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Abstract 

Neurofeedback is gaining recognition as an efficient, effective treatment for a variety of different psychological 
and neuropsychiatric disorders. Its value has been shown in robust clinical studies. However, a certain 
percentage of clients do not respond to this treatment modality. We suggest performing easier sessions so that 
clients receive an increased rate of positive feedback. This may encourage positive response to neurofeedback. 
Research has shown that implicit learning, the type of learning involved in neurofeedback, is better achieved with 
high levels of positive feedback. In addition, psychological factors related to attention, motivation, cooperation, 
and positive affect may also be contributing to this facilitatory effect. The relevant theoretical background and 
supporting evidence are provided. 
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Background 

 
EEG neurofeedback (also known as EEG-
biofeedback or brainwave self-regulation) has been 
used to treat a variety of neuropsychiatric disorders 
(Niv, 2013). Success rates vary and have often been 
reported to be high, but invariably some trainees are 
slow to respond or do not show any response to this 
treatment modality (Rogala et al., 2016; Zuberer et 
al., 2015). Indeed, nonresponse rates were reported 
to vary between 16% and up to 57% in some cases 
(Alkoby et al., 2018). The reasons for this 
nonresponse are not yet well understood (Oblak et 
al., 2019). Part of it may be due to the use of 
standardized protocols that do not target the 
individual dysregulation in these studies. Other 
methodological factors may be responsible for these 
rates of nonresponse, such as number and length of 
sessions, intersession intervals, type of threshold 
used (automatically vs. manually adjusted), trainer-
participant interface (Gruzelier, 2014), as well as 

schedules of reinforcement (Sherlin et al., 2011) and 
types, and modalities of feedback (Strehl, 2014). 
The ability of the clinician to instill a motivation to 
succeed in the client has also been cited as crucial 
(Sterman & Egner, 2006). As neurofeedback is 
gaining increasing acceptance and recognition by 
the mainstream medical establishment, it is 
important to elucidate the factors and parameters 
that can facilitate learning and enhance treatment 
results.  
 
Neurofeedback is based on the principles of operant 
conditioning of brainwave activity (Birbaumer et al., 
2013; Collura, 2014; Sitaram et al., 2017). Clients 
are fed back information about their 
electrophysiological activity and are taught to modify 
this activity by means of positive and negative 
feedback received through the sensory modalities 
(i.e., visual, auditory, or tactile feedback). When a 
client’s brainwave activity comes closer to the 
desired target activity (usually, age-group norms), 
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alleviation of neuropsychiatric symptoms often 
ensues. The very act of learning to regulate one’s 
brainwave activity may rid clients of mental barriers 
that have plagued them for years, and, albeit rarely, 
this may even happen in the course of just two 
sessions (van der Kolk, 2014).  
 
An average neurofeedback training series may take 
anywhere between 40 and 80 sessions (Barabasz & 
Barabasz, 1999), with some individuals requiring 
more sessions to obtain satisfactory results. In some 
cases, part of the reason the process takes a long 
time is that it is not always obvious which training 
protocols would be most effective for a given client, 
even when the protocol selection is based on a 
neurometric assessment (i.e., qEEG test), intake, 
and a thorough anamnesis. Practitioners normally 
start with one or two training protocols for a few 
sessions based on these assessments. They 
monitor the client’s response, and either continue 
with the initial protocols, if response is satisfactory, 
or change to other protocols, if there is no response 
or if the response is less than optimal (Fisher, 2014; 
Johnson & Bodenhamer-Davis, 2009). When clients 
are fast responders, fine-tuning of the protocol 
selection process can be accomplished more 
rapidly. However, when clients take a long time to 
respond—with some, it may require 20 or more 
sessions before we can notice and start appreciating 
the effects of the training (Pallanti, as cited in 
Gastaldi, 2023)—then the practitioner’s job of fine-
tuning the protocol selection process is more difficult 
and requires more time. Practitioners may also 
wonder in such cases whether the client is a 
nonresponder to neurofeedback, or whether the 
problem is with the protocol they selected. Speeding 
up clients’ response in such cases may aid the 
process.  
 
Thresholding plays a crucial role in this respect. It 
has already been suggested that setting thresholds 
optimally may save up to 35% of the overall training 
time, which may be translated into significant 
reductions in training costs for clients (Davelaar, 
2017). Here we suggest that performing training 
sessions with thresholds yielding relatively high 
success rates (and therefore a high incidence of 
positive feedback) may accelerate clients’ 
neurofeedback learning and response. In other 
words, when performing neurofeedback sessions, 
clients should receive more positive than negative 
feedback to achieve success in training. To explain 
this, we should first refer to some basic theoretical 
principles of learning, and more specifically, of 
reinforcement learning or operant conditioning.  
 

Basic Behaviorist Principles of Learning 
 
Thorndike (1911, as cited in Sherlin et al., 2011) first 
formulated the Law of Effect, which states that 
reward raises the likelihood that the target behavior 
will reoccur while punishment decreases that 
likelihood. Skinner further developed the idea of 
operant conditioning based on this law (Skinner, 
1945). 
 
The neural correlates of reinforcement learning, or 
operant conditioning, are varied. Learning from 
reward seems to involve partially different networks 
and structures than learning to avoid punishment 
(Elliott et al., 2010). Dopaminergic neurons in the 
striatum and frontal cortices (Bromberg-Martin et al., 
2010) as well as in the substantia nigra and ventral 
tegmental area (Sulzer et al., 2013) seem to play a 
key role in reward learning. Learning to avoid 
punishment involves the insula and lateral 
orbitofrontal cortex, among other regions (Elliott et 
al., 2010; O’Doherty et al., 2001; Wächter et al., 
2009). 
 
There are positive and negative rewards, and 
positive and negative punishments. Positive rewards 
are when we provide something desirable to an 
organism to increase the targeted behavior. 
Negative rewards are when we remove something 
undesirable from the organism with the intention of 
increasing the targeted behavior. Positive 
punishments are when we give or do something 
unpleasant as punishment to decrease the likelihood 
of a certain behavior. Negative punishments are 
when we remove something desirable from the 
organism with the intention of decreasing the 
likelihood that a certain behavior will reoccur (Sherlin 
et al., 2011).  
 
For simplicity’s sake, in this paper we employ the 
broader terms of positive feedback and negative 
feedback to refer to rewards and punishments, 
respectively, without resorting to the more refined 
categories based on the types of reinforcers 
employed. That is, here positive feedback refers to 
either positive or negative reward, and negative 
feedback refers to either positive or negative 
punishment.  
 
There are different neurofeedback technologies, with 
various methods of providing feedback to clients, 
employing positive feedback, negative feedback or a 
combination of both. Since clients often know that 
the absence of positive feedback is really negative 
(i.e., it means that their brainwaves are not reaching 
the target activity), the absence of such positive 
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feedback may be experienced by them as negative 
feedback, an indication of failure. In such cases, this 
would serve as an internal, or secondary, 
punishment. The opposite is true as well: the 
absence of negative feedback may be perceived by 
clients as rewarding, an indication of success, even 
if no reward is actually obtained. In this case, this 
would serve as an internal, or secondary, reward. 
 

Thresholds and Success Rates in 
Neurofeedback Training 

 
In neurofeedback, different aspects of brainwave 
activity can be trained up or down. Amplitude, 
coherence, percent time, and symmetry indices are 
just few examples of neural activity that can be 
trained and modified through neural feedback. Here 
we refer to amplitude training, but the same 
principles may hold true for other aspects of neural 
activity as well.  
 
Brainwaves are referred to in terms of their 
frequency and amplitude. Frequency is the number 
of cycles per second, measured in units of hertz 
(e.g., theta: 4–8 Hz, alpha: 8–12 Hz, etc.). 
Brainwave amplitude refers to magnitude, measured 
in units of microvolts. Amplitude in any given 
brainwave frequency is determined by the degree of 
synchronization of neurons at that specific frequency 
under a certain electrode site (Daffertshofer & van 
Wijk, 2011). When we attempt to enhance a 
frequency and train its amplitude up, for example, 
we set a certain value as the “threshold”: every time 
the brain produces this frequency at amplitudes that 
are at or higher than the threshold, the client 
receives positive feedback, and every time the brain 
produces amplitudes that are lower than this 
threshold, the brain receives negative feedback. The 
opposite is true for frequencies we attempt to 
suppress. In such inhibit frequencies, the client 
receives positive feedback for amplitudes at or 
below the threshold. The threshold determines the 
difficulty level of the training. If placed high in reward 
protocols, or low in inhibit protocols, it may yield 
relatively low success rates, which translates to a 
lower incidence of positive feedback provided to 
clients.  
 
There are different ways of setting training 
thresholds (Vernon et al., 2009). A threshold can be 
a fixed value. This fixed value can be preset, based 
on previous experience, previous results of the 
client, or professional literature, or it can be equal to 
the average amplitudes at rest or a proportion of this 
average; alternatively, it can be a changing value 
designed to yield a fixed success rate (i.e., 

automatic threshold). A common perception among 
clients and clinicians, especially those new to 
neurofeedback, is the harder the training, the more 
efficient it is. The tacit assumption here is the brain 
is like a muscle, and the more “weights” we load 
onto it, the better the results. Sessions conducted 
under this assumption may therefore yield success 
rates of around 30–40% or lower. That is, clients 
would meet the target brainwave activity or go 
beyond it in the desired direction only around 30% or 
40% of the time or less, and the rate of 
compensation would be accordingly low.  
 
In this paper we would like to suggest setting the 
threshold so it yields higher success rates. This will 
yield a higher incidence of positive feedback during 
a session, which is preferable, as it may yield more 
robust clinical results, faster. 
 

The Power of Positive Feedback 
 
As mentioned above, one common way of setting a 
threshold is to place it at exactly the average 
amplitude at baseline. Thus, the client’s brainwave 
activity at rest would go above this value roughly 
50% of the time. Here we suggest setting a 
threshold that is easier to pass (i.e., a lower 
threshold in reward frequencies or a higher 
threshold in inhibit frequencies). This would be one 
yielding significantly more than 50% success rates. 
We believe this is preferable, as it may contribute 
towards a more effective and efficient training. The 
reasons for this are physiological and psychological 
in nature, as detailed below. To explain this, we 
would use a simple protocol as an example, 
sensorimotor rhythm (SMR) up at CZ, but the same 
rationale may hold true for other, more complex 
protocols as well. 
 
In an SMR up protocol, if we use the average 
amplitudes at baseline as the threshold, we provide 
negative feedback to clients every time the 
amplitude is below, or even just below, what it was 
at baseline. However, when we do this, we basically 
provide the brain with negative feedback for 
producing SMR activity that is very close to the 
desired level, even if it does not meet it. This may 
make it harder for the brain to learn the desired 
pattern of activity and in some cases may even 
teach the brain to inhibit it. It was noted in a different 
context that if positive feedback is withheld for an 
activity falling just short of the threshold, this may 
discourage the increase of the desired brainwave 
activity (Hardt & Kamiya, 1976).  
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According to the principles of shaping, we reward 
the brain not only when it meets the criterion (i.e., 
threshold), but also when it comes close to it. This 
way, we indicate to the brain the direction it has to 
shift its activity in order to receive positive feedback. 
Activity very significantly distant from the target 
should not be rewarded, so the brain does not 
unlearn the desired pattern of activity (Davelaar, 
2018). One of the problems with negative feedback 
is it carries little specificity, which makes it harder for 
clients to know how to improve (Reinschluessel & 
Mandryk, 2016). Positive feedback, on the other 
hand, contains such information. While this practice 
is accepted by some for the first stages of training, 
here we suggest that not only at the beginning of 
neurofeedback training but throughout the training 
series, clients should preferably receive more 
positive than negative feedback when training.  
 
Ideally, there should be a gradation of feedback, so 
activity that is very far from the threshold receives 
more negative feedback than activity somewhat 
closer to the threshold. In many neurofeedback 
systems such gradation exists. Ideally, as the brain 
learns the desired pattern of activity and produces 
higher and higher amplitudes on average, the new 
thresholds should be updated accordingly, but still 
allow for higher percentage of positive, compared to 
negative, feedback.  
 
How do we set the thresholds? The optimal 
threshold setting is unknown (Davelaar, 2017) and 
this question remains to be determined in controlled 
experiments. Experience shows setting the 
threshold to around 60–80% of the average 
amplitudes at baseline in reward frequencies, and 
between 120% and 140% of the average amplitudes 
at baseline in inhibit frequencies, may be safe and 
effective in encouraging the brain to change its 
electrophysiological activity in the desired direction 
(Egner et al., 2004; Ros et al., 2009; Vernon et al., 
2009). Success rates at such sessions may be 60–
80%, which is more informative to the brain than the 
50% or so normally achieved when the threshold is 
set to be equal to the average amplitudes at 
baseline (Nam & Choi, 2020). More research must 
be conducted to determine the optimal level of 
thresholds (Vernon et al., 2009). This observation 
finds support also when considering the nature of 
the learning process in neurofeedback, as we 
explain next. 
 

Implicit Learning is Better Achieved With 
Positive Feedback 

 
Neurofeedback is a form of implicit, procedural 
learning, a type of skill learning that can be acquired 
even without conscious awareness (Birbaumer et 
al., 2013; Ramot et al., 2016; Siniatchkin et al., 
2000; Sitaram et al., 2017). The neural network 
engaged in neurofeedback is wide and involves both 
cortical and subcortical structures. Among these, the 
basal ganglia seem to play a major role as a part of 
the corticostriatal loop (Birbaumer et al., 2013; 
Emmert et al., 2016; Koralek et al., 2012; Lam et al., 
2020; Skottnik et al., 2019), with dopaminergic and 
glutamatergic synapses (Sitaram et al., 2017). 
These nuclei are involved in other types of implicit 
learning as well (Heindel et al., 1989; Poldrack et al., 
2001). Their involvement in neurofeedback was 
demonstrated in both human functional magnetic 
resonance imaging (fMRI) studies (Emmert et al., 
2016; Sitaram et al., 2017) and animal studies 
(Koralek et al., 2012; Schafer & Moore, 2011).  
 
Research has shown implicit learning is better 
achieved with correct feedback than with error 
feedback—that is, with positive, rather than negative 
feedback (Loonis et al., 2017). The reason for better 
implicit learning with less error feedback (or 
“errorless learning”) may be that errors cause people 
to use explicit cognitive processes in trying to form 
better strategies for success. This may overload the 
system and, paradoxically, impair implicit learning 
(Chafee & Crowe, 2017; Maxwell et al., 2001; 
Poolton et al., 2005). Loonis and colleagues found 
category-saccade learning, a type of implicit 
learning, improved more after correct choices and 
positive feedback than after incorrect choices and 
negative feedback. They found negative feedback in 
this type of task appears to interfere with the 
learning process: performance worsened after an 
incorrect trial and subsequent reaction times 
increased. In equivalent explicit learning tasks, 
performance was almost the same after positive and 
negative feedback (Loonis et al., 2017). 
Interestingly, Sasaki et al. (2010) suggested 
successful performance of a visual perceptual 
learning task, a form of procedural learning, yields a 
sense of achievement. This serves as an internal 
reward, as opposed to an externally provided 
physical reward. This internal reward, in turn, 
reinforces the implicit learning of task-irrelevant 
features, which are presented simultaneously as the 
task-relevant features (i.e., implicitly). Similarly, 
Shibata and coauthors found fake, larger-gradient 
positive feedback enhanced performance on visual 
perceptual learning more than genuine feedback. 
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They suggested the same reason: positive feedback 
was perceived by subjects as a form of praise, and 
this has implicitly facilitated learning (Shibata et al., 
2009). Task-irrelevant learning may occur only if the 
irrelevant stimuli or features are presented 
subliminally, so the conscious attention system does 
not detect them (Tsushima et al., 2008). The 
evaluation of one’s performance by the feedback 
provided seems to be performed by the frontal 
cortex, and this evaluation directs the basal ganglia 
and part of the forebrain to control the rate of 
implicit, perceptual learning (Shibata et al., 2009).  
 
This phenomenon is also demonstrated with 
amnesiacs, in whom the hippocampus is damaged. 
The ability of such patients to acquire explicit 
learning is compromised, whereas their ability to 
acquire implicit learning is relatively intact. Amnesia 
patients perform skill learning, a type of implicit 
learning, better when correct (positive) rather than 
error (negative) feedback is emphasized (Evans et 
al., 2000). In this case, however, an alternative 
explanation may be that amnesiacs have difficulty 
remembering and employing explicit cognitive 
strategies. They therefore perform better with 
“errorless learning” than with “errorful learning.” Also, 
off-medication Parkinson’s disease patients, who 
have basal-ganglia damage, learned procedural 
tasks better when punishment was employed as 
feedback rather than reward (Argyelan et al., 2018). 
Once back on medication, dopamine medications 
changed this pattern, so the patients acquired 
procedural learning better from reward than from 
punishment. This may stress the importance of the 
basal ganglia, a key component in neurofeedback 
learning as well, in acquiring procedural learning 
from positive feedback or reward. 
 
Neurofeedback is considered by most an implicit 
form of learning (Lam et al., 2020; Ramot et al., 
2016; Siniatchkin et al., 2000). Since implicit 
learning is better achieved with positive feedback, 
this may yield further support to the observation that 
neurofeedback sessions should be conducted with a 
relatively high incidence of positive feedback. 
Sessions conducted this way may be more efficient 
and effective than sessions conducted with equal or 
higher incidence of negative feedback.  
 
Maxwell and colleagues suggested errorful learning 
relies more on explicit processes and involves 
hypothesis testing about different strategies 
(Maxwell et al., 2001). Kober and coauthors 
proposed testing of strategies for success in 
neurofeedback imposes a cognitive load on trainees, 
which may harm their performance. They advise that 

neurofeedback training is better performed without 
employing such conscious, explicit strategies (Kober 
et al., 2013). Lam and colleagues found error 
monitoring networks are of lesser relevance to 
neurofeedback learning (Lam et al., 2020), which 
again stresses the fact that neurofeedback may be 
based more on learning from positive feedback than 
error feedback. Naturally, a certain percentage of 
negative feedback is necessary, but more positive 
than negative feedback is preferable. 
 

Some Additional Considerations in Favor of 
Employing High Rates of Positive Feedback 

 
To be effective, positive feedback should preferably 
be provided more often than negative feedback. This 
would be the case when we set the threshold lower 
than the average baseline amplitudes for reward 
frequencies, and higher than average baseline 
amplitudes for inhibit frequencies. In addition to the 
physiological and learning-related aspects discussed 
above, there are also psychological considerations 
in favor of employing more positive than negative 
feedback in neurofeedback training sessions. 
 
When the session is too difficult, with relatively low 
levels of positive feedback, clients tend to try to 
artificially control the feedback. They do so 
unconsciously by shifting in their chairs, touching the 
sensors, moving their arms, legs, or facial muscles, 
or otherwise trying to control the feedback with their 
muscles rather than with their brainwave activity. 
This interferes with the session and training process 
and decreases the chances learning occurs.  
 
It was found that negative feedback may demotivate 
participants (Reinschluessel & Mandryk, 2016) and 
make them avoid participating in a task, even when 
the task is an otherwise enjoyable game (Lin et al., 
2006). When clients are children, they may refuse to 
continue a neurofeedback session, without being 
able to verbalize the reason for their refusal. This 
may affect their motivation to complete the 
remainder of the training series. Some adult clients, 
especially people who are anxious or depressed, 
tend to judge themselves harshly for their 
performance. If such clients believe they are not 
receiving enough positive feedback, they tend to 
interpret it as if they are failing to perform the 
training satisfactorily. This may cause them to be 
stressed, tense, and anxious and, as a result, they 
may try to control the feedback by exerting 
excessive mental effort. As mentioned earlier, such 
an effort may be counterproductive. Kober et al. 
(2013) have shown exerting mental effort and trying 
to consciously control the feedback causes cognitive 
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overload that may hamper learning. This could also 
cause fatigue relatively early in the session, which is 
counterproductive for successful training (Shourie et 
al., 2018). The optimal way of training appears to be 
by releasing conscious control, keeping an open 
focus, and letting the brain naturally process the 
feedback and respond to it (Fehmi & Robbins, 
2008). To ensure this, clients must be relaxed, and 
this state cannot be achieved when clients receive a 
high rate of negative feedback. 
 
Clients may be more comfortable and motivated to 
cooperate when thresholds are easier to pass. A 
high incidence of positive feedback boosts their 
confidence, and this may have a beneficial effect on 
their motivation, cooperation, and consequently, on 
their overall success in the training (Van Doren et 
al., 2017). Positive feedback produces signals of 
internal reward, and this in turn may enhance implicit 
learning (Sasaki et al., 2010). Even when the 
positive feedback is false, it may still boost learning, 
for the same psychological reasons (Shibata et al., 
2009). In support, motivational factors were 
positively correlated with Brain-Computer Interface 
(BCI) performance (Barbero & Grosse-Wentrup, 
2010; Nijboer et al., 2010). Motivation and mood 
were found to be at least moderate predictors of 
success in neurofeedback and BCI training (Cohen 
Kadosh & Staunton, 2019). 
 
Attention is another factor crucial for neurofeedback 
learning. Setting the threshold too high in reward 
protocols, or too low in inhibit protocols, so the 
difficulty level is high and the incidence rate of 
positive feedback is low, may harm the client’s ability 
to be attentive for the duration of the session and 
interfere with the learning process (Cohen Kadosh & 
Staunton, 2019).  
 
In summary, if the threshold is set so the training 
difficulty level is high, then too little feedback 
information is provided for the brain to learn from. 
This may frustrate clients, demotivate them, hamper 
their mood, and may be too taxing for them in terms 
of their attention resources. Clients may try to control 
the feedback with their muscle activity and even 
refuse to continue training, if too little positive 
feedback is provided. This is especially true for the 
first few sessions a naïve neurofeedback client 
performs but is also true for more experienced 
trainees as well. Working with thresholds yielding 
higher success rates and higher incidences of 
positive feedback may be preferable. This is 
particularly the case with young children or anxious 
adults. This may allow for better learning and better 
clinical results. However, if the threshold is set so 

the session is too easy, this may be 
counterproductive. Both too little and too much 
positive feedback may inhibit clients’ ability to learn 
to self-regulate (Vernon et al., 2009). 
 

Supporting Research and Evidence 
 
Support for the observation that thresholds yielding 
a higher incidence of positive feedback are 
preferable comes from clinicians and researchers, 
who have employed such thresholds. For example, 
Thompson and Thompson (1998) stated that for 
reward frequencies, the threshold is set 0.2 to 0.6 
microvolts lower than the client’s average, whereas 
for inhibit frequencies, the threshold is set 1 to 2 
microvolts higher than the client’s average. Others 
have placed the threshold at 80% of the baseline 
average of the reward frequency, and at 120% and 
even 160% of the baseline average of the inhibit 
frequency (Egner et al., 2004; Ros et al., 2009). Ros 
et al. (2017) used thresholds that yielded 60% 
positive feedback and 40% negative feedback. 
Lubar suggested when clients get stuck on a plateau 
in their learning curve and show no progress in 
neurofeedback training, to set the threshold lower, 
so that they receive more positive feedback (Ayers 
et al., 2000). Van Doren and coauthors showed that 
when ensuring clients receive at least 50% positive 
feedback during neurofeedback, their performance 
improves compared to thresholds yielding lower 
reward incidence in an alpha-theta protocol (Van 
Doren et al., 2017). Others reported using at least 
70% positive feedback (White & Richards, 2009). In 
addition, Davelaar (2017) found in a computational 
analysis of a neurofeedback protocol that lower (that 
is, “easier”) thresholds were associated with faster 
learning and higher (that is, “tougher”) thresholds 
were associated with unlearning the target pattern of 
activation. Vernon et al. (2009) noted that, in studies 
employing alpha enhancement protocols, thresholds 
have been placed anywhere between 50% and 85% 
the amount of alpha seen at rest. This makes 
training easier than with a threshold set at 100% the 
average amplitude at baseline (Vernon et al., 2009). 
In reference to Knox (1980), who suggested a range 
of possible thresholds, Vernon and colleagues noted 
that thresholds exceeded by 75% during resting 
baseline period would probably be both easier and 
more effective for training than thresholds exceeded 
by lower percentages, because with higher 
percentages clients receive more feedback 
information (Vernon et al., 2009).  
 
A recent pioneering study by Nam and Choi (2020) 
has yielded empirical results lending support to this 
thesis. The researchers found in an SMR 
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enhancement session, setting the training threshold 
so subjects receive more reward (80% reinforcement 
rate) was more effective than setting it so subjects 
receive less reward (50% and 30% reinforcement 
rates). 
 
An fMRI study revealed that during the first training 
session, neurofeedback signals of failure (i.e., 
negative feedback) were correlated with 
deactivations in the precuneus/posterior cingulate. 
Neurofeedback signals of success were correlated 
later in the process with deactivations in the medial 
prefrontal/anterior cingulate cortex (Radua et al., 
2018). The level of deactivation in the anterior node 
predicted the efficacy of the training in reducing 
anxiety. These results indicate a higher sensitivity to 
signals of failure at the beginning of neurofeedback 
learning and to signals of success later in the 
learning. In the earlier stages of neurofeedback 
learning, clients may be apprehensive about their 
ability to learn from feedback and may consequently 
try to control the feedback consciously. Later, but 
still at an early stage of learning, this kind of learning 
diminishes, and learning from positive feedback 
takes the leading role in the training process. The 
only predictor of neurofeedback success in Radua et 
al.’s (2018) study was the level of deactivations in 
the anterior node. For most participants, this shift 
occurred as early as the middle of the first session. 
This study yields further support to the observation 
that learning from positive feedback has a central 
role in neurofeedback. 
 
During operant conditioning, following the delivery of 
reward, an alpha-like activity called 
postreinforcement synchronization (PRS) occurs 
(Collura, 2014), the amount of which is related to the 
speed of learning (Marczynski et al., 1981). It was 
previously suggested that meaningful information is 
too difficult to extract from complex neurofeedback 
games, and such games do not allow for PRS to 
occur (Sherlin et al., 2011). Employing the same 
reasoning, it may be the case that neurofeedback 
training that is too difficult (i.e., does not provide 
enough positive feedback), may not allow for the 
PRS complex to occur and therefore may hamper 
learning. Indeed, it was demonstrated that cognitive 
tasks of high-load (Sterman et al., 1993) or low-
desirability of the reward (Clemente et al., 1964) 
interfere with PRS. 
 
There have been researchers who placed the 
threshold above the average amplitudes at baseline 
in reward frequencies and below the average 
amplitude at baseline in inhibit frequencies so 
success rates and reward incidence were lower 

(Sterman & Egner, 2006). It has been claimed that 
placing the threshold this way may make the training 
tedious for clients (Othmer, 2009). In addition, in 
terms of information-theory, the brain may not 
receive enough feedback information to work with. 
Increasing the reward incidence makes the session 
more rewarding and engaging, and the training more 
efficient (Othmer, 2009).  
 
Some have objected, on theoretical grounds, to 
employing very high reward rates, but admit training 
this way yields good clinical results (Othmer, 2009). 
Still, it is important not to “choke” the system. The 
threshold should not be set so low that we would be 
rewarding too little of the desired activity, because 
we would then be training the brain to inhibit the 
desired activity. It has been shown in other contexts 
of learning that when clients can earn very large 
rewards, this harms their performance level (i.e., the 
“choking” effect of very large rewards; Mobbs et al., 
2009). The striatum may be involved in this 
phenomenon (Chib et al., 2012), which seems to 
have a dopaminergic basis (Mobbs et al., 2009). 
 

Summary and Discussion 
 
The importance of feedback parameters to the 
success of neurofeedback training cannot be 
overrated. The way the threshold is set has a crucial 
effect on learning in neurofeedback (Vernon et al., 
2009), and placing the threshold too high or too low 
may yield either no response or a response opposite 
to the desired target behavior (Davelaar, 2017). 
Debates about thresholding have been continuing 
for quite some time. Despite the importance of 
thresholding, there is not enough research on the 
topic (Nam & Choi, 2020; Van Doren et al., 2017; 
Vernon et al., 2009).  
 
Different types and modalities of feedback yield 
different levels of success in training. Feedback can 
be visual, auditory, or tactile; it can be proportional 
or binary, immediate or delayed, simple or complex. 
Visual feedback that is proportional, immediate, and 
simple seems to better support learning (Strehl, 
2014). There are also different schedules of 
reinforcement (e.g., continuous or intermittent; 
Sherlin et al., 2011) and research is continuing to 
determine which may be more effective. Feedback 
can be provided in different ways and affect clinical 
outcomes. Regardless of the feedback method 
selected, a higher rate of positive feedback (i.e., 
more positive than negative feedback) may be 
preferable.  
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Neurofeedback is considered an implicit form of 
learning (Birbaumer et al., 2013; Emmert et al., 
2016; Sitaram et al., 2017). Research has shown 
implicit learning is better acquired when more 
positive than negative feedback is given to 
participants (Loonis et al., 2017). In fact, the power 
of positive feedback is so strong, that even false 
positive feedback may enhance learning (Sasaki et 
al., 2010; Shibata et al., 2009). In addition, 
psychological factors related to motivation, positive 
affect, mood, self-confidence, and attention 
contribute to this phenomenon as well (Barbero & 
Grosse-Wentrup, 2010; Cohen Kadosh & Staunton, 
2019; Curran & Stokes, 2003).  
 
Higher levels of positive feedback in the initial 
stages of training are in accordance with the 
principles of shaping (i.e., even behaviors that do 
not meet the target are initially rewarded). But it 
seems that in neurofeedback, like in other forms of 
implicit learning, clients should receive more positive 
than negative feedback not only at the beginning of 
training but also in later stages of the training series. 
If the threshold is set so that it is relatively easy to 
pass and produces larger rates of positive feedback, 
implicit learning is more easily acquired, clients are 
more motivated and cooperative, and training 
becomes more effective and efficient. This may 
facilitate and shorten the process of fine-tuning the 
protocol selection process and help clients acquire 
brainwave self-regulation faster. It may therefore 
decrease the amount of time required to achieve the 
training goals. It may also prevent clients from 
dropping out due to lack of initial response. Utilizing 
a 10-minute-long session design, Nam and Choi 
(2020) have provided some preliminary empirical 
evidence that higher success rates in neurofeedback 
yielded better results. Research should be 
conducted to empirically validate the observation 
that in longer sessions and in later stages of the 
training as well, higher levels of positive feedback 
should be employed to achieve more efficient 
learning.  
 
Reward alone may be less effective than a 
combination of reward and punishment (Klöbl et al., 
2020). Having punishment is motivating too—the 
motivation to avoid it—and is important for learning 
(Mohammadi et al., 2018).  
 
There are some accounts that different personality 
types respond differently to negative and positive 
feedback (Frank et al., 2005). For example, 
extroverts learn better from positive feedback and 
introverts learn better from negative feedback 
(Boddy et al., 1986). This distinction has not yet 

been given sufficient attention in neurofeedback 
research. Experience shows both personality types 
seem to benefit from neurofeedback training with 
relatively high rates of positive feedback, probably 
due to the implicit nature of neurofeedback learning.  
 
Given the importance of positive feedback in 
neurofeedback training, it is possible some studies 
that did not find a robust effect for neurofeedback 
were employing thresholds yielding lower levels of 
positive feedback. Thus, information about the way 
thresholds were set and consequent success rates 
should be provided in neurofeedback research 
studies (Van Doren et al., 2017).  
 
Some studies that used automatic thresholding to 
keep a high reward rate constant (80%) failed to find 
any specific effects for neurofeedback (Lansbergen 
et al., 2011; Logemann et al., 2010). The problem in 
such studies may not lay with the high reward rate, 
but with the fact that the threshold was automatically 
adjusted every 30 seconds to keep this rate 
constant. With such settings, no matter what the 
clients were doing, they were rewarded at the same 
rate, which may have, in fact, trained them in 
opposite directions at times (Ayers et al., 2000; 
Sherlin et al., 2011).  
 
Using positive reinforcement in neurofeedback 
games is more efficient than using negative 
reinforcement (Reinschluessel & Mandryk, 2016). A 
plausible strategy for training in neurofeedback 
systems that use negative reinforcement (e.g., 
systems in which the game freezes when 
brainwaves do not meet the target) may be to 
reframe the feedback by asking clients to view the 
negative state (i.e., the frozen game) as the default 
state, and the removal of this state as a reward for 
their achievements.  
 
Lastly, research should be conducted to determine 
whether a higher rate of positive than negative 
feedback is effective in all types of protocols and 
frequency bands or only in some of them; in all kinds 
of neural indices or just in part of them; with all forms 
of neurofeedback or only with specific feedback 
modalities; for all clients or for only specific clinical 
populations or personality types. Once these 
questions are empirically answered, the field of 
neurofeedback may take a substantial leap forward. 
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