gamma 
power over the frontal and parieto-occipital 
electrodes is demonstrated as a trait effect, this may 
indicate that SNY meditation engages attentional 
processes differently than VIP and HT meditation. 
According to the research by van Lutterveld et al. 
(2017), SNY meditators had greater separations in 
their thought charts observed using Hausdorff 
distance under the breath awareness condition. In 
the current study, the brain states connected to 
three crucial and distinctive types of meditation—HT, 
VIP, and SNY—are examined. This study's goal is to 
leverage functional network measurements to 
examine variations between control subjects and 
meditators on (a) frequency bands, (b) brain regions, 
(c) network measures, and (d) commonalities and 
discrepancies among mediators.  
 
Complex network theory has recently gained 
prominence (Li & Yang, 2016). Research has 
demonstrated that EEG may be utilized to create 

brain networks that retain several crucial topological 
characteristics (Sun et al., 2019). The temporal 
correlation between distant neurophysiological 
events is often used to describe a functional 
connection in the brain (Friston, 1994). In recent 
decades, various neural coupling techniques have 
been put forth. Coherence (coh), a linear 
dependency measure between two nodes, has been 
used to assess functional connectivity (Jalili, 2016). 
However, coh is affected by volume conduction. 
Since volume conduction is likely to detect brain 
activity from the same sources, even if unrelated, it 
may result in incorrect correlations between nearby 
electrodes. To lessen the consequences of volume 
conduction, additional metrics have been 
incorporated. It has been shown that imaginary 
coherence (imcoh) can eliminate any instantaneous 
interactions that are caused by volume conduction 
(Nolte et al., 2004). The phase lag index (pli), a 
phase synchronization technique, is insensitive to 
the volume conduction effect and reveals the 
genuine coupling strength between pairs of channels 
by excluding interactions produced by zero phase 
differences (Stam et al., 2007). In the weighted 
phase lag index (wpli), a modification of the pli 
wherein observable phase leads and lags are 
weighted by the amplitude of the imaginary 
component of the cross-spectrum (Vinck et al., 
2011). Corrected imaginary phase locking value 
(ciPLV), a metric for assessing synchronization in 
the presence of volume conduction or source 
leakage effects, was proposed by Bruña and 
colleagues (Bruña et al., 2018). We have used all 
five connectedness metrics because they can 
distinguish between functional networks that are 
similar and those that are distinct. Regardless of the 
coupling method, our main goal is to find the 
functional networks that discriminate between two 
groups. 
 
Examining functional connectivity with various graph 
theoretical measures shows key topological 
characteristics of brain networks (Rubinov & Sporns, 
2010). EEG/MEG, functional MRI, diffusion MRI, and 
structural MRI are just a few imaging modalities 
using graph theory analyses of human brain 
networks (He & Evans, 2010). Modularity, node 
betweenness, centrality, clustering coefficient, and 
the occurrence of highly connected hub regions are 
a few network features that have been addressed 
often (He & Evans, 2010; Sun et al., 2019; Wang et 
al., 2010). Additionally, it has been found that these 
network characteristics change over time under 
various conditions, such as normal development, 
aging, and pathological circumstances. Recent work 
by Hiroyasu and colleagues and a dearth of works 
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on network modeling in meditation have shown how 
to categorize resting and meditative states using the 
centrality measure (Hiroyasu & Hiwa, 2017). In 
earlier research on long-term meditators, trait effects 
on meditators were examined (Braboszcz et al., 
2017). These effects may indicate a change in the 
functional architecture of the human brain compared 
to controls. Our research examines the four network 
features between long-term practitioners of three 

meditation traditions and the control group. Machine 
learning classifiers are trained as the most practical 
method for spotting differences due to their strong 
pattern learning capabilities. Moreover, there has 
been a surge in studies using machine learning to 
categorize meditation states in recent years 
(Chaudhary et al., 2022; Pandey et al., 2022; 
Pandey & Miyapuram, 2020; Pandey & Miyapuram, 
2021a, 2021c). 

 
 
Figure 1. Measuring Four Scales of Improvement: Attention, Mind-Wandering, Drowsiness, and Functional Connectivity. 

 
Note. A person is wearing an EEG headset while practicing meditation. Four scales of improvement can be examined on the 
mobile screen, and the last one indicates Functional Connectivity. Recording of Day 1 shows the initial connectivity. With 
progress in meditation, the application displays the change in connectivity after a few days and even explains the relation with 
the connectivity of expert meditators. This is an illustration generated by us to display the potential idea for neurotechnology. 

 
 

Research and Technology Relevance 
 
Cognitive Relevance 
Years of neuroscience research have shown several 
advantages to meditation practice (Brandmeyer et 
al., 2019). A recent article offered a possible course 
of action with a unified framework (Dahl et al., 2020). 
The framework suggests awareness, connection, 
insight, and purpose as the four fundamental 
characteristics of well-being. The only way to acquire 
these qualities that offer direct access to one's well-
being is through intentional mental training. A 
particular dimension denotes a specific method. A 
practitioner can, for instance, utilize concentrated 
attention to become aware of mind-wandering 
occurrences, maintain focus, and use loving 
kindness to cultivate fruitful relationships with others. 
 
Neurotechnology 
Many meditation applications are available to 
improve awareness and train attention (Migala, 
2021). Since no feedback is provided, a novice 
practitioner feels pushed and gradually reduces their 
practice to the minimal effort until stopping 
altogether. Due to the availability of wearable EEG 
technology, the market has been able to create 
goods that can assist novice practitioners in learning 

meditation through real-time feedback and 
monitoring their progress over time, as 
demonstrated by the use of Muse and Neuphony 
meditation products. Here, we suggest a functional 
connectivity module enabling practitioners to see 
their incremental development and the changes in 
connectivity patterns that go along with it.  
 
In Figure 1, three of the four modules can assess 
attention, daydreaming, and tiredness in real time. 
When the mind wanders, or a person feels sleepy, 
practitioners can receive immediate feedback so 
they can refocus on the meditation object. After 
some practice, people can evaluate their level of 
attention, the amount of time their minds wander, 
and whether they are awake or asleep while 
meditating. In the final module, users can compare 
their functional connectivity after a few sessions to 
that of potential specialists in various types of 
meditation. With the aid of neurotechnology, 
cognitive scientists, computer scientists, and signal 
processing experts can collaborate to identify the 
brain correlates of various stages of meditation. 
Therefore, it is conceivable to develop neural 
markers for various levels of meditation using signal 
processing and machine learning approaches. 
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Learning Representation 
The most important step in separating the neural 
signals of experts and beginners so that 
neurofeedback can be implemented is through 
feature engineering. Robust feature extraction 
strategies are presented by deep learning and 
machine learning to categorize the various stages. 
Numerous articles from previous years have 
described the brain correlates of meditation. Pandey 
and Miyapuram describe a wavelet-based encoding 
of the oscillatory signature of meditators (Pandey & 
Miyapuram, 2020). In recent investigations, 
functional connectivity networks were examined to 
predict brain activity in meditators (Pandey et al., 
2021). Convolutional neural networks are used to 
create a model that categorizes control and 
meditators' cognitive states (Pandey & Miyapuram, 
2021b). The SHAP (Shapley Additive Explanations) 
explainable model, which employed three nonlinear 
dynamics to extract the significance of the scalp 
area, was used to analyze EEG data collected 
before and after mindfulness-based stress reduction 
(MBSR) training to determine the relevance of the 
data (Pandey & Miyapuram, 2021c). A recent study 
discusses and further categorizes various mental 
states associated with meditation using different 
machine learning approaches (Kora et al., 2021). 
Cognitive science and machine learning researchers 
have great potential to identify patterns and leverage 
them to create systems that can guide novice 
practitioners. 
 

Data Description 
 
Participants and Experimental Design 
We used online open-access EEG data (Braboszcz 
et al., 2017). Data were collected at the Meditation 
Research Institute in Rishikesh, India, from 32 
healthy control individuals and 20 meditators from 
the VIP school, and 27 meditators from the HT 
school, and 20 meditators from the SNY school. All 
meditators were chosen for the study based on their 
age, gender, and years of meditation practice. 
Control subjects were also selected for the study 
based on age, gender, and lack of meditation 
practice. Researchers wanted to investigate uniform 
groups of individuals for this study. Therefore, they 
constructed groups based on age and gender to 
match the individuals. As a result, there were four 
groups of 16 subjects in each meditation group: 16 
controls (45 ± 10 years, five females), 16 HT 
meditators (43 ± 12 years, two females), 16 SNY 
meditators (40 ± 10 years, two females), and 16 VIP 
meditators (47 ± 15 years, five females). A single set 
of individuals was a control group for all three 
meditation traditions. 

The experiment was divided into two 20-min 
sessions, one titled "Meditation" and the other 
"Instructed Mind Wandering." In the first 10 min of 
the Meditation block, subjects were instructed to 
focus on their breathing (breath focus or inhalation 
and exhalation) to prepare for their meditation 
practice. This task was used as a primitive practice 
period in all three meditation traditions to help 
people relax and deepen the depth of their 
meditation practice. After 10 min, they were notified 
to practice their specific meditation for the next 10 
min. Both in the first and second half of the 
Meditation block, control participants were instructed 
to keep their focus on breath or inhalation and 
exhalation. In the Instructed Mind Wandering block, 
for the first 10 min, subjects were instructed to 
perform mind-wandering tasks, wherein they were 
asked to recall autobiographical events which were 
emotionally neutral such as routine childhood life, 
travels, etc. After the initial 10 min, they were 
directed to continue their instructed mind-wandering 
task for the next 10 min to preserve consistency with 
the Meditation condition. To avoid any order effects, 
the task sequence was counterbalanced; that is, in 
each of the meditation groups and control group, 
eight of the subjects either performed the mind-
wandering task first or the meditation task first. In 
our study, we focused on comparing the second part 
of the Meditation block between controls (i.e., breath 
focus) and meditators (i.e., specific HT, VIP, SNY). 
We used preprocessed open access data, and 
preprocessing steps are mentioned in this article 
(Braboszcz et al., 2017). Participants all signed 
informed consent forms before participating. The 
Meditation Research Institute Indian ethical 
committee and University of California San Diego 
ethical committee approved the project (IRB project 
# 090731). Interested readers may refer to 
Braboszcz et al. (2017) for complete details. 
 

Methods 
 
Functional Connectivity 
To create the functional connectivity matrix, we 
employed five coupling methods: coherence (coh), 
imaginary coherence (imcoh), phase lag index (pli), 
weighted phase lag index (wpli), and corrected 
imaginary phase-locking value (ciplv). We started 
from coh, the earliest measure of functional 
connectivity, to ciPLV, the latest measure, as every 
coupling method illustrates some similarities and 
differentiating synchronization patterns for the same 
dataset. In this study, we focus on capturing all the 
crucial connectivity relationships that can provide 
significant discrimination between control and 
meditator irrespective of the coupling method. Each 
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brain connectivity preserves some network topology 
that can be scrutinized and reveal new insights into 
the meditative state. The subsection on spectral 
connectivity presents a brief description of five 
coupling methods (MNE, 2022). All the functional 
connectivity matrices were calculated every 5 s with 
a 2.5-s overlapping window for delta (1–4 Hz), theta 
(4–8 Hz), beta (8–12 Hz), alpha (12–20 Hz), 
gamma1 (20–60 Hz) and gamma2 (60–100 Hz) 
frequency bands along with regions described in 
Figure 2. Primarily four areas are left frontal (LF), 
right frontal (RF), left parietal (LP), and right parietal 
(RP). Based on these regions, intra- and 
interfunctional connectivity are computed. Bands are 
decided based on the recent article published on the 
same dataset (Vivot et al., 2020). Regions are 
determined based on the study discussing different 
meditation techniques (Yordanova et al., 2020).  
 
Binarization of Brain Networks 
The topology of functional networks is often 
obscured by faulty and weak connections (Sun et 
al., 2019). Thresholding, which involves removing a 
portion of the weakest links from the network, is a 
popular technique for maintaining a sparse network. 
However, deciding this threshold objectively remains 
inconclusive. In the recent work of De Vico Fallani 
and colleagues (De Vico Fallani et al., 2017), they 
introduce a criterion, the efficiency cost optimization 
(ECO), to identify the density threshold which filters 
the connections depending on the network size 
according to a power law. This method accentuates 
a network's intrinsic features while maintaining its 
sparsity. Hence, we used the ECO binarization 
method to remove the weak links. Obtained 
networks from coupling methods were binarized and 
quantitatively analyzed using graph theory 
measures.  
 
Graph Theory Network Metrics 
Several graph measures can characterize brain 
networks (Rubinov & Sporns, 2010). We computed 
functional segregation and integration measures of 
binary brain networks for each subject, including all 
coupling methods. The capacity for specialized 
processing to emerge within tightly interconnected 
clusters of brain regions is referred to as functional 
segregation. Functional integration in the brain 
quickly incorporates specialized information from 
various brain regions. We identified four widely 
employed network metrics. Functional integration 
metrics were node betweenness centrality (NB) and 
edge betweenness centrality (EBC). Functional 
segregation metrics were clustering coefficient (CC) 
and modularity (MU). The proportion of all shortest 
routes in a network that connects a particular vertex 

is known as NB, whereas the proportion of all 
shortest routes in the network that involves a 
particular edge is called EBC. Because the concept 
of betweenness centrality readily extends to 
linkages, it could be utilized to detect essential 
anatomical or functional connections. The CC is the 
number of triangles surrounding a node and is equal 
to the number of neighbors who are neighbors of 
each other. MU is a metric that measures how 
efficiently a network may be separated into distinct 
clusters. Mathematical equations and detailed 
explanations can be accessed in this paper 
(Rubinov & Sporns, 2010). Network measures were 
computed in a Matlab environment.  
 
Machine Learning 
Features generated from different network measures 
were used for classification. This study trained 
binary classifiers between the control and meditator 
groups. Support vector machine was selected for 
this research due to its well-established theory and 
more eloquent quality of easy interpretability. We 
trained models by tuning hyperparameters, and 
validation was performed using the 10-fold stratified 
technique. The classifier’s performance was 
evaluated using accuracy, precision, recall, and F1 
score. In line with this, we further assessed the 
statistical significance of the classifier using the 
permutation test with 10,000 rounds. Several articles 
have used this test (Ojala & Garriga, 2009) and 
discussed the effectiveness of the results via 
permutation tests. There were 1,200 models trained 
for each group encompassing connectivity methods, 
frequency bands, brain regions, and network 
measures. A total of 3,600 models were developed, 
of which only 154 models were selected based on 
the significance of p < .05, and division is provided in 
Figure 2. Since there was no class imbalance 
present in our data, we found accuracy and the p-
value were sufficient for the presentation. Models 
were developed using scikit-learn python 
(Pedregosa et al., 2011). The outcome of classifiers 
between the control and meditators resulted from 
differences in network features and furthermore 
explained the differences in connectivity and 
synchronization patterns. 
 

Results 
 
The results presented in our study were based on 
154 significant models (p < .05), selected using 
permutation tests as illustrated in Figure 2. Each 
model exhibited a unique combination of coupling 
methods, bands, regions, and network metrics. 
These values emphasized the discrimination 
between control and meditation traditions. We 
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Figure 2. [Left] The Pipeline Illustrates Primarily Five Stages. [Right] Four Main Regions Are Shown (LF, RF, LP, RP).  

 
 
Note 1 [Left]. The coupling method is selected, followed by the frequency band and region for constructing the brain network 
from EEG recordings. The topology of the connectivity graph is explored using graph theory network metrics. Binary classifiers 
are built based on the property of a graph. Permutation tests are performed to obtain the significant models (p < .05) for 
analysis. 

 
Note 2 [Right]. A combination of 10 electrodes forms each region. All four intrahemispheric regions are further used to form 
two more intrahemispheric regions (LP-LF and RP-RF) and four interhemispheric regions (LF-RF, LP-RP, LF-RP, RF-LP), 
overall making a total of 10 regions. 

 
 
focused our study on bands, regions, and network 
metrics. Hence, these 154 unique combinations 
were segregated and discussed. 
 
Role of Frequency Bands 
For each meditation tradition, we have shown the 
spread of 154 significant values across all frequency 
bands in Figure 3. Each meditation type has some 
consistency and some degree of variability in the 
role played by a particular frequency band. Broadly, 
theta frequency band was found to be uniform 
across all meditators. For both HT and VIP 
meditators, gamma2 was more dominant. VIP 
meditators were found to have a greater amount of 
slow frequency delta waves than other meditators. 
For the CTR-HT group, all the accuracy was above 
70% for most of the frequency bands except in the 
gamma1 band, whose accuracy was found to be 
around 85% (p < .01), as shown in Table 1. All 
bands appear to function well in distinguishing HT 
from control, but gamma1 played a more prominent 
role than the others. For the CTR-SNY group, most 

of the frequency bands, accuracy prediction was 
within 70% to discriminate controls from SNY 
meditators. The accuracy of alpha-band prediction, 
on the other hand, was found to be 90% (p < .01), 
with substantially higher efficiency. For the CTR-VIP 
group, accuracy predictions were within the range of 
70–80%, except for the theta band, which had an 
accuracy of 85% (p < .01). 
 
Participation of Regions 
As shown in Figure 4, the synchronization of delta 
networks was significant for a few clusters in a 
variable fashion among all three meditation 
traditions (HT, SNY, VIP). For VIP, synchronization 
was found intrahemispheric in the LF, RF, and LP 
regions and interhemispheric between LF-RF, LF-
RP, and LP-RP regions. During the synchronization 
of theta networks, among all the meditation 
traditions (HT, VIP, SNY), a stronger anterior-
posterior connectivity in the left hemisphere (LF-LP), 
and anterior frontal connectivity (left to the right 
hemisphere; i.e., LF-RF regions were found to be 
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Figure 3. A Significant Interaction of Bands With Meditation Traditions and Controls.  

 
 

Note. The significant counts (p < .05) were obtained by performing permutation tests. It represents how 154 significant models 
were distributed across each of the frequency bands, observed among meditators while they performed distinct meditation 
types (HT, VIP, SNY). 

 
 

Table 1 

Representation of Accuracy to Correctly Distinguish Controls With Distinct Meditative States in Frequency Bands. 

 CTR-HT CTR-SNY CTR-VIP 

Band Accuracy (%) p-value Accuracy (%) p-value Accuracy (%) p-value 

delta 71.90 0.02 71.90  0.02   78.57 0.001 

theta 78.57 0.003 75.71 0.01 84.76 0.0004 

alpha 81.42 0.002   0.90 0.0001 79.04 0.001 

beta 74.28 0.01 78.57 0.001 80.95 0.002 

gamma1 84.76 0.00009 71.90 0.02 76.19 0.007 

gamma2 80.95 0.001 75.71 0.008 80.95 0.003 

All the p-values shown in the table are p < .05. Blue highlighted values suggest maximum accuracy in a particular column. 

 
 
consistent). RF-LP regions were observed to have 
interhemispheric connections only in the VIP 
meditators. In the HT and SNY meditation, LF-RP 
interhemispheric connections were observed. During 
the synchronization of alpha networks, 
interhemispheric connections between LF-LP were 
common among HT and SNY meditators. A stronger 
connectivity in the LF-RP region among the HT and 
VIP meditators was observed. Moderate 
connections in the SNY and VIP groups were 

present in the LP-RP region. Overall, across all the 
meditators, synchronization in LF, LP, and RP 
clusters was indicative of its consistency. 
 
Intrahemispheric connectivity in the RF and LF were 
more robust in the HT and SNY meditators, 
respectively. Higher intra- and interhemispheric 
connections were present in the HT meditators 
compared to the other two groups. During the 
synchronization of beta networks, a stronger LF 
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Figure 4. Diagrammatic Representation of Statistically 
Significant Differences (p < .05), Based on the Allocation 
of 154 Values on Frequency Bands and Regions Across 
Three Meditation Traditions.  

 

 
 
Note. Circles indicate within-cluster (LF, LP, RF, RP) 
significance; lines designate intraconnectivity (LF-LP, RF-
RP) and interconnectivity relationship (LF-RF, LP-RP, LF-
RP, RF-LP). Stronger links are shown by denser circles 
and lines, based on the number of values obtained after 
the permutation test. Different colors represent frequency 
bands.  

 
 
connectivity is observed for all meditators. 
Interhemispheric connectivity is observed in the LF-
RF region and is seen across all meditators. A 
greater interhemispheric connection can be viewed 
in the HT and VIP meditators such as LF-LP, LP-RP, 
etc. During the synchronization of gamma1 
networks, both intra- and interhemispheric 
connections were seen across meditators. 
Intrahemispheric LF-LP connectivity was common 
for all meditators. LP region had stronger 

connections among SNY meditators. Higher intra- 
and interhemispheric connections were found 
among HT meditators. RF-RP synchronization was 
found among VIP and HT meditators, whereas LP-
RP connectivity was only observed in HT meditators. 
Interhemispheric connections in the LF-RF and LF-
RP regions were consistent only in the SNY and VIP 
meditators. During the synchronization of gamma2 
networks, consistent and higher intra- and 
interhemispheric connections are observed in HYT 
and VIP meditators (i.e., stronger connectivity in the 
LF-LP, LF-RP, LP-RP, RF-RP regions). Connectivity 
in the SNY meditators is not so dense both in the 
intra- and interhemispheric regions. 
 
In Table 2, across all meditation traditions, the 
accuracy of most brain regions with frequency bands 
is greater than 70%. Across all intrahemispheric 
regions, the LF region was revealed to have the 
highest accuracy, especially for the HT (in gamma1) 
and VIP (in theta) meditation groups. For HT and 
SNY meditators, the alpha band was shown to play 
a role in the RF region, with an accuracy of 81% and 
75%, respectively. In the RF-RP region, the SNY 
meditator's maximum accuracy was obtained in the 
LP region in the alpha band. In the LF-LP region, 
gamma2 was expressed in both HT and VIP 
meditator groups. Gamma2 bands can be seen for 
the mediators, notably for the HT and SNY groups. 
The beta band was observed only in RF and RF-RP 
regions for VIP and in the LF region for SNY 
meditators, but not for HT meditators. Broadly, most 
brain regions were found to have an accuracy within 
70–80%, distinguishing frequency bands across all 
the meditation traditions, as shown in Table 3. In the 
anterior LF-RF region, a beta band is present across 
HT and SNY meditators, with 70% and 79%, 
respectively. In LP-RP region, maximum accuracy of 
78% is obtained for HT group in gamma1 band and 
90% in SNY group in alpha band. Maximum 
accuracy is obtained in the RF-LP regions for VIP 
meditators in the theta band, but RF-LP regions for 
HT and SNY meditators did not have significant 
accuracy. 
 
Significance of Network Metrics 
We observed the maximum number of allocations in 
modularity followed by NB as shown in Figure 5. 
EBC showed the maximum involvement between 
interconnectivity of the left and right frontal areas 
(LF-RF). The CC primarily engaged in the left and 
right frontal regions. In Figure 6 (regions), the 
interconnectivity of the left frontal and left parietal of 
SNY and VIP were observed in MU, NB, and EBC. 
In contrast, HT was engaged in MU and. NB was 
attributed across all regions in VIP, whereas MU was 
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Table 2 

Maximum Classification Accuracy of Intrahemispheric Brain Regions Along With Frequency Bands. 

 CTR-HT CTR-SNY CTR-VIP 

 

Region 

Accuracy 
(%) 

Band 

 

p-value 

 

Accuracy 
(%) 

Band 

 

p-value 

 

Accuracy 
(%) 

Band 

 

p-value 

 

LF 84.76 gamma1 0.0009  75.71 beta 0.005 84.76 theta  0.0004  

RF 81.42 alpha 0.002 75.23 alpha 0.009 80.95 beta 0.002 

LP 80.95 gamma2 0.001 78.57 alpha 0.005 78.57 delta 0.001 

RP 70.47 gamma1 0.02 71.90 delta 0.02 69.04 gamma2 0.04 

LF-LP 77.61 gamma2 0.005 75.71 theta 0.01 80.95 gamma2 0.003 

RF-RP 76.19 gamma2 0.004 74.76 gamma2 0.02 78.57 beta 0.003 

Blue highlighted accuracy values suggest maximum accuracy in a particular column. All the p-values shown in the table are p 
< .05. 

 
 

Table 3 

Maximum Accuracy Obtained to Distinguish Specific Meditation Traditions Based on Interhemispheric Regions 
and Frequency Bands. 

  CTR-HT   CTR-SNY   CTR-VIP  

 

Region 

Accuracy 
(%) 

Band 

 

p-value 

 
Accuracy 

(%) 
Band 

 

p-value 

 
Accuracy 

(%) 
Band 

 

p-value 

 

LF-RF 70.47 beta 0.02 78.57 beta 0.001 76.19 gamma1 0.007 

LP-RP 78.09 gamma1 0.007 90.46 alpha 0.0001 78.09 beta 0.007 

LF-RP 77.61 alpha 0.005 72.38 gamma2 0.01 78.09 delta 0.003 

RF-LP  -   -  79.04 theta 0.003 

Blue highlighted accuracy values suggest maximum accuracy in a particular column. All the p-values shown in the table are p 
< 0.05. 

 
 
involved in HT and SNY. VIP showed a greater 
number of connections in interconnectivity between 
left and right parietal, including EBC and NB. The 
right frontal of SNY was less involved than other 
groups, and network properties were captured with 
modularity and CC. Only VIP exhibited 
interconnectivity of the right frontal and left parietal 
with MU and NB. In Figure 6 (bands), VIP involved 
all network metrics in the delta and gamma2, 
whereas theta, alpha, and gamma2 in HT and SNY 
were involved in alpha and beta. NB and EBC were 
contributed across all bands in VIP, whereas MU in 
SNY. The similarity between all meditators was 
observed in frequency bands: (a) theta band 
engaged in left and right frontal interconnectivity via 
EBC, (b) more cross-connections involved in gamma 
processing using MU, and (c) beta waves in left 
frontal and interconnection with right frontal reflected 
connections with NB and EBC. 
 

Discussion 
 
Our findings show that (a) VIP practitioners have 
higher delta connectivity; (b) theta network 
synchronization in the left hemisphere is observed to 
be greater and more constant across meditators in 
the LF-LP region and in the anterior frontal area; (c) 
high levels of gamma2 processing in HT and VIP 
practitioners favorably correlated with the number of 
hours spent meditating in these two meditation 
traditions; (d) the left frontal activity contributes to 
theta and gamma bands for all meditators; (e) in 
contrast to EBC and CC, MU and NB are heavily 
weighted in graph measurements; and (f) MU is 
engaged extensively in gamma processing across 
all meditation traditions. Furthermore, left-right intra-
inter hemisphere networks are engaged in varied 
ways, with each meditation state having unique 
synchronization patterns. 
 
We observed that gamma2 was more noticeable in 
both HT and VIP meditators. This might result from 
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Figure 5. This Image Illustrates an Overall Distribution of Network Metrics Across Regions and Bands, Including All Traditions. 

 
 
 
Figure 6. Detailed Representation of Network Metrics Concerning Regions and Bands Across Meditator Traditions. 
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more hours of meditation practice (Braboszcz et al., 
2017), which can be presented as a trait effect 
exhibiting gamma2. Previous studies had observed 
high-frequency gamma band activity during 
meditation when participants had an increased hour 
of meditation experience (Ferrarelli et al., 2013; 
Hauswald et al., 2015). 
 
Theta band activity was observed in the current 
study across all meditation practices. This can be 
linked with the cultivation of long-term meditation 
practice exhibiting theta activity over the frontal 
cortex, which is associated with sustained and 
internally directed attention states (Brandmeyer & 
Delorme, 2018). Theta activity is related to executive 
functioning tasks such as working memory and 
others that require cognitive control (Cavanagh & 
Frank, 2014; Cavanagh & Shackman, 2015). Theta 
rhythm was observed among all meditation traditions 
with stronger left anterior-posterior (LF-LP) and 
anterior frontal connectivity (LF-RF). Theta band's 
importance in meditation has been mostly related to 
top-down control mechanisms, such as heightened 
conflict monitoring and neural communication over 
long and broad networks related to cognitive 
processing (Cavanagh & Frank, 2014). In work by 
(Manna et al., 2010; Marzetti et al., 2014; Yordanova 
et al., 2020), similar observations of theta coupling 
across the left hemisphere anterior posterior (LF-LP 
areas) have been reported throughout three 
meditation traditions (focused attention, open 
monitoring, and loving kindness). The engagement 
of leftward asymmetry (Cahn & Polich, 2009), 
anterior frontal (Banquet, 1973), and frontal midline 
(Brandmeyer & Delorme, 2018) in the theta band 
has been observed consistently among meditators.  
 
VIP practitioners were shown to have an increase in 
delta power. Past findings were found to support our 
results (Cahn et al., 2010; Cahn & Polich, 2009) and 
found that decreased frontal delta power in long-
term VIP practitioners, while increased frontal delta 
in long-term meditators has been reported in zen 
(Faber et al., 2008) and qi-gong (Tei et al., 2009). 
VIP meditators may reflect a functional inhibition of 
brain appraisal systems in keeping detached from 
analysis, judgment, and expectation. For VIP 
meditators, delta power synchronizes intra- (LF, RF, 
LP) and interhemispheric (LF-RF, LF-RP, LP-RP). 
Prior research on meditation has shown that this 
increased frontal delta activity manifests as a 
baseline relative suppression of cognitive attention 
and a more vital detachment from current daily 
experiences (Faber et al., 2008; Tei et al., 2009). 
 

The LF, LP, and RP clusters for alpha 
synchronization were seen among all meditation 
techniques. The LF, LP, and RP clusters of alpha 
synchronization were observed for all meditation 
practices. Alpha power is essential for processing 
and integrating somatosensory information, working 
memory, and cognitive entrainment during 
meditation (Brandmeyer & Delorme, 2018). 
According to studies, different meditation types may 
affect alpha power changes (Amihai & Kozhevnikov, 
2015). This can be inferred to some extent from our 
study's observations of regional variability (inter- and 
intrahemisphere) due to different meditation 
practices, such as the increased power of alpha LF-
LP frequently observed among HT and SNY 
meditators but not VIP practitioners. 
 
The study by Yordanova et al. (2020) specifically for 
open monitoring meditation found left frontal 
coupling in beta bands, documented for all 
meditation traditions. We identified that lateralized 
increase in intra- and interhemispheric beta 
synchronization distinguished particular stages of 
meditation with shared involvement in the related 
clusters. The most frequently associated tasks with 
beta oscillations are endogenous, top-down 
regulated processing, and conscious processing, 
which promotes long-range re-entrant connections 
between cortical areas and greater communication 
through coherence. Lateralized beta connection may 
represent the amount of selected information (little 
vs. large) or the type of attentional process of 
selection (narrow/focused vs. wide/monitoring; 
Yordanova et al., 2020).  
 
During the gamma1 synchronization, LF-LP 
connectivity was common for all meditation types. 
While LP-RP connectivity was only noticed in HT 
meditators, VIP and HT meditators displayed RF-RP 
synchronization. This is due to the function of 
gamma in the overall attentive state, working 
memory activation, information integration, and 
neuronal transmission underlying conscious 
awareness (Braboszcz et al., 2017; Cahn et al., 
2013; Vivot et al., 2020). Neural coupling of gamma 
2 frequency is primarily seen with higher inter- and 
intrahemispheric interaction between brain regions 
in HT and VIP meditators. It indicates the trait effect 
with increased hours of meditation practice, leading 
to neuroplastic change with the increase in neural 
connections. 
 
Our research showed that modularity makes a 
considerable contribution. Modules are crucial for 
breaking more extensive networks into basic 
"building blocks," like internally highly connected 
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clusters with weaker linkages. In neurobiology, 
modular divisions are significant because they 
distinguish brain parts with similar functions (Sporns, 
2022). There appears to be ample room for future 
research to comprehend the underlying phenomena 
of modularity between two groups (meditators vs. 
controls). 
 
Our results have been presented using a data-driven 
methodology, making them more interpretable and 
subject to further investigation for graph measures. 
However, this work offers a viable concept for 
consumer wearable headsets that can show how 
functional connectivity evolves as meditation 
practice progresses. The naive practitioner can 
comprehend the relationship between their 
functional connectivity patterns with different types 
of experienced meditators. 
 

Conclusion  
 
In this study, we compared three meditation 
traditions to a control group to find differences in 
frequency bands, regions, and network topological 
organization. Five coupling methods—including coh, 
imcoh, pli, wpli, and ciplv—were used to construct 
functional brain networks from the earliest to the 
most recent. Four separate graph theory network 
metrics (NBC, EBC, CC, MU), including functional 
segregation and integration, were used to examine 
six frequency bands, six intrahemispheric, and four 
interhemispheric connections. The 3600 models 
were reduced to 154 for examination using 
permutation tests, which provided diverse insights 
into the meditator groups. Left hemisphere theta 
synchronization (LF-LP) and anterior frontal (LF-RF) 
areas were visible for all meditation practitioners. 
Here, the presence of the gamma2 band (strong 
connections between the intra-interhemispheres) is 
consistently observed across HT and VIP 
meditators, indicating a characteristic influence (due 
to the increased hours of meditation practice). The 
research done in earlier literature on a comparable 
dataset supports this. Additional data showed the 
importance of various frequency bands and brain 
regions in differentiating between different styles of 
meditation, such as elevated delta power in VIP and 
improved left parietal (LP) connectivity in SNY 
practitioners. These neural connections among 
meditators are still in the early stages of research as 
to how and why they develop. Using brain 
connectivity and graph measurements, this study 
generally sheds light on the interaction effect of 
neural oscillations with intra- and interhemispheric 
brain areas during a particular meditative state, both 
globally and specifically. Future research can focus 

on the biomarkers found in graph measures for the 
various meditation traditions. 
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