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Abstract 

There are some reports on the impact of binaural acoustic beat (BAB) training on motor learning. The current 
study aimed to explain the possible influences of alpha BAB on motor learning in young and older adult 
individuals. To this end, 26 male participants were assigned to four parallel groups: two alpha BAB groups 
(young, older adults) and two control groups (young, older adults). The alpha BAB groups received alpha BAB for 
30 min, whereas examinees in the control groups just wore headphones without listening to any music over the 
experiment period. The digital mirror-tracing task was employed to examine the subjects’ motor performance 
simultaneously with quantitative electroencephalography and after the intervention. In the mirror-tracing task, a 
significant decrease in the number of errors was found only for the older adults who received alpha BAB. 
Meanwhile, the reaction time decreased significantly in the young Alpha BAB group. Alpha BAB was associated 
with a notable increase in alpha current source density dynamics in the young subjects and enhanced beta, high 
beta oscillations, and gamma power in the older adults. Our findings suggest that alpha BAB might improve motor 
performance in older adults and young individuals through different patterns. 
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Introduction 

 
Motor learning is essential for processing most 
activities in daily living. Motor aptitude is also found 
to be involved in social skills and professional 
requirements (Haar et al., 2020). Several cortical 
and subcortical brain areas are known to be 
implicated in motor learning, including the primary 
motor cortex (M1), the supplementary motor area 
(SMA), the premotor cortex (PMC), the cerebellum 
(C) the cingulate cortex (CC), and basal ganglia 
(Halsband & Lange, 2006; Hardwick et al., 2013). 
 

There have been few studies investigating 
neuromodulation or any intervention to preserve or 
enhance motor learning capacity across the lifespan 
(Maceira-Elvira et al., 2020; Wang, Xiao, et al., 
2021). In previous studies, objective assessments 
using some behavioral or motor tasks demonstrated 
learning capacity decline in the older adults (Frolov 
et al., 2020; Nieborowska et al., 2019), which could 
be partly attributed to the normal aging process 
(Iturralde & Torres-Oviedo, 2018; King et al., 2013; 
Roig et al., 2014). 
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To either improve or empower cognitive or 
neurobehavioral aptitude, there are three different 
approaches to neuromodulation including the 
noninvasive, minimally invasive, and invasive 
interventions. Minimally invasive interventional 
methods, such as transcranial magnetic stimulation 
(TMS) and transcranial direct current stimulation 
(tDCS), involve surface-level interventions, 
minimizing the risk of complications. On the other 
hand, noninvasive techniques are mostly diagnostic 
or investigational. For instance, quantitative 
electroencephalography (qEEG) and functional 
magnetic resonance imaging (fMRI) offer a window 
into brain activity without physical penetration, 
enhancing safety but sacrificing some precision. 
Invasive procedures, exemplified by deep brain 
stimulation (DBS) and intracranial 
electroencephalography (iEEG), provide a more 
targeted and continuous modulation of neural 
circuits but come with increased surgical risks. 
 
In recent years, several forms of minimally invasive 
brain stimulation techniques such as repetitive 
transcranial magnetic stimulation (rTMS; Taga et al., 
2019), tDCS (Rivera-Urbina et al., 2022), and 
binaural acoustic beat (BAB; Ross & Lopez, 2020) 
have been investigated as attractive 
nonpharmaceutical alternatives to improve or 
empower motor processes in patients and healthy 
subjects, respectively. 
 
BAB is a minimally invasive neuromodulation 
method in which the brainwaves can be altered 
through acoustic wave training differentially 
delivered to both ears. In BAB, two sinusoidal waves 
(tones) are presented to each ear separately with 
different frequencies which may range from 1 to 60 
Hz (Oster, 1973; Perrott & Nelson, 1969). Objective 
findings have postulated that this process causes a 
third illusory tone in the brain with a frequency that is 
equivalent to the difference between the two 
presented tones, called BAB (Chaieb et al., 2015). 
 
The BAB training is shown to help individuals to 
boost creativity (Ortiz et al., 2008), relieve stress and 
anxiety (Norhazman et al., 2014; Young et al., 2014), 
modify moods (Chaieb et al., 2015; Wahbeh et al., 
2007) and even alleviate some symptoms and 
disorders such as tinnitus (Ibarra-Zarate et al., 2022), 
depression (Sung et al., 2017), and anxiety (Kraus & 
Porubanová, 2015) through a subjective sense of 
perceived calmness, self-awareness, and 
neurocognitive agility which have partly been 
investigated through objective findings in several 
research works (Coffey et al., 2019; Garcia-Argibay 
et al., 2019a, 2019b; Haar et al., 2020; Huang & 

Charyton, 2008; Mammarella et al., 2007; Perez et 
al., 2020; Tarr et al., 2014). 
 
Alpha wave is regarded as the dominant human 
brainwave in resting state (Halgren et al., 2019) and 
is found to be related to fundamental cognitive 
functions (Klimesch, 2012). The alpha activity has 
also been demonstrated to play a central role motor 
performance (Ghasemian et al., 2016) and learning 
(Schubert et al., 2021). 
 
While being innately generated by the brain, alpha 
waves can simultaneously be induced in the brain by 
external stimuli such as BAB (Gao et al., 2014). 
 
Some earlier reports have highlighted the effects of 
alpha BAB in clinical populations and healthy 
individuals (Beauchene et al., 2017; Goodin et al., 
2012). The effect of BAB on enhancing memory 
function through increased alpha waves has been 
studied in older individuals with neurocognitive 
disorders such as Alzheimer's (Calomeni et al., 
2017) and Parkinson's disease (Gálvez et al., 2018) 
and also in healthy subjects (Benwell et al., 2019). 
However, to our best knowledge, the possible 
effects of BAB on motor learning and motor task 
performance and its possible efficacy in remediating 
age-related decline in motor function have not been 
systematically examined yet. Therefore, the purpose 
of the current study was to investigate the possible 
effects of alpha BAB on motor learning and motor 
performance in younger and older populations using 
a motor task and concurrent qEEG recording. 
Considering the inconclusive evidence on the 
research question and the empirical nature of the 
present work, we hypothesized that alpha BAB 
might improve motor learning and ideomotor 
performance in our studied young and older adult 
populations as compared to the control peers who 
did not receive the BAB intervention. 
 

Materials and Methods 
 
Participants  
Twenty-six right-handed participants including 12 
older males with an age range of 55–70 years 
(mean age = 62 ± 5/64) and 14 young males with an 
age range of 20–30 years (mean age = 24 ± 2/51) 
were randomly assigned to four parallel groups. 
There were two experimental groups (young, older 
adults) and two control groups (young, older adults) 
in this double-blinded, controlled randomized study. 
The experimental groups (i.e., alpha BAB treated), 
received alpha wave BAB as described in an earlier 
report (Garcia-Argibay et al., 2019b). The control 
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groups received no intervention during the study 
session while wearing the headphone.  
 
All participants were examined by a medical 
neuroscientist for mental disorders, learning 
disabilities, hearing problems, or difficulty performing 
new motor tasks and they were confirmed to be in 
proper neurocognitive health status. 
 
The study was approved by the Ethics Committee of 
the Shiraz University of Medical Science 
(Institutional review board approval code: 26819). All 
participants read and signed the informed consent 
for the research procedure. The entire procedure 
was done at the Neuroscience Laboratory (Brain, 
Cognition and Behavior Unit) at the School of 
Advanced Medical Sciences and Technologies, 
SUMS. 
 
Participants were asked not to exercise, smoke, or 
use alcohol or medications 24 hours before the test. 

Study Design 
In a quiet room, the participants sat on a comfortable 
chair located 80–100 cm away from the computer 
screen. They were required to be relaxed and 
minimize their movement as much as possible. 
Before the experiment, the volume gain of alpha 
BAB was set at 60% by the participants through the 
headphones (MDR-XB450AP). The alpha BAB 
groups (young and older adults) were instructed to 
relax and listen carefully to the alpha BAB through 
headphones for 30 min. The control groups placed 
headphones on their heads for the same time 
without alpha BAB. The participants were asked to 
keep their eyes closed during the experiment. All 
participants (alpha BAB, control) rested for 30 min. 
After that, they performed mirror-tracing tasks three 
times. A 3-min eyes-open resting-state EEG was 
recorded. After that, the mirror-tracing task was 
performed for the fourth time. Figure 1 demonstrates 
the study protocol. 

 
 

Figure 1. The Study Procedures for the Alpha BAB and Control Groups (Young and Older Adults).  

 
Note. The alpha BAB groups (young and older adults) received alpha BAB for 30 min. After a 30-min rest, the 
mirror-tracing task (three trials) was performed. Then, resting-state EEG was recorded for 3 min. Later, the 
mirror-tracing task (one trial) was performed simultaneously with EEG recording. The control groups (young 
and older adults) just wore headphones without listening to any sound while their other experiments were 
identical to the alpha BAB groups. 
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Motor Learning Assessment (Mirror-Tracing 
Task) 
The digital mirror-tracing task was used to evaluate 
motor learning through visual-motor interaction 
(Desmottes et al., 2017). All subjects performed the 
mirror-tracing task (RT - 912 – T, Sina Psychology, 
Tehran, Iran). In this task, subjects were asked to 
move a stylus with their right hand to trace the brass 
star while they were allowed to look only at the 
reflection of their right hand in a mirror (Gabrieli et al., 
1993). A digital timer and error recorder were 
attached to the metal stylus for recording both the 
task time and the number of errors. When the stylus 
came out of the star and touched the star borders it 
complemented an electrical circuit and an error was 
recorded. The star track was 6 mm wide. This task 
was performed four times, and the number of errors 
and task time were recorded as an index for 
assessing motor learning aptitude. 
 
Alpha BAB Stimulation 
To induce an alpha binaural beat at a frequency of 
10 Hz, a tone of 220 Hz was presented to one ear 
and a tone of 230 Hz was presented to the other ear 
in accordance with Kraus and Probanova's protocol 
(Kraus & Porubanová, 2015). 
 
In this regard, the Alpha frequency was produced by 
Audacity software (version 2.2) and Adobe Audition 
CC (version 2017). 
 
EEG Recording  
Several methods can be used to measure motor 
learning and control, one of which is 
electroencephalography (EEG), also known as the 
neural technique (Beik et al., 2020). In fact, EEG is a 
good tool to analyze neural correlates for both 
simple and complex movements in humans 
(Bradford et al., 2016; Pfurtscheller et al., 2003).  
 
The EEG data were recorded using the Epoc+ EEG 
headset (Emotiv, USA) which included 16 wet saline 
electrodes and two reference electrodes, providing 
14 EEG channels. According to the international 10-
20 system, a total of 14 electrodes were placed on 
the skin surface in the following locations (Yu & Sim, 
2016): AF3, F3, F7, FC5, T7, P7, O1, O2, P8, T8, 
FC6, F4, F8, AF4  to record the five well-known 
frequency bands, namely theta (4–8 Hz) alpha (8–12 
Hz), low beta (12–16 Hz), high beta (16–25 Hz) and 
gamma (25–45 Hz; see Figure 2).  
 
In this study, reference electrodes (CMS/DRL) were 
placed on P3 and P4. The quality of the EEG signal 
was checked using the Test Bench software. The 
collected raw data were processed offline using 

NeuroGuide software (v. 3.0.2 2001-2018 Applied 
Neuroscience Inc. USA). Artifacts such as eye 
movements, motion or muscle artifacts were 
detected and removed by an EEG expert. Based on 
the NeuroGuide qEEG normative database, fast 
Fourier transform (FFT) was used to compute the 
absolute power.  
 
 
Figure 2. Emotive Headset Sensors Placement and Fitting 
(Left Panel), 16 Channel qEEG Montage and Alpha BAB 

(8.67 Hz), 60% Gain Setup (Right Panel). 

 
 
Statistical Analysis  
All statistical tests were performed with GraphPad 
Prism (GraphPad Software Inc., San Diego, CA, 
USA) and the SPSS statistical package (Version 
26.0.0, Copyright IBM, 2018). Descriptive statistics 
were computed for each group. The Kolmogorov-
Smirnov test was used to investigate the normal 
distribution of data. To analyze the differences 
between control groups (young and older adults) 
and alpha BAB groups (young and older adults), a 
series of independent sample t-tests were run for the 
data with normal distribution and homogeneity of 
variance. 
 
The differences between alpha BAB groups (young 
and older adults) and control groups (young and 
older adults) were evaluated by calculating the mean 
± the standard error of the mean, for several 
parameters, including the number of errors and task 
time in the mirror-tracing task. An independent 
sample t-test was conducted to compare qEEG data 
in alpha BAB groups (young, older adults) and 
control groups (young, older adults); p < .05 was 
considered statistically significant. 
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Results 
 
Motor Learning Assessment (Mirror-Tracing 
Task) 
The results in the control and alpha BAB groups of 
older adult individuals showed no significant 
difference in the task time (p = .407; Figure 3, A) 
while there was a statistically significant difference in 
the task time between the young individuals in the 
control and alpha BAB (p = .015) groups (Figure 3, 
B). There was a significant difference between both 
groups in older adult individuals in the number of 
errors (p = .042; Figure 3, C) but there was no 
significant difference in terms of the number of errors 
in young individuals between the control and alpha 
BAB groups (p = .06; Figure 3, D). 
 
Figure 3. Box Plots Illustrate the Average of Each Task 
Time and the Number of Errors in the Mirror-Tracing Task 
in the Control Groups (Young, Older Adults) and the Alpha 
BAB Groups (Young, Older Adults). 

 
Note. Panel A shows no significant difference in task time 
between the control and alpha BAB groups of the older 
adult participants (p > .05). Panel B demonstrates the 
difference in task time between the control and alpha BAB 
groups of young individuals (p < .05). Panel C indicates 
the difference in the number of errors between the control 
and alpha BAB groups in the older adult participants  
(p < .05). Panel D displays no significant difference in the 
number of errors between the young control and alpha 
BAB groups (p > .05). 
 
* significant difference between the groups p < .05 
ns nonsignificant difference between the groups p > .05 

EEG Absolute Power  
The results revealed a statistically significant 
difference in the absolute power between the older 
adults control group and the older adults alpha BAB 
group (Figure 4, A). Electrical neural imaging data in 
the older adult subjects who received and did not 
receive alpha BAB confirmed the special and 
spectral distribution of beta and high beta in bilateral 
frontocentral cortical regions while this has been 
localized in the left frontocentral cortical zone for the 
gamma frequency band. However, in the young 
groups, our result showed a statistically significant 
difference in the absolute power of theta, alpha and 
beta frequency bands (p < .01) (Figure 4, B). 
 

Discussion 
 
The effect of alpha BAB on the distribution and 
amplitude of the alpha frequency band in the 
premotor and motor cortex as well as its impact on 
the process of motor learning has not been 
systematically evaluated so far. Our study was an 
attempt to investigate the possible impacts of alpha 
BAB on the neural dynamics of alpha oscillation 
within the motor cortices and motor performance in 
both older and young individuals. Our results 
demonstrated that the older adult subjects who 
received alpha BAB had a significantly lower number 
of errors upon performing mirror-tracing tasks 
compared to their age-matched control group. 
Meanwhile, the task performance time by older adult 
subjects did not differ between the alpha BAB group 
and the control group. 
 
On the other hand, our study investigated the impact 
of alpha BAB and motor performance amongst 
young individuals. Although no significant difference 
was observed between the young group receiving 
alpha BAB and their controls in the number of errors 
in the mirror-tracing task, the intervention resulted in 
a notable or statistically significant difference 
concerning task performance time in young 
individuals. In other words, it took less time for the 
young individuals who received alpha BAB to 
perform the mirror-tracing task as compared to the 
young individuals who did not receive alpha BAB. 
 
Regarding the effect of Alpha BAB on the number of 
errors in the mirror tracing between the age groups, 
a reduced number of errors in both older and young 
individuals receiving Alpha BAB compared to their 
age-match control suggests a potential positive 
effect of Alpha BAB training on motor learning; 
however, the reduction was just statistically 
significant in the older adult group.  
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Figure 4. QEEG Topographical Spectral Brain Maps. 
 

 
 

Note. FFT absolute power independent t-test (p-value) results across spectra during motor 
learning tasks in older adult groups (A; control and alpha BAB) and young groups (B; control 
and alpha BAB). Colors indicate the significance level. 

 
 
Features including time and precision, are the two 
main indicators that define motor aptitude (Shekar et 
al., 2018).  
 
Our motor learning results were in line with the 
findings that we observed in concurrent EEG 
recording during mirror-tracing task administration. 
According to our EEG results, despite its high beta 
and theta oscillation performance, alpha BAB 
caused a significant gain in alpha dynamics in young 
people. The spectral distribution of alpha and low 
beta bands in frontocentral cortical hubs is 
consistent with an improved motor sequential 
planning, which has already been observed in the 
alpha BAB-treated young subjects. Yet, this has not 
been the case for theta and high beta frequency 
bands. A denser EEG array and further statistical 
analysis on different features and parameters across 
frequency spectra may shed further light on the 
possible involvement of cortical, and subcortical 
neural structures, which justify and improve motor 
performance speed, which was observed in young 
individuals who received alpha BAB.  
 
Alpha BAB in the older adult subjects resulted in an 
enhanced current source density at beta, high beta 
oscillations, and bilateral frontocentral derivation. 
Interestingly, the increased gamma power has been 
localized in the left frontocentral cortical region, 
which is responsible for right-hand dexterity. 

Our brain mapping results demonstrated an 
increased current source density in frontocentral 
derivations in young individuals who received alpha 
BAB. Meanwhile, this has not been the case in the 
frontopolar and occipital parietal areas. Given the 
fact that inferior frontal and frontocentral derivations 
are the cortical areas corresponding to 
supplementary and association motor cortices, 
enhanced alpha BAB in those areas (supplementary 
motor area [SMA] and cingulate motor area [CMA]) 
are proposed to result in improved motor sequential 
planning. 
 
One of the main key parameters which correlate with 
motor sequential planning is the time to perform a 
motor task (Shekar et al., 2018). Mirror-tracing test is 
a task that requires both attention and performance 
speed (Woodard & Fairbrother, 2020). 
 
Alpha BAB was found to improve the performance 
speed. Given the improved performance speed, it 
might be expected that motor sequential planning is 
positively affected and that in turn corresponds to an 
increased current source density gain (CSD) in 
supplementary SMA and CMA cortical/subcortical 
structures. The reason why alpha BAB has resulted 
in the CSD and a special distribution of not only beta 
and high beta but even faster frequencies, including 
gamma in bilateral frontocentral and left 
frontocentral cortical regions, respectively, has not 
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been up to our expectations. We were expecting to 
observe enhanced alpha dynamics upon alpha BAB 
either in both young and older adult subjects. 
Nonetheless, while we observed an improved 
distribution of alpha in frontocentral and bilateral 
inferior frontal cortical areas, this has not been the 
case for the alpha frequency band in the older adult 
group. Instead, we have observed a significant 
increase in the neural dynamics of higher frequency 
bands, including beta, high beta, and gamma, which 
corresponds to motor aptitude. 
 
Elder individuals completed the mirror-tracing task 
with fewer errors following alpha BAB, which 
suggests better motor aptitude; this is partly related 
to the function of the primary motor cortex rather 
than supplementary motor areas. Taking these 
findings together, it might be speculated that alpha 
BAB might at least partly impact the dynamics of the 
neural oscillations and the motor performance 
outcome amongst the people who were submitted to 
the mirror-tracing task. Interestingly, the time to 
perform the mirror-tracing task was mostly affected 
by alpha BAB in young individuals, whereas no 
change in the task performance time was observed 
in older adult subjects after alpha BAB intervention. 
 
The significance of maintenance and improvement 
of motor learning and related motor aptitude is 
emphasized in specific populations whose daily life 
or job-related responsibilities involve motor skills 
(Haar et al., 2020). Motor skill is normally considered 
a dynamic change that occurs throughout life by 
motor learning (Hadders-Algra, 2010) based on 
neuroplasticity (Dayan & Cohen, 2011) and rewiring 
within the neural networks (Askim et al., 2009; Wang, 
Fan, et al., 2013) that control the speed, precision, 
and aptitude of motor performance (Kitago & 
Krakauer, 2013). 
 
Earlier studies have indicated that motor learning 
and planning might get impaired as we age (Frolov 
et al., 2020; Grose & Mamo, 2012; Nieborowska et 
al., 2019; Solcà et al., 2016) which might be at least 
partly due to the possible impairments of 
neuroplasticity and neurodynamic changes over time 
(Park & Bischof, 2013; Seidler et al., 2010). The 
previously published body of scientific evidence 
suggests that the motor learning impairment or 
decrease in the learning capacity of motor skills in 
older adult individuals who have not been trained for 
motor skills over time might be due to 
neurodegenerative changes. (Gale et al., 2018; 
Newson & Kemps, 2005; Wang, Zhang, et al., 2019; 
Wenk et al., 1989). Previous studies have shown 
that essential tremors can decline motor learning in 

older adults (Bermejo‐Pareja et al., 2007; Collins et 

al., 2017; Raethjen et al., 2007). In addition, loss of 
skeletal muscle and decline in physical activity 
contribute to impaired motor learning in older adult 
subjects (Clark, 2019; Hunter et al., 2016). Several 
studies have reported that the motor performance of 
older individuals declines more pronouncedly as 
their task difficulty increases (Bangert et al., 2010; 
Smith et al., 1999)  
 
Neural entrainment and synchronization of the 
specific type of neural oscillation within the distinct 
frequency band in premotor and motor areas has 
been a central indicator in the process of motor 
learning (Buzsáki & Draguhn, 2004; Schnitzler & 
Gross, 2005; Varela et al., 2001). To enhance the 
capacity of the special and spectral distribution of 
alpha band in the specific premotor and motor areas, 
one hypothesis has been the application of neural 
entrainment through the use of the BAB (Solcà et al., 
2016). Some studies have employed BAB as a 
neural modulatory approach to enhance the special 
distribution of a distinct frequency and amplitude or 
power of that frequency within functional cortical 
hubs (Draganova et al., 2008; Grose & Mamo, 2012; 
Pratt et al., 2009, 2010), which involves motor 
performance that might in some way retain 
implications for a specific indistinct population of 
individuals who need to employ even more precise, 
sophisticated, and fine motor skills, including 
professional athletes (Ross & Lopez, 2020). 
 
The use of alpha BAB has been tested in some 
studies (Ecsy et al., 2017; Munro & Searchfield, 
2019; Shekar et al., 2018). The present report 
generally suggests that alpha entrainment might 
partly help remediation of the neural dynamics which 
correspond to sequential motor planning and motor 
aptitude in young and older adult populations, 
respectively. As such, according to our findings, 
using the alpha BAB could at least be considered as 
an auxiliary neuromodulation approach to empower 
motor skills in people who require further motor 
learning. 
 
The extension of this line of research, together with 
our findings, might have implications for those who 
are involved with critical motor responsibilities in 
their jobs and personal life. Those might include 
people who need to have maximal precision, 
reaction time, performance speed, motor learning 
and the responsibilities they are involved in. 
Examples might be surgeons, professional athletes, 
industrial workers who deal with sophisticated 
machinery, defense personnel, artists, or other 
creative people. 
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Conclusion 
 
The present report suggests that alpha entrainment 
may partly help young and older adult populations 
improve their neural dynamics which correspond to 
sequential motor planning and motor aptitude. 
Considering the effect of the alpha BAB on motor 
learning, the intervention might enhance motor skills 
in people who require further motor learning. 
 
Further research needs to be pursued to extend 
other imaging or neuromodulation modalities further 
to what we examined here. The idea whether 
concurrent use of BAB and minimally invasive brain 
stimulation, including TMS, tDCS, and more 
specifically, tACS (transcriptional alternating current 
stimulation) might presumably add value to the level 
of motor learning in terms of precision, processing 
speed, reaction time, and performance speed needs 
further evaluation. 
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