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Abstract 

Introduction. Depression is a common mental health condition characterized by disrupted neural activity in 
cortical and subcortical networks involved in emotion and memory. While alpha and theta oscillations have been 
linked to depression, their specific roles in symptom domains remain unclear. This study examines these 
relationships using quantitative EEG (qEEG) and low-resolution electromagnetic tomography analysis (LORETA). 
Methods. Fifty-eight adults with depression underwent resting-state, eyes-closed qEEG. Absolute power and 
coherence of alpha (8–12 Hz) and theta (4–8 Hz) bands were analyzed across 19 scalp electrodes and 
hippocampal and amygdala regions using LORETA. Depressive symptom severity was assessed using the Beck 
Depression Inventory-II (BDI-II). Statistical analyses evaluated associations between EEG parameters and 
symptom scores. Results. Alpha coherence between the left hippocampus and amygdala negatively correlated 
with somatic symptoms (r = −0.298, p = .027), explaining 26% of variance in total BDI-II scores. Increased theta 
coherence in the right frontotemporal network was associated with reductions in affective and somatic symptoms. 
Conclusions. The findings identify neural oscillatory patterns within hippocampal-amygdala and frontotemporal 
networks as potential biomarkers for depressive symptoms, providing insights into novel therapeutic targets. 
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Introduction 

 
Depression is a widespread mood disorder that 
affects over 350 million people globally, significantly 
contributing to the global disease burden. It is the 
leading cause of disability worldwide, with a lifetime 
prevalence of 4.4% in the general population 
(Friedrich, 2017; García-Batista et al., 2018). Major 
depressive disorder (MDD) is characterized by 
symptoms such as persistent low mood, anhedonia, 
appetite and sleep changes, fatigue, restlessness or 
slowed movement, feelings of guilt or worthlessness, 
difficulty concentrating, and suicidal thoughts. 
According to the DSM-5-TR (American Psychiatric 
Association, 2022), a diagnosis of MDD requires the 

presence of at least five of these symptoms for most 
of the day, nearly every day, for a minimum of 2 
weeks (Cui et al., 2024). Neuroimaging studies, 
including magnetic resonance imaging (MRI), 
functional MRI (fMRI), and electroencephalography 
(EEG), have demonstrated that individuals with 
depression exhibit both structural abnormalities and 
functional imbalances within brain networks. These 
networks are crucial for processes such as emotion 
regulation, involving regions like the amygdala, 
subgenual anterior cingulate, caudate, putamen, and 
pallidum (Siegle et al., 2007), as well as memory, 
encompassing the hippocampus (HPC), 
parahippocampal cortex, and other related areas 
(Dev et al., 2022; Yang et al., 2017). The amygdala 
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is integral to processing salient stimuli and serves as 
a central hub within the affective network. 
Neuroimaging findings indicate increased amygdala 
connectivity and activation in patients with MDD, 
alongside reduced overall and subregional  
resting-state connectivity (Damborská et al., 2020). 
These abnormalities in the affective network likely 
contribute to emotional dysregulation (Tang et al., 
2018). Another area that has emerged as a critical 
integrator of emotion and cognition is HPC. Studies 
have shown reductions in HPC volume across 
various mood disorders, particularly in MDD 
(Lorenzetti et al., 2009). HPC plays a crucial role in 
memory retention and controlling the production of 
cortisol, a hormone secreted in response to stress. 
When a person is depressed, his body releases 
excessive amounts of cortisol, leading to 
hippocampal atrophy and a reduction in 
neurogenesis. (Dev et al., 2022). Alongside 
structural alterations, abnormal HPC functioning has 
been linked to cognitive impairment and deficits in 
spatial memory among depressed patients (Gould et 
al., 2007). Recent functional studies have reported 
abnormal theta activity in the right anterior HPC and 
parahippocampal cortices in depressed individuals 
compared to healthy subjects (Cornwell et al., 2010). 
Amygdala and HPC are thought to be important for 
contextual modulation of fear, judgment of emotion, 
and emotional memory that are critical for 
remembering motivationally salient stimuli. The 
coupling between these two regions is 
predominantly unidirectional, during frequency 
oscillations; theta and alpha mediate their 
interregional communication (McGaugh, 2004; 
Zheng et al., 2017). Abnormal functional connectivity 
between these two areas, like patterns observed in 
humans with depression (Gould et al., 2007), has 
been also documented in a genetic rat model of 
major depression (Williams et al., 2014). These 
abnormalities, along with dysfunctions in other 
regions such as the ventromedial prefrontal cortex, 
insula, and caudate have been suggested to 
contribute to the dysregulation of emotional and 
motivational processes in MDD (Mayberg, 1997).  
 
In resting-state EEG recordings, patients with 
depression exhibit disrupted connectivity within and 
between key networks, including the frontotemporal, 
centroparietal, frontoparietal, and dorsal attention 
networks, when compared to healthy individuals  
(16, 10). Elevated beta power in the prefrontal 
cortex, along with asymmetries in the alpha and 
theta bands, has been also linked to depressive 
symptoms (Liu et al., 2024). Machine learning 
analyses have demonstrated that the right 
hemisphere exhibits higher accuracy and 

performance in detecting depression, and among 
the various brain wave frequencies, the alpha band 
has shown the greatest accuracy in the classification 
of depression (Dev et al., 2022). Frontal alpha 
asymmetry is a biomarker that measures the 
balance of alpha wave activity between the left and 
right hemispheres of the frontal cortex, linked to 
emotional dysregulation (Tseng et al., 2022). 
Coherency is another index used in EEG studies to 
assess functional connectivity between brain 
regions. It quantifies the phase consistency between 
two EEG signals over time and frequency. Higher 
coherency between two regions implies greater 
functional connectivity, suggesting that these 
regions are synchronously communicating 
(Trambaiolli & Biazoli, 2020). In an EEG study on 
119 subjects, including 75 healthy subjects and 44 
patients with MDD, coherency in the alpha2 band 
(10–12 Hz) presented significantly positive 
correlation with symptoms (Trambaiolli & Biazoli, 
2020). A machine learning analysis in another study 
also revealed that patients with MDD exhibited 
higher functional connectivity compared to controls, 
particularly in the alpha and beta bands. In the alpha 
band, connections were linking the frontopolar and 
DLPFC regions with temporal and parietooccipital 
areas, while beta band connections were mostly 
within prefrontal and temporal regions. These 
connectivity patterns distinguished MDD from bipolar 
disorder with 81% accuracy (Leuchter et al., 2012). 
A systematic review of 52 research articles 
highlighted the significant potential of EEG-based 
connectivity analysis and brain mapping techniques 
in identifying biomarkers of depression. The findings 
consistently identified the frontal cortex and  
parietal-occipital cortex as critical regions involved in 
depression detection. The review further 
emphasized the importance of future research that 
incorporated larger and more representative sample 
sizes, along with the application of advanced data 
analysis methodologies to improve accuracy. It also 
advocated for the development and use of more 
precise techniques to localize the brain regions most 
affected by depression (Dev et al., 2022). 
 
In this study, we tried to address some of these 
challenges. We examined the alpha and theta 
absolute power across 19 EEG channels and 
evaluated their coherence within commonly studied 
surface networks. To address the limitations of 
surface EEG, we employed the LORETA technique 
to estimate these indices—absolute power and 
coherence—in two critical deep brain regions: the 
HPC and amygdala. This dual-layered methodology 
enhances the precision of identifying brain areas 
implicated in depression. Additionally, our stringent 
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clinical protocols ensure a high level of sample purity 
and homogeneity. Participants were carefully 
selected using well-defined inclusion criteria, 
thoroughly evaluated by licensed psychologists, and 
independently verified by registered psychiatrists, 
addressing a frequent limitation in similar studies. 
Furthermore, by combining electrophysiological data 
with questionnaire-based behavioral assessments, 
we address the shortcomings of traditional 
behavioral diagnostic approaches, which are often 
prone to human bias and subjectivity. Analysis of 
this study was conducted on a cohort of 58 
depressed outpatients. 
 

Method  
 
Participants 
Our data were collected through convenience 
sampling from patients at Elumind Psychiatric Clinic 
in Vancouver, Canada. This approach resulted in a 
heterogeneous participant pool with variability in age 
and gender. To address this variability, we stratified 
the sample into three age groups: young adults  
(16–24 years), middle-aged adults (25–54 years), 
and older adults (55 years and above). Participants 
were also categorized into three groups: those using 
prescription medication (medicated), those not using 
prescription medication (nonmedicated), and those 
who consume alcohol or use marijuana (addicted 
group). This stratification allowed for a more 
nuanced understanding of the factors influencing the 
outcomes of the study. All participants presented to 
the clinic with depression as their primary complaint 
and had no history of other psychiatric disorders, 
intellectual disabilities, or neurological deficits. The 
final sample consisted of 22 males (mean age: 37.3 
± 14.07 years) and 36 females (mean age: 39.8  
± 16.90 years). Each participant provided written 
informed consent, completed the Beck Depression 
Inventory-II (BDI-II) questionnaire, and consented to 
undergo EEG recordings as part of the study 
following their therapeutic assessment. The 
research adhered to the ethical principles outlined in 
the Declaration of Helsinki (World Medical 
Association, 1996), including respect for individual 
autonomy, protection of privacy and confidentiality, 
maintenance of scientific integrity, and poststudy 
considerations, such as ensuring participants have 
access to any beneficial findings arising from the 
study. The sample size was determined based on 
previous studies (Bokhan et al., 2023; Yamada et 
al., 1995). 
 
Beck Depression Inventory (BDI) 
After welcoming the participant, informed consent 
was obtained, and any questions or concerns 

regarding data collection, EEG recording, or other 
procedures were addressed. Participants then sat in 
a quiet room and completed the Beck Depression 
Inventory (BDI) questionnaire according to the 
provided instructions. In terms of assessing severity 
of symptoms, the BDI-II is a widely used 21-item 
self-report tool designed for adolescents and adults 
(Wang & Gorenstein, 2013). It demonstrates strong 
criterion-based sensitivity and specificity for 
detecting depression, reinforcing its clinical utility as 
a diagnostic aid (Wang & Gorenstein, 2013). Since 
depression symptoms can respond differently to 
treatment, relying solely on a global score to 
evaluate treatment response is insufficient. 
Therefore, a bifactor model of the BDI-II was 
developed for statistical and clinical purposes, 
consisting of a general depression factor and three 
specific factors (cognitive, affective, and somatic), 
which provided the best fit for the data. This model 
indicated that BDI-II items could be summed to 
generate an overall score that accounts for most of 
the variance, while the specific factors contributed 
unique variance (García-Batista et al., 2018). 
 
EEG to Quantitative EEG (qEEG) Recording 
EEG recordings were conducted in a soundproof, 
dimly lit chamber with minimum sources of 
electromagnetic and cellular interference. 
Participants were seated in a comfortable armchair 
and instructed to relax and minimize movements to 
reduce artifacts. EEG data were recorded using a 
19-channel WinEEG system (version 202, Mitsar 
Inc., Russia) during a 5-min, eyes-closed session. 
The sampling rate was 256 Hz, with electrodes 
positioned according to the international 10–20 
system and impedance maintained below 5 kΩ 
across electrode sites. Low- and high-pass filters 
were set at 0.1 Hz and 45 Hz, respectively, with a 
55–65 Hz notch filter applied. EEG data were 
recorded in a monopolar montage with signals 
referenced to linked ears. Independent component 
analysis (ICA) was performed to isolate and remove 
artifacts related to eye movements, muscle activity, 
and cardiac noise. Two EEG experts then visually 
inspected and manually corrected the data. Finally, 
90 s of artifact-free EEG recordings were selected 
and imported into NeuroGuide software (version 
3.2.8) to measure qEEG. Fourier transform (FFT) 
was used for quantitative analysis, and various band 
measures were calculated, considering age and 
gender. 
 
Regions of Interest (ROIs) 
Our primary focus was on the absolute power of 
theta (4–8 Hz) and alpha (8–12 Hz) bands across 19 
electrodes: FP1, FP2, F3, F4, Fz, F7, F8, C3, C4, 
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Cz, Pz, P3, P4, T3, T4, T5, T6, O1, O2. Additionally, 
FFT coherence of theta and alpha bands was 
measured between electrode pairs in the following 
regions: bi-frontal (FP1–FP2, F3–F4, F7–F8), 
frontocentral (Fz–Cz), centroparietal (Cz–Pz), 
frontoparietal (F3–P3, F4–P4, Fz–Pz), and 
frontotemporal (F3–T3, F3–T5, F4–T4, F4–T6,  
F7–T3, F7–T5, F8–T4, F8–T6). To assess HPC and 
amygdala activity and connectivity, we calculated 
LORETA absolute power (LAP) and LORETA 
coherence (LC) in the alpha and theta bands for 
both hemispheres. Default settings of the 
NeuroGuide software were used, with an epoch 
duration of 4 s. Electrodes were treated as 
independent variables in the analysis. 
 
Statistics 
To examine the effects of age and gender on the 
BDI scores and its subscales, we performed a 
multivariate analysis of variance (MANOVA). 
Additionally, Pearson's correlation coefficient (r) and 
Spearman's rank correlation (ρ) were calculated to 
assess relationships between BDI scores (including 
subscales) and EEG data, as well as LORETA 
findings. The choice between these correlation 
methods was determined based on the normality of 
the data. Furthermore, to control potential 
confounding effects of age, drug consumption, and 
gender, partial correlations were conducted by 
statistically adjusting for these variables. We used 
JASP (Jeffreys's Amazing Statistical Program) that 
is a free, friendly, and open-source software for 
statistical analysis. 
 

Results 
 
Descriptive data of our participants’ BDI scores and 
its subscales in terms of age group and gender is 
shown in Table 1. Results revealed significant effect 
of age on cognitive, F(2, 50) = 3.61, P = .034,  
η2 = 0.126. The pairwise comparison showed that 
old group reported less scores of cognitive scales in 
comparison to the middle age and the young group 
(p = .005, p = .004). Medication as a cofactor, 
significantly affected BDI, F(2, 50) = 4.33, P = .018, 
η2 = 0.148; cognitive, F(2, 50) = 3.61, P = .034,  
η2 = 0.126; and somatic scores, F(2, 50) = 3.62,  
P = .034, η2 = 0.127. Pairwise analysis showed that 
in in all three above scales, addicted group reported 
higher scores than medicated group (for BDI,  
p = .001, cognitive, p = .001, and somatic, p = .014).  
 
A negative correlation was observed between 
LORETA alpha coherency of left HPC and left 
amygdala and somatic scores (Pearson’s  
r = −0.298, p = .027). EEG theta coherency of  
F4–T4 was also negatively correlated with BDI 
(Spearman’s ρ = −0.353, p = .014), affective 
(Spearman’s ρ = −0.329, p = .008) and somatic 
scores (Spearman’s ρ = −0.347, p = .010; Table 2). 
Further, linear regression showed that LORETA 
alpha coherency of left HPC and left amygdala could 
explain 26% of BDI scores variance meaningfully  
(R2 = 0.49, adjusted R2 = 0.26, P = .024; Figure 1).  

 

Table 1 

Descriptive Table of Participants, Including Sample Size, Age, Total BDI Score, and Scores for the Cognitive, 
Affective, and Somatic Components 

Group 
Male Female 

Young Middle age Old Young Middle age Old 

Sample size 6 14 2 10 17 9 

Age 22.5 ± 1.9 38.7 ± 5.3 72 ± 2.8 19.7 ± 2.8 39.8 ± 8.3 62.2 ± 5.5 

BDI score 27.8 ± 7.52 28.8 ± 12.65 18.5 ± 0.72 36.4 ± 9.57 30.2 ± 12.3 23.1 ± 7.88 

Cognitive score 9.5 ± 4.4 10.35 ± 4.41 6 ± 1.41 12.2 ± 3.93 11.17 ± 5.0 6.5 ± 3.43 

Affective score 8.6 ± 1.5 7028 ± 3.14 5.5 ± 7 9.1 ± 3.47 6.8 ± 3.3 5.7 ± 2.1 

Somatic score 9.6 ± 4.3 11.2 ± 6.1 7 ± 0.00 15.1 ± 4.01 12.2 ± 5.3 12.6 ± 4.7 
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Table 2. Partial Spearman's Rho Heatmap of Correlation Between BDI and Its Subscale Scores 
With EEG and LORETA Findings. 

 
 

Note. BDI = Beck Depression Inventory; LC.A. Amy.L.Hip.L = LORETA coherency of alpha 
between left amygdala and left hippocampus; qEEG.co.T.F4/T4 = qEEG coherency of theta in F4–
T4. 

 
 

Figure 1. Residuals vs. Dependent Plot LORETA Alpha Coherency of Left HPC/Amygdala and BDI 
Scores Among MDD Participants.  

 
Note. BDI = Beck Depression Inventory; MDD = major depressive disorder. 
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Discussion 
 
This study provided a comprehensive investigation 
into the neurophysiological underpinnings of 
depression, with a particular focus on alpha and 
theta brainwave activity. By integrating surface EEG 
and LORETA methodologies, the research explored 
cortical and subcortical networks and their 
relationships with depressive symptomatology, 
including cognitive, affective, and somatic 
components. 
 
Behavioral Findings 
The findings revealed that elderly participants 
reported lower scores on cognitive scales compared 
to middle-aged and young participants. This aligns 
with prior research suggesting a negative correlation 
between age and BDI scores, with older adults 
potentially underreporting depressive symptoms due 
to factors spanning neurobiological, psychological, 
and social domains. These factors may obscure  
self-ratings of depressed mood in the elderly 
(Lyness et al., 1995). However, this result contrasts 
with a study of 556 adults and older adults, which 
found that the elderly scored higher on the somatic 
and performance subscales, but not on cognitive 
and affective subscales, compared to adults 
(Trentini et al., 2005). This disparity may be 
attributed to differences in sampling methods 
between our study and theirs. Notably, the studies 
have differed in terms of participant nationality. 
Furthermore, our study exclusively included 
individuals seeking therapy, while their sample may 
have included individuals who were not actively 
seeking therapeutic interventions. Another finding 
was significant effect of addiction on BDI, cognitive, 
and somatic score. These findings are consistent 
with previous research on 108 drug abusers, which 
demonstrated positive correlations between BDI-II 
subscales (cognitive, affective, and somatic) and the 
severity of alcohol and drug use (Dum et al., 2008). 
Similarly, another study on 42 adolescent and young 
adult marijuana users reported increased depressive 
symptoms, diminished fun-seeking, and reduced 
reward responsiveness associated with marijuana 
use (Wright et al., 2016). It was said that frontolimbic 
white matter integrity deficits in adolescent users 
probably contributed to apathy, ultimately 
exacerbated depressive symptoms.  
 
Electrophysiological Findings 
The analysis of LORETA data revealed a significant 
negative correlation between alpha coherency in the 
left HPC and left amygdala and somatic scores. 
Furthermore, this coherency accounted for 26% of 
the variance in BDI scores, indicating a meaningful 

contribution to depressive symptomatology. 
Supporting these findings, a prominent study on 123 
individuals with MDD and 81 matched controls 
identified significant differences in local networks, 
particularly in subregions of the left amygdala and 
the hippocampal tail (Zhang et al., 2022). Patients 
with MDD demonstrated reduced characteristic path 
length and modularity in these regions compared to 
controls. The decreased characteristic path length 
may reflect increased global information 
transmission within the hippocampus-amygdala 
network. This enhanced interaction may underlie the 
emotional facilitation of memory formation and the 
persistence of a bias toward sad memories in MDD 
patients. Reduced modularity indicates that the 
hippocampus-amygdala network may be less 
distinctly organized into discrete functional 
communities, reflecting impaired functional 
segregation. Such a less modular structure could 
signify disruptions in feedback and feedforward 
communication between the HPC and amygdala, 
potentially contributing to dysregulated emotional 
memory processes in MDD. Our finding aligns with 
the broader explanation of these findings. It 
suggests that promoting regulated, synchronized 
communication between left HPC and left amygdala 
via increased alpha coherence—that probably adjust 
feedback and feedforward communication—might 
help reduce certain depressive symptoms, 
particularly somatic ones. Overall, these results 
underscore the role of neuroanatomical alterations 
and biased functional interactions within the 
hippocampus-amygdala network in the 
pathophysiology of depression.  
 
EEG data analysis revealed a negative correlation 
between theta coherency in the F4–T4 region and 
BDI scores, particularly in the affective and somatic 
components. As theta coherence between the right 
frontal and right temporal regions increased, 
depressive symptoms, as measured by these 
scales, decreased. It is hypothesized that lower 
brain frequencies, such as theta, reflect subcortical 
processing in regions like the entorhinal neurons of 
the medial temporal lobe, driven primarily by mass 
synchronized neural firing. They enable the 
synchronization of neural populations across  
large-scale networks, such as frontal and temporal 
regions, which play a pivotal role in memory 
performance and serve as a bridge between  
self-perception and affective states. (LaVarco et al., 
2022; Takahashi et al., 2007). These networks, 
predominantly mediated by right-lateralized 
structures, significantly influence self-awareness and 
mood (Devinsky, 2000; Platek et al., 2004). Theta 
activity also plays a crucial role in emotional 
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processing, particularly in response to salient and 
arousing stimuli. Studies have demonstrated that 
theta power is greater for emotional stimuli 
compared to neutral stimuli and is sensitive to 
affective content irrespective of valence. 
Furthermore, theta activity is modulated by personal 
distress, highlighting its role in empathy-related and 
emotional regulation processes (Romeo & Spironelli, 
2024). In the context of our study, the observed 
increase in theta wave synchronization between the 
right frontal and temporal cortices likely reflects 
enhanced functional connectivity within these neural 
networks. This increased synchronization may 
facilitate organized cognition and emotional 
regulation, thereby contributing to the alleviation of 
depressive symptoms. In confirmation of our finding, 
another longitudinal study investigated cognitive and 
emotional development in 81 healthy children and 
identified a significant role for frontotemporal 
functional connectivity, measured via EEG 
coherence, during an episodic memory encoding 
task. The findings highlighted the involvement of the 
right frontotemporal region (F4–T8) in supporting 
memory processes (Blankenship & Bell, 2015). 
Further support comes from a clinical trial involving 
30 adolescents with conduct disorder and 34 
controls (Dong et al., 2019). Resting-state fMRI data 
showed reduced frontotemporal connectivity in 
adolescents with conduct disorder, specifically in 
regions underlying cognitive and affective empathy. 
The study's authors proposed that frontotemporal 
communication facilitates the use of external social 
cues processed in temporal regions to infer 
emotional states in the medial prefrontal cortex. 
Reduced connectivity may impair the ability to 
access social cues, affecting cognitive empathy, 
leading to depressive symptoms. The improved 
connectivity may support processes such as 
emotional regulation, memory, and social 
understanding, contributing to the observed 
decreases in affective and somatic BDI scores. 
 

Conclusion 
 
Present findings highlight the critical role of 
synchronized neural activity in cortical and 
subcortical regions in regulating mood, providing a 
deeper insight into the mechanisms underlying 
depressive symptoms. Enhanced connectivity within 
key networks, such as the hippocampus-amygdala 
and frontotemporal regions, may represent a target 
for interventions aimed at alleviating specific 
depressive symptoms, particularly those related to 
somatic and affective dimensions. Overall, this study 
highlights the critical role of neurophysiological 
alterations in shaping the pathophysiology of 

depression and offers a foundation for future 
research exploring targeted brain areas. However, 
further studies, particularly those employing 
integrated EEG-MRI approaches, are necessary to 
investigate replication. Cofactors such as unwanted 
artifacts, the limited spatial resolution of LORETA, 
and the complex reciprocal connections between 
regions like the amygdala and HPC may confound 
the results, making it premature to draw clinical 
applications from these findings. 
 
Limitation and Implication for Future Research 
It is notable that our finding about the role of age 
deserves careful consideration as other important 
factors such as race, socioeconomic status, and 
cultural background that might affect reporting of 
symptoms were not assessed in our study. Our 
findings were also influenced by the limited sample 
size, particularly after stratifying participants into 
three groups, which increased susceptibility to 
variability and hindered result consolidation. Future 
studies should address this by leveraging large, 
stratified EEG databanks. Training machine learning 
algorithms on prevalidated EEG patterns with 
adequately sized datasets could equip health 
professionals with a versatile, portable, and  
cost-effective tool for reliably diagnosing depression. 
We strongly recommend adopting standardized 
artifact correction protocols, enforcing stringent 
inclusion and exclusion criteria, and incorporating 
the visual cortex in future analyses—an area we 
were unable to explore due to the data volume 
involved.  
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