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Welcome to NeuroRegulation, Volume 3, Number 1.  
We have experienced a growing interest by both 
clinicians and researchers submitting quality works 
to our journal and hope to see this trend continue.  It 
is interesting to note that a search on the term 
neurofeedback in Pubmed returns 870 articles.  This 
is not only important to the field of neurofeedback 
and its growing application across numerous 
disciplines; it is a sign of growth and success in our 
respective craft.  We envision NeuroRegulation 
being a primary source for publishing data 
concerning neurofeedback, self-regulation, and 
applied neurosciences across disciplines in a short 
amount of time.  We encourage all researchers, 
clinicians, students, and theorists to publish your 
work in NeuroRegulation.  
 
The current issue is comprised of a variety of topics 
pertaining to neurofeedback and applied 
neuroscience.  Dr. Lauren Frey presents pilot data 
demonstrating the effects of SMR neurofeedback on 
quality of life in medically refractory seizures.  Drs. 
Alycia Roberts, Paul Fillmore, and Scott Decker 
present research discussing the clinical applicability 
of test-retest reliability of qEEG coherence.  Drs. 
Hsin-Yi Tsai, Erik Peper, and I-Mei Lin present 

research evaluating the effects of posture on the 
EEG during emotional recall tasks.  Drs. Marcie 
Zinn, Mark Zinn, and Leonard Jason provide a 
review of Myalgic Encephalomyelitis and functional 
network correlates.  Finally, Dr. Randall Lyle 
presents a book review of “The Good Life: Wellbeing 
and the New Science of Altruism, Selfishness and 
Immorality.”  
 
NeuroRegulation thanks these authors for their 
valuable contributions to the scientific literature for 
neurofeedback and quantitative EEG.  We strive for 
high quality and interesting empirical topics.  We 
encourage the members of ISNR and other 
biofeedback and neuroscience disciplines to 
consider publishing with us.  We are planning a 
special issue later in the year and will be soliciting 
papers from experts in the field in the near future.  
We thank you for reading NeuroRegulation!  
 
Rex L. Cannon, PhD, BCN 
Editor-in-Chief 
Email: rexcannon@gmail.com 
 
Published: March 9, 2016 
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Impact of Sensorimotor Rhythm Neurofeedback on Quality 
of Life in Patients with Medically Refractory Seizures:  
A Pilot Study  
Lauren Frey 

University of Colorado, Denver, Colorado, USA 
 

Abstract 

Introduction: Published studies suggest that augmentation of the sensorimotor rhythm (SMR), a commonly- 
used neurofeedback protocol for patients with epilepsy, changes thalamocortical regulatory systems and 
increases cortical excitation thresholds.  Recent meta-analyses showed that at least 50% of patients with 
medically refractory epilepsy had a post-therapy reduction in seizure frequency after neurofeedback training.  
However, data on neurofeedback outcomes outside of seizure frequency are limited.  Methods: The records for 
all consecutive patients trained using SMR neurofeedback in the University of Colorado Neurofeedback Clinic 
prior to March 2015 (n = 9) were retrospectively reviewed, abstracted, and analyzed.  Patients completed the 
Quality of Life in Epilepsy-31 (QOLIE-31) survey as a part of their clinic intake interview and at intervals 
throughout their training.  Results: 214 total training sessions were reviewed.  The average total QOLIE-31 
baseline score in our patients was 49.3 ± 8.8.  Seven patients completed follow-up QOLIE-31 surveys with an 
average score of 54.9 ± 6.5.  Seventy-eight percent of the patients had improvement in their QOLIE-31 scores 
with training.  The largest absolute improvements were in the seizure worry and cognitive subscores of the 
QOLIE-31.  Conclusion: In this small case series, SMR neurofeedback training modestly improved short-term 
follow-up QOLIE-31 scores in patients with epilepsy. 
 
Keywords: seizure; epilepsy; sensorimotor rhythm; neurofeedback; quality of life 
Citation: Frey, L. (2016). Impact of Sensorimotor Rhythm Neurofeedback on Quality of Life in Patients with Medically Refractory Seizures: A 
pilot study. NeuroRegulation, 3(1), 3–6. http://dx.doi.org/10.15540/nr.3.1.3 
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Introduction 

 
Epilepsy can be defined as a recurrent 
predisposition to unprovoked seizures (Fisher et al., 
2014).  Across the spectrum of persons with 
epilepsy, seizures occur with a wide range of 
frequencies and can originate in many different 
areas of the brain.  Approximately 30% of persons 
with epilepsy are medically refractory, meaning that 
their seizures are not completely controlled with 
appropriately chosen and administered antiseizure 
medications (Kwan et al., 2010).  Comorbid mood 
disorders are common in patients with epilepsy, 
affecting 40–70% of patients at some point in their 
lifetime, with depression and anxiety the most 

commonly reported (Hermann, Seidenberg, & Bell, 
2000). 
 
Quality of life (QOL) can be defined as a subjective 
perception of a patient’s own wellness/functionality.  
QOL is multidimensional and, in patients with 
epilepsy, is influenced by multiple interacting factors.  
These factors include: degree of seizure control, 
psychiatric comorbidity, medication side effects, 
socioeconomic status, and strength of social support 
network.  Two of the most important factors 
associated with QOL in patients with medically 
refractory epilepsy are symptoms of depression and 
seizure worry (Loring, Meador, & Lee, 2004), 
suggesting that both seizure and non-seizure 
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manifestations of epilepsy contribute to a patient’s 
QOL.  
 
Neurofeedback is a form of biofeedback that 
assesses and analyzes EEG signals to help train 
individuals to produce healthier brain rhythms.  In 
the case of people with epilepsy, these rhythms are 
those that are less likely to be proconvulsant.  
Neurofeedback can be a powerful tool for 
reregulation of the dysfunctional brain rhythms that 
are driving the clinical manifestations of epilepsy.  
Augmentation of the sensorimotor rhythm (SMR) is a 
commonly used neurofeedback protocol for patients 
with epilepsy.  Published studies suggest that 
augmentation of the SMR changes thalamocortical 
regulatory systems and increases cortical excitation 
thresholds (Sterman, 2000; Sterman & Egner, 
2006).  As such, SMR augmentation can be an 
effective means of reducing seizure frequency in 
patients with medically refractory seizures (Sterman, 
2000; Sterman & Egner, 2006; Tan et al., 2009).  
Recent meta-analyses assessing neurofeedback 
training in patients with medically refractory epilepsy 
showed that at least 50% of patients had a post-
therapy reduction in seizure frequency (Sterman 
2000; Tan et al., 2009).  Many protocols for 
depression and/or anxiety, common psychiatric 
comorbidities in patients with epilepsy, also involve 
training within the sensorimotor cortex (Soutar & 
Longo, 2011).  As such, there is potential for SMR 
training to affect both seizure and non-seizure 
manifestations of epilepsy.  The data on 
neurofeedback outcomes outside of seizure 
frequency are currently limited, however.  This case 
series will explore whether SMR neurofeedback 
training in patients with epilepsy potentially impacts 
overall QOL. 
 

Methods 
 
The records for all consecutive patients trained 
using SMR neurofeedback (see below for protocol 
details) in the University of Colorado Neurofeedback 
Clinic prior to March 2015 (n = 9) were 
retrospectively reviewed.  This study was reviewed 
and approved by the Colorado Multi-Institutional 
Review Board (COMIRB) as an exempt study. 
 
Data on patient demographics, duration of epilepsy 
prior to training, seizure types and frequencies, 
antiepileptic drugs (AEDs), degree of seizure 
control, psychiatric and medical comorbidities, 

imaging results, neurophysiological results, Quality 
of Life in Epilepsy-31 (QOLIE-31) scores, and the 
duration of neurofeedback training were abstracted 
and analyzed.  Patients in this clinic routinely 
complete the QOLIE-31 survey as a part of their 
clinic intake interview and at intervals throughout 
their training.  The QOLIE-31 is a validated, 
epilepsy-specific, QOL measure that measures 
constructs such as: seizure worry, emotional well-
being, energy/fatigue, cognition, medication effects, 
and social function (Borghs, de la Loge, & Cramer, 
2012).  In this measure, higher scores represent 
greater patient-reported QOL.  The reported minimal 
clinically important change for the total QOLIE-
31score is between 5 and 12 points (Borghs et al., 
2012; Wiebe, Matijevic, Eliasziw, & Derry, 2002).  
Patients also reported the number of seizures 
experienced each week before each session. 
 
All patients were trained by a certified 
neurofeedback provider (LF) using a BrainMaster 
Atlantis system (BrainMaster Technologies, Inc., 
Bedford, Ohio).  The training protocol rewarded 
increased amplitude of the 12–15 Hz frequency 
band and, simultaneously, decreased amplitude of 
the 4–8 Hz (theta) frequency band at Cz.  A second 
(also simultaneous) inhibit of the 4–8 Hz (theta) 
frequency band was included at a second site if the 
individual had a focus of increased theta amplitude 
outside of C3, Cz, or C4 on their baseline 
quantitative EEG (qEEG).  Training was performed 
using 2-min training intervals for at least 20 total 
training minutes per session and one session per 
week. 
 
For descriptive means of population descriptors and 
QOLIE scores and subscores, all patient measures 
were averaged.  For the mean change in QOLIE-31 
scores and subscores, the change in QOLIE-31 
score for each patient was calculated and then 
averaged over all patients. 
 

Results 
 
A total of 214 training sessions were reviewed.  
Summary data for our patient population are given in 
Table 1.  One of the seven patients remained 
seizure-free throughout training.  Five of the other 
six patients reported a subjective decline in seizure 
frequency or severity. 

 
  



Frey  NeuroRegulation	 	

	

 
5	|	www.neuroregulation.org Vol. 3(1):3–6  2016 doi:10.15540/nr.3.1.3	
 

Table 1 
Summary data for case population 
Population Descriptor Summary Data 

N 9 patients 

Total number of training sessions 
studied 

214 sessions 

Mean number of training 
sessions per patient (± SEM) 

22.8 ± 4 
sessions 

Gender 4 male; 5 female 

Mean patient age (± SEM) 47.4 ± 5.9 years 

Mean duration of epilepsy prior 
to training (± SEM) 

18.7 ± 3.6 years 

Mean number of antiseizure 
drugs (± SEM) 

1.7 ± 0.3 

Focal onset epilepsy syndrome? 8 of 9 patients 

Structural lesion on MRI? 4 of 9 patients 

History of comorbid mood 
disorder 

7 of 9 patients 

Number of patients with both 
initial and follow-up QOLIE-31 
scores 

7 of 9 patients 

Note. SEM = Standard error of the mean 
 
 

 
Figure 1. Total QOLIE-31 scores before and after at 
least 18 sessions of SMR neurofeedback training. 

 
 
All nine patients completed the QOLIE-31 at the 
beginning of their training with an average baseline 
score of 49.3 ± 8.8.  Seven patients completed 
follow-up QOLIE-31 surveys.  Initial and follow-up 
total QOLIE-31 scores for these seven patients are 
plotted in Figure 1.  Five of the seven patients (78%) 
had an absolute improvement in their follow-up total 
QOLIE-31 score.  One patient’s follow-up score was 
essentially unchanged, and one patient’s follow-up 

score reflected a worsening of reported QOL after 
training. 
 
As shown in Table 2, the mean (± SEM) post-
training QOLIE-31 score was 54.9 ± 6.5 (n = 7).  The 
changes in QOLIE-31 scores from initial to follow-up 
measure averaged 5.6 ± 3.4 (range: -11.6 to 16). 
 
 
Table 2 
QOLIE-31 summary data 
QOLIE-31 Parameter Summary Data 

Mean QOLIE-31 score before 
training (± SEM) 

49.3 ± 8.8 

Mean QOLIE-31 score after 
training (± SEM) 

54.9 ± 6.5 

Mean QOLIE-31 change with 
training (± SEM) 

5.6 ± 3.4 

Range of QOLIE-31 score 
changes 

-11.6 to 16 

Percent of patients with QOLIE-
31 improvement after training 

78% 

Note. SEM = Standard error of the mean 
 
 
Table 3 shows the mean (± SEM) of each subscore 
of the QOLIE-31 before and after neurofeedback 
training (n = 7).  Pairs with changes greater than 5 
points are highlighted in red.  The largest absolute 
improvements were in the seizure worry and 
cognitive domains of the QOLIE-31. 
 
 
Table 3 
Mean (± SEM) subscores of QOLIE-31 before and 
after neurofeedback training 

QOLIE-31 Subscore Before 
Training 

After 
Training 

Seizure Worry 47.7 (± 10.8) 54.0 (± 9.9) 

Overall QOL 62.1 (± 9.1) 68.9 (± 4.9) 

Emotional Well-being 64.6 (± 8.5) 68.6 (± 6.9) 

Energy/Fatigue 41.4 (± 10.5) 44.3 (± 8.1) 

Cognitive 44.9 (± 8.5) 54.7 (± 6.0) 

Medication Effects 40.5 (± 15.9) 40.5 (± 12.5) 

Social Function 41.9 (± 14.9) 44.3 (± 11.0) 
Note. Pairs with changes greater than 5 points are 
highlighted in red 
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Discussion 
 
In this small case series of patients with medically 
refractory epilepsy, SMR neurofeedback training 
improved QOLIE-31 scores, with an average change 
of 5.6 ± 3.4.  The reported minimal clinically 
important change for the total QOLIE-31score is 
between 5 and 12 points (Borghs et al., 2012; Wiebe 
et al., 2002).  This range encompasses our finding 
within the lower end of this range, suggesting that 
our mean change in QOLIE-31 scores, although 
modest, may be clinically meaningful.  This is the 
first study that we are aware of that looks at QOL 
after NFB training in persons with epilepsy. 
 
While QOL in persons with epilepsy is heavily 
influenced by the degree of seizure control, we know 
that both seizure and non-seizure manifestations of 
epilepsy contribute to a patient’s QOL (Loring et al., 
2004).  The improvements in QOLIE-31 scores in 
our series of medically refractory patients occurred 
despite a range of changes in seizure control in the 
individual patients, supporting this concept.  
 
There are a number of limitations to this study.  First, 
we had a small sample size, limiting our power to 
detect differences between mean QOLIE-31 scores 
at our two time points.  This also limited our analysis 
to descriptive statistics only.  Secondly, our results 
are based on a subjective measure done only once 
at two individual time points.  Future studies may 
need to include repeated measures before and after 
training to try to adjust for day-to-day variability 
and/or mood dependence of subjective QOL scores. 
 
Overall, in our series of patients with medically 
refractory epilepsy, we documented modestly 
improved follow-up QOLIE-31 scores after SMR 
neurofeedback training, although larger studies are 
needed to confirm the value of the QOLIE-31 as an 
outcomes measure.  In addition, larger studies are 
also needed to determine the psychosocial 
constructs that may underlie changes in QOL after 
neurofeedback training in patients with epilepsy. 
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Abstract 

Measurement reliability is an important aspect of establishing the utility of scores used in clinical practice.  
Although much is known about the reliability of quantitative electroencephalographic (qEEG) metrics related to 
absolute power, less is known about the reliability of coherence metrics.  The current study examined the 
measurement reliability of coherence metrics across standard frequency bands during an eyes-closed resting 
state.  Reliability was examined both within channel pairs, and averaged across spatially contiguous channels, to 
summarize global patterns.  We found that while most channel pairs were highly reliable on average, there was 
substantial variability across channels.  Finally, we estimated the effect of measurement reliability on the 
detection of treatment-related neural change.  We concluded that estimates of reliability for treated channels are 
crucial, and should factor into clinical assessment of treatment efficacy for EEG biofeedback (neurofeedback), 
especially in cases where large cross-channel variability is present. 
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Introduction 

 
Technological advances in basic measures of 
electroencephalographic (EEG) recordings have led 
to a significantly expanded range of quantitative 
metrics of brain functioning.  For example, 
quantitative EEG (qEEG) has been useful in the 
assessment of neurological conditions, such as 
traumatic brain injury (TBI; Ronne-Engstrom & 
Winkler, 2006; Bozorg, Lacayo, & Benbadis, 2010).  
Indeed, qEEG was found to have 96% sensitivity for 
detecting postconcussive syndrome (Duff, 2004).  
Furthermore, qEEG abnormalities have been linked 
to numerous other neurological and psychological 
disorders, including Alzheimer’s disease (Gawel, 
Zalewska, Szmidt-Sałkowska, & Kowalski, 2009; 
Herrmann & Demiralp, 2005), attention deficit 
hyperactivity disorder (Fonseca et al., 2008; Koehler 
et al., 2009; Monastra et al., 1999), antisocial 

personality disorder (Calzada-Reyes, Alvarez-
Amador, Galán-García, Valdés-Sosa, 2012), autism 
(Cantor & Chabot, 2009; Christakou et al., 2013; 
Lynch et al., 2013; Sheikhani, Behnam, 
Mohammadi, Noroozian, & Mohammadi, 2012), 
learning disabilities (Cantor & Chabot, 2009), 
schizophrenia (Boutros et al., 2008; Knyazeva et al., 
2008), anxiety (Koberda, Moses, Koberda, & 
Koberda, 2013) and mood disorders (Begić et al., 
2011; Koek et al., 1999).  
 
Measurement reliability is a prerequisite and critical 
foundation for establishing the clinical validation of 
any measure (Haynes, Smith, & Hunsley, 2011).  
However, most reliability studies of qEEG have been 
limited to metrics related to absolute power (Chabot, 
Merkin, Wood, Davenport, & Serfontein, 1996; 
Corsi-Cabrera, Galindo-Vilchis, del-Río-Portilla, 
Arce, & Ramos-Loyo, 2007; McEvoy, Smith, & 
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Gevins, 2000; Salinsky, Oken, & Morehead, 1991).  
Indeed, the reliability of absolute power has been 
extensively researched and found to be suitable for 
clinical applications.  Additionally, several studies 
have demonstrated the excellent reliability and 
stability of qEEG metrics at rest (Burgess & 
Gruzelier, 1993; Pollock, Schneider, & Lyness, 
1991).  McEvoy and colleagues (2000) also 
investigated test-retest reliability during cognitive 
tasks.  They found that task-related reliability was 
higher (i.e., r > .9 for working memory tasks, r > .8 
for psychomotor vigilance tasks) than that at rest 
(mean r > .7 across 4 resting state recordings).  
However, mean r remained ≥ .80 for theta and alpha 
regardless of condition.  Another study (Corsi-
Cabrera et al., 2007) examined within-subject 
variability and inter-session stability of EEG power in 
women over time, and found coefficients of r = .92 to 
r = .98 for absolute power.  Gudmundsson, 
Runarsson, Sigurdsson, Eiriksdottir, and Johnsen 
(2007) investigated the effects of montage selection 
and length of the raw data epochs on test-retest 
reliability and similarly found that most of the 
frequency bands had reliability coefficients of r ≥ .80.  
Finally, Thatcher (2010) reported test-retest 
reliability of qEEG is both high and stable with small 
samples sizes.  He claimed that even as little as a 
20-s epoch results in r ≈ .80, and suggested that 
test-retest reliability follows an exponential function, 
such that as the size of the sample of raw EEG data 
increases, so too does the reliability coefficient (i.e., 
20 s, r ≈ .80; 40 s, r ≈ .90; 60 s, r ≈ .95). 
 
Although research has found uniformly high 
reliabilities in absolute power, variations in reliability 
have also been found depending on spectral band 
and electrode location.  For example, Gasser, 
Bächer, and Steinberg (1985) studied test-retest 
reliability of both relative and absolute power.  While 
they found mean reliabilities ranging from r = .47 to r 
= .80 and r = .58 to r = .80 for relative and absolute 
power, respectively, reliability in the alpha band was 
consistently the highest, with mean r = .80 for both.  
Salinsky, Oken, and Morehead (1991) also studied 
relative and absolute power, and using a 5-min test-
retest interval, they found reliability coefficients 
≥ .90, with a median r = .93 across all frequency 
bands.  Additionally, Salinsky et al. found that this 
remained relatively stable over time. 
 
Although numerous studies have investigated a 
variety of aspects of absolute power reliability, much 
less is known about the reliability of qEEG 
coherence.  Though the term “coherence” can be 
used to describe comodulation, here we will refer to 
it as in Thatcher’s conception, that it is “a measure 

of the variability of time differences between two 
time series in a specific frequency band” (Thatcher, 
2012).  In this view, signals with complete phase-
locking will display coherence values of 1.0, with a 
full absence of phase-locking representing a value of 
0, and the magnitude of coherence representing the 
degree of functional association between two signals 
(e.g., brain regions).  Currently, reliability research is 
mixed with some studies suggesting that coherence 
is a relatively stable measure of qEEG (Cannon et 
al., 2012; Chabot et al., 1996; Corsi-Cabrera et al., 
2007; Corsi-Cabrera, Solís-Ortiz, & Guevara, 1997; 
John, 1977; Thatcher, Krause, & Hrybyk, 1986; 
Thatcher, Walker, Biver, North, & Curtin, 2003), and 
other studies finding it to be one of the least reliable 
measures (Gudmundsson et al., 2007).  There is 
some evidence that coherence tends to be higher in 
the right hemisphere in comparison to the left 
hemisphere (Gootjes, Bouma, Van Strien, 
Scheltens, & Stam, 2008; Miskovic, Schmidt, Boyle, 
& Saigal, 2009; Tucker, Roth, & Bair, 1986).  
Additionally, previous studies have found a variety of 
gender differences in coherence (e.g., higher intra-
hemispheric connectivity for males, differential 
patterns of local coherence changes after photic 
stimulation or completion of cognitive tasks), with 
some suggesting that this is due to differences in 
lateralized brain organization between the sexes 
(e.g., Gootjes et al., 2008; Koles, Lind, & Flor-Henry, 
2010; Rappelsberger & Petsche, 1988; Shaywitz et 
al., 1995; Volf & Razumnikova, 1999; Voyer, Voyer, 
& Bryden, 1995; Wada et al., 1996).  However, 
many of these results have been found during 
cognitive tasks (i.e., verbal and/or spatial tasks), 
rather than during resting state.  Coherence has 
been linked to a number of cognitive processes 
(Thatcher & Lubar, 2009) and sensorimotor tasks 
(Minc et al., 2010; Silva et al., 2012) as well as 
neuropsychiatric disorders, such as attention deficit 
hyperactivity disorder (Murias, Swanson, & 
Srinivasan, 2007), anxiety disorders (Velikova et al., 
2010), and depression (Leuchter, Cook, Hunter, Cai, 
& Horvath, 2012).  As such, understanding the 
reliability and validity of this metric is of utmost 
importance as the use of EEG increases in the 
treatment of these disorders. 
 
Clinical Implications of Measurement Reliability 
Understanding the measurement reliability of 
coherence is important for several reasons.  First, 
the utility of qEEG coherence is directly related to its 
reliability.  Indeed, few would support using 
unreliable measures for making important clinical 
decisions concerning the care and treatment of 
individuals with various disorders.  Second, as 
coherence is often targeted as an outcome measure 
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in neurofeedback treatment (i.e., Friedrich et al., 
2014; Gruzelier, 2014; Keizer, Verment, & Hommel, 
2010), it is important to establish objective 
parameters for determining whether treatment has 
led to a change in brain functioning.  Finally, the 
amount of change needed to determine a 
meaningful clinical difference as a result of treatment 
is also directly related to the reliability of the 
measures used (i.e., Evans, Margison, & Barkham, 
1998; Jacobson & Truax, 1991).  Specifically, less 
reliable measures require greater change for 
demonstrating clinical effects, whereas more reliable 
measures are more powerful for detecting 
differences.  The Reliability of Change (RC) index 
provides a formal association between 
measurement reliability and clinical outcomes.  For 
example, the reliable change definition provided by 
Jacobson and Truax (1991) formulates whether a 
client has made clinically significant change.  The 
following equation was used in this study to 
calculate the reliable change (RC) metric: 
 

x1 - x2 
 RC =   Sdiff (1) 
 
As indicated by the formula, reliable change is 
determined by the measured difference of 
functioning at two time points (X1-X2) divided by the 
standard error of the difference (Sdiff).  The Sdiff 
represents the variability in the difference between 
the two time points as a result of measurement error 
alone (Christensen & Mendoza, 1986).  The Sdiff 
characterizes variability of the measure through the 
use of the test-retest reliability coefficient (rxx) and 
the standard deviation of the pre-test score (s1) 
using the following formula (see Jacobson & Truax, 
1991 for further computational details): 
 
 Sdiff  =  √(2*(s1(√1-rxx))2) (2) 
 
Thus, the RC metric can be interpreted similarly to a 
one-tailed z-score, in which values larger than 1.96 
are unlikely to occur by chance if actual change is 
not present.  As an important caveat, the reliability 
estimate used in the equation should provide an 
accurate gauge of measurement error related to the 
measurement instrument.  Consequently, test-retest 
estimates should be based on relatively small 
intervals of time to ensure the change in scores is 
not due to a change in the underlying construct 
being tested.  
 
The Current Study 
The goal of this study was to demonstrate how the 
use of reliability statistics can be used to provide a 
basis from which to evaluate qEEG data as a pre- 

and post-test measure of treatment efficacy.  
Whereas most coherence reliability research has 
been conducted either during resting state or while 
participants were completing cognitive tasks (e.g., 
Fernández et al., 1993; Thornton & Carmody, 2009), 
this study examined the test-retest reliability of 
resting-state coherence before and after the 
completion of a cognitive task.  The methodology 
used in this study limited the duration of time 
between recordings but also provided an 
intermediary event (cognitive task) to ensure a 
change in brain activity occurred between the two 
sessions prior to return to resting state, which may 
impact coherence metrics.  This approach was used 
in an attempt to replicate what might occur during a 
cognitive, behavioral, or neurofeedback treatment 
session.  As such, this study aimed to extend 
previous literature in the following ways: (1) by 
examining the test-retest reliability of qEEG 
coherence in a sample of healthy young adults 
across different frequency bands and regions of the 
brain, and (2) by translating this information into a 
more user-friendly format for clinical practice through 
the use of reliability of change metrics described 
below. 
 

Method 
 
Participants 
Participants included 40 university students (30 
females, 10 males) ranging in age from 19 to 28 
years (mean chronological age = 21.33 years, SD = 
1.80).  This study was approved by the University of 
South Carolina’s Institutional Review Board, and 
informed consent was completed with each 
participant prior to participation in the study. 
 
Challenging Cognitive Tasks 
The measures used in the current study were the 
Woodcock-Johnson Tests of Cognitive Abilities, 
Third Edition (WJ III COG; McGrew, Schrank, & 
Woodcock, 2007) and the Wisconsin Card Sorting 
Task (WCST; Computer Version 2, n.d.).  As 
previously stated, these measures were used as an 
interference task, in order to evaluate the test-retest 
reliability of qEEG after the performance of a 
cognitively challenging task. Although the scores 
obtained were not analyzed in this study, future 
studies will examine the relationship between 
subjects’ working memory and/or executive 
functioning performance and their qEEG. 
 
Equipment and Software 
Dell laptop and desktop computers were used in the 
collection and analysis of the 
electroencephalography (EEG) recordings.  The 
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BrainMaster Discovery 24 amplifier and 
corresponding Discovery software (Version 1.8, 
2011) were used to record raw EEG data at a 
sampling rate of 256 Hz.  During data collection, the 
60 Hz notch filter was used to filter out noise due to 
other electronic devices in the laboratory.  The 
BrainMaster Discovery amplifier was selected as a 
result of its compatibility with Neuroguide (Version 
2.6.4., n.d.), which was used to analyze the raw 
EEG data as well as to produce the qEEG maps.  
MATLAB (Release 2007b, 2007), SPSS (Version 19, 
2007), and Microsoft Excel (2007) were also used 
for data exportation and final data analysis. 
 
Procedure 
Participants were fitted with a standard 19-channel 
Electro-Cap (Electro-Cap International, Inc., Eaton, 
OH), which used the international 10-20 system for 
electrode placement.  Impedance was kept below 20 
kΩ (below 10 kΩ for most subjects) for each of the 
electrodes.  Additionally, reference leads were 
placed on participants’ ears, and impedance was 
kept at or below 5 kΩ.  These leads were used as a 
common point of reference for the data collection, 
and the linked ears montage was used during 
subsequent data analysis (in Neuroguide).  Baseline 
recordings were taken for 3 min each while the 
participants’ eyes were closed and then open.  
Participants were also asked to complete one 
standardized measure of cognitive ability between 
the baseline EEGs.  The average time of completion 
for the cognitive measure was 5 min 26 s (SD = 5 s).  
Upon completion of the measure, participants then 
completed secondary baseline EEG recordings with 
their eyes closed and then open for another 3 min 
each.  The average time between the start of the two 
eyes-closed conditions was 11 min 33 s (SD = 5 s).  
Thirty-nine of the 40 subjects completed the WJ III 
numbers reversed subtest between the baselines, 
while one subject performed the WCST.  As these 
were used as an interference task, it is unlikely that 
the nature of the cognitive task significantly 
impacted the test-retest reliability.  Additionally, the 
authors did not find any significant differences as a 
result of the two intermediary cognitive tasks. 
 
Data Analysis 
Prior to running analyses, all EEG data was visually 
inspected by a single examiner to select a minimum 
of ten seconds of artifact-free data within the first 
minute of each sample.  Care was taken to select 
data in 2-s epochs whenever possible.  This allowed 
for the use of the drowsiness and eye movement 
rejection options in Neuroguide, which helped to 
eliminate artifact from the data that followed 
recognizable patterns due to eye movement and/or 

drowsiness.  Additionally, the automatic selection 
function was employed, which used the ten seconds 
of selected data as a template to automatically 
select similar data within the sample.  This was done 
to ensure a minimum of one minute of artifact-free 
data for each session.  Following artifacting, data 
from the eyes-closed EEG recordings were 
processed into qEEG metrics through fast-Fourier 
analysis.  A variety of qEEG measures (e.g., 
absolute power, coherence, phase lag, peak 
amplitude) were obtained through Neuroguide.  
MATLAB R2007b was used to collate the relevant 
raw coherence data from the full Neuroguide reports 
and to run correlations between Time 1 (T1) and 
Time 2 (T2) for each of the 171 electrode pairings.  
Data were then exported to Microsoft Excel and 
SPSS for additional summary and analysis.  Note 
that while eyes-closed data were used here as an 
illustration of our method, equivalent eyes-open data 
are available from the authors, upon request. 
 
In order to summarize patterns in the data, the 
electrode pairings were grouped into seven zones, 
based on location in the brain.  The first region (FP1, 
F3, F7) represented the left frontal lobe, while zone 
two (FP2, F4, F8) represented the right frontal lobe.  
Zones three (C3, T3) and four (C4, T4) represented 
the left and right centro-temporal areas, respectively, 
while zones five (T5, P3, O1) and six (T6, P4, O2) 
represented the left and right posterior areas of the 
brain.  The final zone, zone seven (Fz, Cz, Pz), 
represented the midline (see Figure 1).  The 
electrode pairings were then coded based on the 
regions in which the electrodes fell, such that each 
pairing was given two codes.  For example, the 
coherence between the left prefrontal (FP1) and left 
posterior (O1) electrodes would be coded for zones 
one and five, respectively.  After all of the electrode 
pairs were assigned dual-codes, the pairings were 
regrouped, such that there were groups representing 
the coherence between the different zones.  For 
example, one group represented the coherence 
within the left frontal area of the brain, while others 
represented the coherence between the frontal, 
centro-temporal and posterior areas in addition to 
the midline.  There were seven zones (see Figure 
1), and four EEG bands (delta [0.5–4.0 Hz], theta 
[4–8 Hz], alpha [8–12 Hz], beta [12–25 Hz]), forming 
28 groups in all.  The reliability coefficients were 
then averaged and collapsed within each group, 
which significantly reduced the number of statistical 
comparisons.  
 
Within each group, correlations were run for each 
electrode pair at T1 and T2 in order to calculate the 
test-retest reliability of the coherences between the 
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two electrodes.  Although a Pearson Product 
Moment Correlation (r) can be interpreted in terms of 
size, it cannot be directly combined, as it is restricted 
in range, and is subject to reduced variances near 
its extremes (i.e.,   -1 ≤ r ≤ 1; Cohen, Cohen, West, 
& Aiken, 2003).  As such, these correlations were 
then transformed using the Fisher’s Z’ 
transformation: 
 
 [z’r = ½ [ln (1+r) – ln (1-r)] (3) 
 
This was completed in order to calculate mean 
reliability coefficients for each of the 28 groups, 
because previous research has suggested that 
average rz’ values are less biased than average r- 
values (Corey, Dunlap, & Burke, 1998).  Additional 
statistics were then calculated based on these z’r 

values (e.g., mean, standard deviation, and standard 
error of the mean [SEM]) in order to calculate 
confidence intervals (CI).  The average z’r scores 
and the confidence intervals were then inverse 
transformed back to the r metric for ease of 
interpretation.  For additional information regarding 
this transformation, the reader is directed to Cohen, 
et al. (2003) and Corey et al. (1998). 
 
Finally, the authors used the most and least reliable 
zones to demonstrate the clinical applicability of 
these reliability estimates using Equation 1.  These 
metrics were chosen to demonstrate the vast 
variability in the amount of change needed to 
establish the effectiveness of a given treatment, 
based solely on the reliability of the measure being 
used. 

 
 

 
 

Figure 1. Depiction of the zones used for analysis. The bold black lines demarcate 
the seven zones as defined above (i.e., Zone 1 represents coherence within the left 
frontal region, between electrode sites FP1, F3, and F7; Zone 6 represents the 
coherence between electrodes in the right posterior region, P4, T6, and O2). 
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Results 
 
Bands 
The data were first analyzed by EEG band.  Overall, 
coherence in the alpha band was the most reliable 
across the two time points, with reliability coefficients 
ranging from .87 to .97.  The next highest reliability 
for coherence was within the theta range, with 
reliability coefficients ranging from .83 to .98.  Theta 
was followed by beta (r = .80 to r = .99), and finally 
delta (r = .74 to r = .96), suggesting that both the low 
and high extremes are less reliable than the mid-
range brain waves.  These results are consistent 
with previous research, which has shown that alpha 
waves contribute significantly to the base rhythm of 
electrical activity in the brain, and are frequently 
associated with the default brain network in resting 
state with eyes closed (Noachtar et al., 1999). 
 
Coherence within the bands was further analyzed, 
and additional patterns emerged in specific areas of 
the brain.  For instance, reliability of coherence 
within zones 3 (T3, C3) and 4 (T4, C4) was the 
highest of any other areas, regardless of band, with 
reliability coefficients ranging from r = .86 to r = .97 
and r = .82 to r = .98, respectively.  On the other 
hand, the reliability of coherence between anterior 
and posterior areas of the brain (i.e., zones 1 and 2 
with zones 5 and 6) demonstrated the least test-
retest reliability, with coefficients ranging from r = .74 
to r = .99.  This too is consistent with previous 
literature, in that areas close together have been 
shown to have higher test-retest reliability for 
coherence than areas that are further apart. 
  
Zones 
Due to the differential pattern of results from the 
band analysis, the data were also analyzed based 
on location.  Zone 1 had the lowest average 
reliabilities for coherence (r = .74 to r = .98, mean r 
= .90), while zone 7 had the highest (r = .90 to r 
= .98, mean r = .93).  In ranking the zones from 
lowest to highest average reliabilities, zone 1 was 
followed by zones 2 and 6 (r = .80 to r = .99; r = .74 
to r = .98, mean r = .91), zones 5, 3, and 4 (r = .78 to 
r = .99; r = .84 to r = .98; r = .87 to r = .98, mean r 
= .92) respectively, and finally, zone 7.  Additionally, 
clearer patterns emerged from these analyses than 
from those based solely on the type of wave.  In fact, 
the reliability of coherence within zones as well as 
between zones appeared to cluster together based 
on bands, and followed different patterns across 
each area of the brain.  For the sake of time and 
space, these zoned reliability coefficients are 
depicted in graphical form (see Figure 2).  To assess 
numerical patterns among the mean reliabilities 

across bands and zones, a two-way (7 zones by 4 
bands) ANOVA was conducted on the mean 
reliability values for each zone and band.  We found 
a main effect of band, F(3,168) = 15.52, p < .0001, 
but no effect of zone, F(6,168) = 1.64, p = .14, and 
no band by zone interaction, F(18,168) = 1.42, p 
= .13.  Post-hoc tests revealed that Delta had lower 
reliability than all other bands, but that no other 
bands differed from each other.  Detailed means for 
the coherence reliability coefficients, including 
additional frequency bands, are summarized in 
Supplementary Table 1, with further detail available 
upon request from the authors.  
 
 

 
 
Figure 2. Mean reliabilities by zone and band. For this 
study, the bands were defined as follows: delta (0.5–4 Hz), 
theta (4–8 Hz), alpha (8–12 Hz), and beta (12–25 Hz).  
Reliabilities were generally high (> .90) across zones and 
bands, with the highest average values in the alpha band, 
and lowest in the delta band.  Within-zone reliabilities, 
denoted by bold lines, also tended to be higher than cross-
zone values. 
 
 
Reliable Change 
As previously reviewed, one of the primary benefits 
of estimating measurement reliability is to help 
inform parameters for determining clinically 
significant change as a result of an intervention. To 
demonstrate the implications for the impact of 
reliability on clinically significant outcomes, a case 
demonstration will be given for using the reliable 
change method for the least and most reliable 
individual coherence metrics found in the current 
study.  Starting first with a lower reliability estimate 
such as Delta O2-F8 coherence, which had a 
reliability estimate of approximately (r12 = .70).  To 
establish Reliability of Change parameters, the 
coherence reliability metric will first be used to 
calculate the standard error of measurement: 
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  SEM =  SD1 √(1-r12) 

  SEM = 1 √(1-.70) 

  SEM = .55 

 
The calculated SEM is then used to calculate the 
standard error of the difference.  Technically, the 
reliable change equation examines the SEM at two 
different measurement periods.  Here, we assume 
the reliability estimate for time 1 is also an accurate 
estimate of the reliability of measurement at time 2.  
Thus, the standard error of the difference (SEdiff) can 
be calculated as follows: 
 

SEdiff = √(SEM1)2 + (SEM2)2 

SEdiff = √(.55)2 + (.55)2 

SEdiff = √(.55)2 + (.55)2 

SEdiff = √.60 

SEdiff = .78 

 
The standard error of the difference provides an 
estimate to be used for confidence intervals.  
Confidence intervals are arbitrary set values to 
determine range of score difference needed to 
conclude a change in score values is beyond what 
would be expected from measurement error.  The 
90% confidence interval would be created by 
multiplying the SEdiff by a z-score of 1.64.  The 
estimated range (.78*1.64 = 1.28) suggest an 
obtained z-score coherence score with a reliability 
of .70 would need to change approximately by 1.28 
z-score points to determine a significantly clinical 
effect of intervention (e.g., neurofeedback) to be 
90% confident.  That is, if a client obtained a z-score 
of -2.0 on a z-score coherence measure and 
neurofeedback intervention procedure was 
implemented to normalize the coherence metric, 
then a score difference of 1.28 is needed to 
determine with a 90% confidence level that the 
intervention has had an impact on the z-score 
metric, which would be obtained with a z-score of -
.72 or higher (-2.0 + 1.28 = -.72).  
 
To further demonstrate the impact of reliability on 
treatment outcomes, a confidence interval will be 
calculated for coherence values with higher reliability 
metrics such as Beta coherence in FP2-O1, which 
was (r = .99).  Using the same equation as above, 
the SEM would be .1.  Entering this estimate into the 
SEdiff equation would yield an estimate of .14.  For 
establishing 90% confidence intervals, this estimate 
would be multiplied by 1.64 to yield an estimate 

of .23.  Thus, the standardized coherence value 
would need to change by an estimate of .23 to 
conclude a significant amount of change as occurred 
beyond what may be attributed to measurement 
error. To allow use by interested clinicians, individual 
channel pair reliabilities, as well as SEdiff values for 
each channel pair are given in Supplementary Table 
2. 
 

Discussion 
 
Overall, the results of this study suggest that the 
test-retest reliability of coherence is sufficiently high 
for most areas (i.e., r ≥ .80).  Although not all 
frequency bands or all areas of the brain 
demonstrated reliabilities above r = .80, consistent 
with the power literature, alpha and theta had the 
highest reliability coefficients.  Furthermore, certain 
patterns emerged, which were also consistent with 
previous research.  For instance, in examining the 
reliability coefficients by band, the inter-hemispheric 
reliability of T3-C3 and T4-C4 was the highest of any 
other areas, across bands.  Corsi-Cabrera et al. 
(2007) found similar results, suggesting that 
interhemispheric reliabilities tend to be higher than 
those of intrahemispheric electrode pairs.  Also 
consistent with their study, is that many of the 
highest reliabilities in the current study involve the 
right hemisphere (i.e., zone 4, zone 2 with zones 4, 
5, and 6), which could be due to the higher 
coherences typically found in the right hemisphere.  
In general, the results from the current study 
demonstrate that qEEG coherence, much like 
absolute power, is a reliable measure of qEEG. 
 
Additionally, as demonstrated with the above 
examples, the reliability estimates from qEEG 
metrics may have a large impact on concluding 
whether or not a treatment has worked.  The current 
study found a large range of reliability estimates for 
coherence measures.  Although most metrics were 
considered highly reliable, a fair percentage of 
metrics had low reliability and some were completely 
unreliable.  Although the causative factors for 
differences in reliability metrics is unknown and 
beyond the scope of the current study, coherence 
values with lower reliability (.70) may require a 
change in coherence values of over a standard 
deviation (z = 1.28) due to a large amount of 
measurement error.  In contrast, highly reliable 
metrics (> .90) require much smaller changes to 
infer meaningful clinical change (z = .23).  The 
difference in clinical change needed between a 
highly reliable versus a less reliable metric is over 1 
standard deviation.  This provides a concrete 
demonstration of the importance of reliability in 
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determining treatment outcomes.  Given the fact that 
reliability values may vary differentially across 
channel pairings, and that this may impact the 
assessment of clinical effectiveness, both 
researchers and practitioners may consider 
incorporating Reliability of Change metrics as part of 
NF efficacy demonstrations.  Although such 
parameters are not typically provided in most 
software packages, the current study provides the 
basic procedures for estimating these parameters. 
 
Limitations 
The current sample was sufficiently large to estimate 
test-retest reliability; however, larger sample sizes 
generally provide more stable parameter estimates.  
Future studies may benefit by replicating the current 
study with larger samples sizes as well as 
systematically varying the time interval between the 
measurement periods.  Additionally, although the 60 
Hz pass filter was used to filter out typically 
occurring electrical interference, for some subjects 
the 50 Hz pass filter was also used (e.g., 
experimenter error), resulting in low estimations of 
delta, specifically below the 0.5 Hz range, due to 
overlap in the two filters between 0 Hz and 0.5 Hz.  
As coherence within the delta range was found to be 
one of the least reliable, it is possible that these 
results could be due to this underestimation.  
Alternatively, delta can be contaminated by EMG 
and EOG.  Thus the method of artifacting used in 
this study might have included artifact in the delta 
frequency.  Future studies should examine these 
possibilities. 
 
Clinical Implications for Assessing Intervention 
Effectiveness 
The applications of qEEG are far reaching, as 
shown by the immense literature base on the topic.  
The use of qEEG in psychology is growing, and with 
it, the importance of research such as this study.  
However, the validity of qEEG for practical 
applications will always be limited by its 
measurement reliability.  This study focused on test-
retest reliability for coherence because it has been 
less reported in the research, yet has become a 
primary qEEG measure used in clinical practice.  
Indeed, as reported by Thatcher, North, and Biver 
(2005), coherence is a better predictor of IQ and 
various cognitive abilities than power.  Regardless of 
the mechanism, cognition has consistently been 
demonstrated to be an important construct within 
psychology.  In fact, qEEG data has already been 
linked to a variety of neurocognitive profiles, as well 
as neuropsychiatric disorders, specifically through 
the measurement of coherence.  As such, the 
reliability and validity of qEEG have become 

increasingly important.  This study has 
demonstrated consistency with previous literature in 
showing that coherence is a reliable and stable 
measure of qEEG, and identified patterns of 
reliability, which can provide further confidence in 
the use of such methodology for treating cognitive 
and/or neuropsychiatric deficiencies.  Additionally, 
the study demonstrated the utility of these reliability 
estimates in measuring reliable change, thereby 
extending the utility of qEEG to a progress-
monitoring tool as well. 
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Appendix 
 

Supplementary Table 1 
Detailed means for the coherence reliability coefficients (including additional frequency bands), by zone. 

Zone Delta Theta Alpha Beta High 
Beta 

Alpha 
1 

Alpha 
2 

Beta 1 Beta 2 Beta 3 Mean 

 

1.0– 
4.0 Hz 

4.0– 
8.0 Hz 

8.0– 
12.0 Hz 

12.0– 
25.0 Hz 

25.0– 
30.0 Hz 

8.0– 
10.0 Hz 

10.0– 
12.0 Hz 

12.0– 
15.0 Hz 

15.0– 
18.0 Hz 

18.0– 
25.0 Hz  

1 0.85 0.91 0.94 0.91 0.79 0.92 0.92 0.86 0.93 0.84 0.90 

2 0.87 0.91 0.94 0.93 0.80 0.92 0.92 0.89 0.94 0.84 0.91 

3 0.90 0.93 0.92 0.93 0.82 0.89 0.92 0.89 0.93 0.86 0.92 

4 0.91 0.93 0.92 0.92 0.80 0.91 0.90 0.87 0.94 0.83 0.92 

5 0.88 0.91 0.92 0.97 0.80 0.88 0.91 0.88 0.97 0.84 0.92 

6 0.86 0.90 0.92 0.96 0.81 0.89 0.91 0.90 0.97 0.86 0.91 

7 0.92 0.93 0.93 0.95 0.87 0.92 0.92 0.89 0.96 0.89 0.93 

Mean 0.89 0.92 0.93 0.94 0.81 0.90 0.91 0.88 0.95 0.85 0.92 
 
 
Supplementary Table 2 
Individual channel pair reliabilities and SEdiff values for each channel pair. 

  Delta Theta Alpha Beta High Beta Gamma 

Site1 Site2 1.0–4.0 Hz 4.0–8.0 Hz 8.0–12.0 Hz 12.0–25.0 Hz 25.0–30.0 Hz 30.0–40.0 Hz 

FP1 FP2 0.93(5.93) 0.98(3.11) 0.99(2.68) 0.78(12.13) 0.77(13.29) 0.74(13.34) 

FP1 F3 0.94(5.72) 0.96(3.88) 0.95(4.87) 0.68(13.78) 0.75(13.27) 0.75(12.47) 

FP1 F4 0.86(7.24) 0.94(4.53) 0.96(4.57) 0.82(8.88) 0.80(7.70) 0.72(8.44) 

FP1 C3 0.89(5.22) 0.87(5.31) 0.88(8.51) 0.91(5.88) 0.75(5.63) 0.72(6.31) 

FP1 C4 0.87(5.92) 0.90(4.69) 0.90(7.13) 0.86(6.17) 0.79(3.62) 0.77(6.54) 

FP1 P3 0.82(3.76) 0.88(3.04) 0.92(4.31) 0.99(2.03) 0.76(2.67) 0.83(3.75) 

FP1 P4 0.84(3.46) 0.83(3.51) 0.93(4.85) 0.99(1.84) 0.82(2.33) 0.83(5.58) 

FP1 O1 0.70(2.47) 0.78(1.38) 0.94(5.52) 0.99(1.62) 0.71(2.24) 0.78(5.43) 

FP1 O2 0.65(2.31) 0.85(1.41) 0.95(5.26) 0.99(2.15) 0.64(1.39) 0.92(1.83) 

FP1 F7 0.91(7.03) 0.93(5.26) 0.94(5.97) 0.84(8.63) 0.79(10.03) 0.77(11.36) 

FP1 F8 0.81(9.56) 0.90(6.49) 0.97(4.89) 0.90(7.10) 0.80(6.64) 0.72(7.56) 

FP1 T3 0.87(5.06) 0.88(4.71) 0.92(6.44) 0.94(4.59) 0.77(4.00) 0.77(4.80) 

FP1 T4 0.82(5.29) 0.88(4.05) 0.94(4.31) 0.98(2.56) 0.77(2.12) 0.82(4.19) 

FP1 T5 0.78(2.71) 0.84(1.72) 0.94(4.74) 0.99(1.7) 0.72(1.88) 0.88(2.69) 

FP1 T6 0.74(2.55) 0.86(2.14) 0.95(5.18) 0.99(2.03) 0.83(1.58) 0.82(4.21) 

FP1 Fz 0.91(6.10) 0.93(5.17) 0.98(3.13) 0.81(10.82) 0.79(10.98) 0.77(12.33) 

FP1 Cz 0.91(5.02) 0.88(5.63) 0.88(8.44) 0.89(6.21) 0.81(4.87) 0.73(6.17) 
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Supplementary Table 2 
Individual channel pair reliabilities and SEdiff values for each channel pair. 

  Delta Theta Alpha Beta High Beta Gamma 

Site1 Site2 1.0–4.0 Hz 4.0–8.0 Hz 8.0–12.0 Hz 12.0–25.0 Hz 25.0–30.0 Hz 30.0–40.0 Hz 

FP1 Pz 0.86(3.55) 0.84(3.60) 0.88(5.37) 0.98(2.53) 0.80(2.49) 0.83(3.42) 

FP2 F3 0.91(6.92) 0.95(4.56) 0.93(5.70) 0.72(11.39) 0.77(9.61) 0.79(8.47) 

FP2 F4 0.90(6.55) 0.97(3.47) 0.95(4.93) 0.71(13.68) 0.77(13.05) 0.82(12.52) 

FP2 C3 0.90(4.93) 0.87(5.27) 0.86(8.76) 0.91(5.76) 0.75(5.92) 0.92(5.48) 

FP2 C4 0.89(6.13) 0.93(4.43) 0.89(7.79) 0.84(7.32) 0.76(5.80) 0.70(6.77) 

FP2 P3 0.82(3.41) 0.84(3.24) 0.93(4.33) 0.99(1.93) 0.87(3.99) 0.96(4.03) 

FP2 P4 0.87(3.54) 0.86(3.66) 0.93(4.77) 0.98(2.20) 0.63(2.90) 0.81(3.20) 

FP2 O1 0.72(2.27) 0.74(1.72) 0.94(5.56) 0.99(2.23) 0.51(2.02) 0.86(2.68) 

FP2 O2 0.69(2.25) 0.80(1.57) 0.95(5.21) 0.98(2.64) 0.80(3.06) 0.98(2.85) 

FP2 F7 0.87(8.16) 0.92(6.09) 0.94(7.02) 0.86(7.63) 0.82(6.75) 0.83(6.55) 

FP2 F8 0.87(8.27) 0.94(4.90) 0.96(4.71) 0.81(10.39) 0.84(9.74) 0.85(10.65) 

FP2 T3 0.90(3.56) 0.87(4.27) 0.92(6.04) 0.98(2.61) 0.68(3.22) 0.93(4.03) 

FP2 T4 0.86(5.97) 0.94(3.91) 0.93(5.01) 0.94(4.19) 0.81(3.59) 0.79(4.63) 

FP2 T5 0.76(2.26) 0.77(1.86) 0.94(5.09) 0.99(2.05) 0.89(3.32) 0.98(2.62) 

FP2 T6 0.78(2.71) 0.85(2.20) 0.95(4.71) 0.99(2.09) 0.48(2.55) 0.83(2.09) 

FP2 Fz 0.90(6.58) 0.94(4.96) 0.97(3.99) 0.79(11.73) 0.82(9.94) 0.84(9.92) 

FP2 Cz 0.92(4.92) 0.91(5.31) 0.87(8.81) 0.86(7.46) 0.79(7.37) 0.87(7.72) 

FP2 Pz 0.86(3.63) 0.84(3.82) 0.89(5.45) 0.98(2.78) 0.79(4.39) 0.96(3.74) 

F3 F4 0.94(5.13) 0.97(3.29) 0.96(4.51) 0.90(5.81) 0.93(5.71) 0.93(5.34) 

F3 C3 0.95(4.29) 0.96(3.58) 0.92(7.11) 0.90(6.10) 0.88(7.30) 0.90(6.28) 

F3 C4 0.90(5.99) 0.96(4.07) 0.93(7.21) 0.93(5.15) 0.88(5.41) 0.84(7.19) 

F3 P3 0.88(5.32) 0.93(4.14) 0.93(4.81) 0.88(4.98) 0.82(4.95) 0.85(5.25) 

F3 P4 0.86(5.84) 0.91(4.43) 0.91(4.67) 0.91(4.02) 0.81(3.74) 0.79(5.72) 

F3 O1 0.80(4.08) 0.81(2.09) 0.93(4.90) 0.99(1.59) 0.62(2.86) 0.72(5.51) 

F3 O2 0.81(3.42) 0.77(1.95) 0.94(5.08) 0.95(2.80) 0.68(2.54) 0.88(3.04) 

F3 F7 0.93(5.73) 0.95(5.13) 0.97(4.45) 0.84(9.85) 0.74(13.12) 0.72(14.99) 

F3 F8 0.85(8.27) 0.92(5.54) 0.93(6.88) 0.84(6.89) 0.82(4.82) 0.81(4.99) 

F3 T3 0.92(5.50) 0.94(4.76) 0.93(6.20) 0.76(7.66) 0.83(6.32) 0.82(6.73) 

F3 T4 0.89(5.21) 0.93(3.79) 0.94(4.63) 0.91(3.62) 0.80(2.89) 0.79(5.47) 

F3 T5 0.87(4.25) 0.93(2.35) 0.93(4.07) 0.96(2.68) 0.80(2.98) 0.89(3.66) 

F3 T6 0.81(3.90) 0.90(1.73) 0.94(4.87) 0.98(2.11) 0.68(2.68) 0.76(4.02) 

F3 Fz 0.98(3.28) 0.97(3.47) 0.98(2.86) 0.96(5.16) 0.96(5.49) 0.94(6.43) 

F3 Cz 0.92(5.36) 0.95(4.28) 0.93(6.46) 0.89(5.76) 0.89(6.44) 0.89(6.28) 
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Supplementary Table 2 
Individual channel pair reliabilities and SEdiff values for each channel pair. 

  Delta Theta Alpha Beta High Beta Gamma 

Site1 Site2 1.0–4.0 Hz 4.0–8.0 Hz 8.0–12.0 Hz 12.0–25.0 Hz 25.0–30.0 Hz 30.0–40.0 Hz 

F3 Pz 0.88(5.36) 0.91(4.42) 0.90(5.50) 0.90(4.51) 0.85(4.56) 0.84(5.15) 

F4 C3 0.93(4.86) 0.94(4.43) 0.89(8.54) 0.96(4.09) 0.90(4.82) 0.94(4.75) 

F4 C4 0.95(4.38) 0.97(3.50) 0.94(6.68) 0.95(4.93) 0.95(5.37) 0.88(6.11) 

F4 P3 0.87(5.49) 0.89(4.38) 0.92(4.70) 0.98(2.33) 0.75(5.67) 0.95(4.46) 

F4 P4 0.90(5.78) 0.92(5.19) 0.91(5.12) 0.98(2.77) 0.84(4.19) 0.81(4.61) 

F4 O1 0.85(3.53) 0.73(2.30) 0.93(5.15) 0.99(1.13) 0.56(2.57) 0.83(3.29) 

F4 O2 0.87(3.49) 0.70(3.05) 0.92(5.46) 0.99(1.53) 0.70(3.74) 0.95(4.10) 

F4 F7 0.83(7.53) 0.88(6.69) 0.94(6.87) 0.89(5.61) 0.87(4.23) 0.89(3.94) 

F4 F8 0.89(7.28) 0.98(3.20) 0.98(2.88) 0.90(7.54) 0.86(10.01) 0.87(10.63) 

F4 T3 0.90(4.51) 0.91(4.25) 0.92(6.46) 0.97(2.93) 0.72(3.85) 0.88(5.51) 

F4 T4 0.92(6.20) 0.97(3.39) 0.95(5.64) 0.89(6.45) 0.81(6.78) 0.70(8.39) 

F4 T5 0.85(3.51) 0.84(1.92) 0.94(4.05) 0.99(1.57) 0.72(4.53) 0.98(3.01) 

F4 T6 0.89(4.48) 0.90(3.16) 0.92(5.02) 0.99(1.81) 0.75(3.31) 0.82(3.41) 

F4 Fz 0.98(2.81) 0.98(3.09) 0.99(2.06) 0.99(2.71) 0.96(4.99) 0.97(4.06) 

F4 Cz 0.93(5.21) 0.96(3.96) 0.92(6.80) 0.92(5.14) 0.91(5.73) 0.94(4.86) 

F4 Pz 0.89(5.46) 0.90(4.93) 0.90(5.93) 0.97(3.25) 0.83(5.75) 0.91(5.91) 

C3 C4 0.95(4.78) 0.96(4.32) 0.93(7.28) 0.92(5.75) 0.92(5.72) 0.88(5.90) 

C3 P3 0.95(4.35) 0.95(4.23) 0.95(5.34) 0.92(5.14) 0.87(6.87) 0.90(6.71) 

C3 P4 0.90(7.21) 0.94(5.08) 0.94(4.64) 0.97(3.67) 0.90(4.92) 0.86(5.68) 

C3 O1 0.87(6.33) 0.88(4.88) 0.90(5.71) 0.97(3.52) 0.79(5.36) 0.78(6.24) 

C3 O2 0.88(5.68) 0.87(4.38) 0.88(4.83) 0.97(2.67) 0.79(5.03) 0.91(5.75) 

C3 F7 0.86(6.37) 0.91(5.50) 0.91(7.88) 0.89(5.59) 0.83(6.14) 0.83(5.90) 

C3 F8 0.88(4.93) 0.93(3.94) 0.87(8.28) 0.98(3.07) 0.79(5.04) 0.93(5.17) 

C3 T3 0.92(6.32) 0.97(4.14) 0.96(5.34) 0.86(9.45) 0.88(8.13) 0.87(9.69) 

C3 T4 0.91(5.33) 0.94(3.55) 0.91(5.57) 0.97(2.70) 0.76(3.00) 0.78(3.67) 

C3 T5 0.92(5.49) 0.94(4.35) 0.89(6.80) 0.94(4.50) 0.83(6.43) 0.89(6.81) 

C3 T6 0.84(6.78) 0.90(3.32) 0.89(4.00) 0.99(2.07) 0.81(3.98) 0.82(4.55) 

C3 Fz 0.95(3.93) 0.93(4.84) 0.91(8.02) 0.95(4.84) 0.91(5.51) 0.92(5.12) 

C3 Cz 0.98(3.11) 0.98(2.80) 0.94(5.51) 0.92(5.69) 0.92(6.38) 0.93(6.06) 

C3 Pz 0.93(4.91) 0.94(4.52) 0.95(5.00) 0.96(4.05) 0.90(5.66) 0.93(5.24) 

C4 P3 0.92(5.73) 0.89(5.79) 0.92(5.82) 0.90(5.11) 0.85(5.50) 0.83(6.22) 

C4 P4 0.94(5.04) 0.95(5.09) 0.94(5.85) 0.91(5.76) 0.91(6.02) 0.90(6.90) 

C4 O1 0.90(5.27) 0.87(4.18) 0.88(4.66) 0.96(2.90) 0.65(4.49) 0.75(6.96) 
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Supplementary Table 2 
Individual channel pair reliabilities and SEdiff values for each channel pair. 

  Delta Theta Alpha Beta High Beta Gamma 

Site1 Site2 1.0–4.0 Hz 4.0–8.0 Hz 8.0–12.0 Hz 12.0–25.0 Hz 25.0–30.0 Hz 30.0–40.0 Hz 

C4 O2 0.91(5.17) 0.83(5.85) 0.89(6.20) 0.91(4.15) 0.78(5.83) 0.78(6.79) 

C4 F7 0.84(5.03) 0.88(4.96) 0.94(5.65) 0.91(4.25) 0.85(2.67) 0.84(5.87) 

C4 F8 0.88(6.50) 0.96(4.04) 0.91(7.60) 0.92(5.41) 0.84(6.05) 0.79(6.49) 

C4 T3 0.89(5.28) 0.91(4.42) 0.93(5.38) 0.95(3.34) 0.74(3.33) 0.84(3.66) 

C4 T4 0.96(5.23) 0.98(3.03) 0.96(5.27) 0.82(10.79) 0.76(11.86) 0.6(17.68) 

C4 T5 0.90(5.12) 0.90(3.33) 0.91(3.22) 0.97(2.32) 0.78(3.26) 0.86(4.14) 

C4 T6 0.90(6.05) 0.89(5.87) 0.88(6.04) 0.86(5.76) 0.78(7.13) 0.79(7.85) 

C4 Fz 0.95(4.53) 0.96(4.24) 0.93(7.29) 0.93(6.04) 0.94(5.30) 0.88(7.00) 

C4 Cz 0.96(4.35) 0.98(2.82) 0.97(4.46) 0.95(4.8) 0.96(5.39) 0.93(5.41) 

C4 Pz 0.94(4.64) 0.92(5.08) 0.94(5.75) 0.90(5.37) 0.92(5.89) 0.88(6.45) 

P3 P4 0.93(6.11) 0.94(5.14) 0.92(6.54) 0.98(3.19) 0.92(5.20) 0.91(5.53) 

P3 O1 0.95(4.79) 0.96(3.87) 0.94(6.65) 0.94(5.29) 0.90(7.12) 0.89(7.39) 

P3 O2 0.91(6.02) 0.94(4.39) 0.91(7.80) 0.97(3.62) 0.91(5.70) 0.93(5.94) 

P3 F7 0.72(4.75) 0.88(4.10) 0.92(4.52) 0.94(3.44) 0.78(3.15) 0.84(3.87) 

P3 F8 0.84(2.46) 0.87(2.64) 0.93(4.13) 0.99(1.58) 0.82(3.73) 0.98(3.01) 

P3 T3 0.88(6.61) 0.94(4.77) 0.95(6.07) 0.85(7.76) 0.81(7.64) 0.81(8.97) 

P3 T4 0.88(5.51) 0.92(3.37) 0.86(4.29) 0.98(2.24) 0.64(3.17) 0.79(3.70) 

P3 T5 0.94(5.14) 0.97(3.31) 0.95(4.70) 0.97(3.53) 0.94(5.24) 0.91(7.08) 

P3 T6 0.87(7.71) 0.91(4.69) 0.83(7.38) 0.97(3.01) 0.84(4.93) 0.85(5.38) 

P3 Fz 0.90(5.21) 0.91(4.48) 0.93(4.81) 0.98(2.87) 0.79(4.84) 0.86(4.95) 

P3 Cz 0.93(5.37) 0.93(4.98) 0.95(5.48) 0.97(3.87) 0.89(5.73) 0.93(5.28) 

P3 Pz 0.96(4.27) 0.98(3.08) 0.97(4.22) 0.95(4.16) 0.93(5.70) 0.95(4.94) 

P4 O1 0.94(5.00) 0.94(4.08) 0.92(6.39) 0.95(4.17) 0.83(6.65) 0.86(7.66) 

P4 O2 0.92(5.55) 0.97(3.65) 0.95(6.06) 0.97(3.54) 0.89(7.12) 0.91(6.50) 

P4 F7 0.71(2.91) 0.80(3.47) 0.93(4.69) 0.99(1.66) 0.78(1.54) 0.72(5.34) 

P4 F8 0.87(3.66) 0.92(3.52) 0.91(4.72) 0.99(2.25) 0.73(2.90) 0.77(3.81) 

P4 T3 0.85(5.35) 0.93(3.33) 0.92(3.81) 0.99(1.88) 0.83(3.05) 0.85(3.55) 

P4 T4 0.92(5.99) 0.95(4.41) 0.92(6.67) 0.84(8.08) 0.77(8.27) 0.68(10.95) 

P4 T5 0.92(6.14) 0.93(4.35) 0.89(6.82) 0.98(2.43) 0.89(4.17) 0.87(5.61) 

P4 T6 0.92(6.46) 0.94(4.55) 0.92(6.18) 0.96(4.15) 0.92(5.88) 0.92(6.11) 

P4 Fz 0.90(5.74) 0.92(4.78) 0.89(5.21) 0.98(2.99) 0.88(4.22) 0.86(6.28) 

P4 Cz 0.90(7.20) 0.95(5.26) 0.96(5.03) 0.96(4.40) 0.93(4.55) 0.89(5.69) 

P4 Pz 0.97(4.03) 0.98(3.12) 0.98(3.69) 0.98(2.65) 0.96(4.70) 0.96(4.31) 
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Supplementary Table 2 
Individual channel pair reliabilities and SEdiff values for each channel pair. 

  Delta Theta Alpha Beta High Beta Gamma 

Site1 Site2 1.0–4.0 Hz 4.0–8.0 Hz 8.0–12.0 Hz 12.0–25.0 Hz 25.0–30.0 Hz 30.0–40.0 Hz 

O1 O2 0.92(5.81) 0.98(3.15) 0.92(6.06) 0.94(4.88) 0.86(8.62) 0.90(7.55) 

O1 F7 0.45(1.98) 0.80(1.31) 0.93(5.22) 0.99(1.36) 0.44(2.26) 0.60(6.06) 

O1 F8 0.65(1.90) 0.87(1.76) 0.94(5.49) 0.99(1.53) 0.73(1.20) 0.92(1.85) 

O1 T3 0.79(5.24) 0.91(3.21) 0.87(5.94) 0.97(3.50) 0.74(6.11) 0.77(6.15) 

O1 T4 0.87(4.07) 0.89(1.88) 0.73(3.79) 0.99(1.12) 0.55(2.23) 0.81(4.15) 

O1 T5 0.94(4.78) 0.96(3.56) 0.96(4.47) 0.95(5.55) 0.88(9.15) 0.81(11.18) 

O1 T6 0.91(6.13) 0.93(4.10) 0.82(8.91) 0.97(3.30) 0.77(6.90) 0.82(7.93) 

O1 Fz 0.86(4.00) 0.81(2.25) 0.93(5.28) 0.99(0.97) 0.71(3.55) 0.79(6.19) 

O1 Cz 0.91(5.76) 0.90(4.54) 0.90(4.95) 0.98(2.54) 0.76(4.48) 0.80(5.79) 

O1 Pz 0.94(4.93) 0.94(4.51) 0.91(7.46) 0.92(5.10) 0.88(6.29) 0.90(5.87) 

O2 F7 0.39(1.61) 0.87(1.38) 0.95(5.18) 0.98(2.10) 0.61(1.47) 0.91(2.09) 

O2 F8 0.70(1.75) 0.79(1.66) 0.94(5.20) 0.99(1.57) 0.85(2.46) 0.97(2.88) 

O2 T3 0.73(4.14) 0.91(2.10) 0.89(3.83) 0.99(1.81) 0.72(3.82) 0.86(5.51) 

O2 T4 0.85(5.06) 0.85(3.69) 0.84(5.42) 0.93(3.71) 0.72(5.05) 0.73(5.43) 

O2 T5 0.89(6.20) 0.96(3.59) 0.90(7.10) 0.96(3.72) 0.88(6.44) 0.94(6.20) 

O2 T6 0.91(7.08) 0.94(4.63) 0.96(4.62) 0.91(6.04) 0.85(9.53) 0.84(10.14) 

O2 Fz 0.87(3.60) 0.75(2.62) 0.92(5.54) 0.99(1.32) 0.67(2.87) 0.86(3.56) 

O2 Cz 0.91(5.46) 0.87(5.25) 0.86(5.72) 0.99(2.04) 0.81(5.13) 0.92(5.61) 

O2 Pz 0.92(5.72) 0.94(4.76) 0.93(7.25) 0.94(4.61) 0.92(5.42) 0.91(6.43) 

F7 F8 0.79(7.25) 0.88(6.13) 0.94(6.99) 0.93(4.75) 0.87(2.89) 0.90(3.11) 

F7 T3 0.83(7.83) 0.92(5.13) 0.92(6.43) 0.78(7.73) 0.81(7.28) 0.83(6.94) 

F7 T4 0.84(2.80) 0.86(3.16) 0.95(3.28) 0.98(1.70) 0.71(1.32) 0.89(3.38) 

F7 T5 0.77(3.31) 0.90(2.28) 0.93(4.25) 0.98(2.22) 0.70(2.79) 0.87(3.24) 

F7 T6 0.68(1.61) 0.88(2.32) 0.94(5.51) 0.98(2.21) 0.55(2.13) 0.72(3.59) 

F7 Fz 0.86(6.96) 0.90(6.58) 0.95(6.38) 0.90(6.36) 0.89(5.33) 0.87(6.69) 

F7 Cz 0.84(5.90) 0.89(5.79) 0.92(7.52) 0.85(5.87) 0.83(3.92) 0.86(4.37) 

F7 Pz 0.77(4.03) 0.82(4.29) 0.89(5.09) 0.96(2.82) 0.83(1.98) 0.86(3.19) 

F8 T3 0.83(3.12) 0.91(2.70) 0.93(5.21) 0.99(1.45) 0.66(2.81) 0.93(4.11) 

F8 T4 0.91(5.88) 0.96(4.09) 0.93(6.03) 0.90(6.68) 0.82(7.43) 0.78(7.28) 

F8 T5 0.71(1.63) 0.86(1.82) 0.94(5.03) 0.99(1.86) 0.80(3.49) 0.99(2.09) 

F8 T6 0.80(3.15) 0.91(2.28) 0.93(4.76) 0.99(1.56) 0.69(2.51) 0.78(3.12) 

F8 Fz 0.87(7.77) 0.94(5.37) 0.96(4.96) 0.92(5.97) 0.85(6.01) 0.84(6.50) 

F8 Cz 0.89(5.93) 0.95(4.32) 0.89(8.62) 0.92(5.17) 0.84(4.77) 0.93(4.99) 
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Supplementary Table 2 
Individual channel pair reliabilities and SEdiff values for each channel pair. 

  Delta Theta Alpha Beta High Beta Gamma 

Site1 Site2 1.0–4.0 Hz 4.0–8.0 Hz 8.0–12.0 Hz 12.0–25.0 Hz 25.0–30.0 Hz 30.0–40.0 Hz 

F8 Pz 0.85(3.58) 0.89(3.18) 0.89(5.50) 0.98(2.45) 0.80(4.95) 0.94(4.91) 

T3 T4 0.84(3.50) 0.89(2.02) 0.91(3.35) 0.99(1.77) 0.63(1.29) 0.90(1.41) 

T3 T5 0.89(6.10) 0.93(4.82) 0.87(7.26) 0.85(7.61) 0.83(7.64) 0.83(8.89) 

T3 T6 0.76(3.87) 0.79(2.25) 0.92(3.49) 0.99(1.46) 0.80(2.13) 0.83(2.80) 

T3 Fz 0.91(4.96) 0.92(4.80) 0.93(6.40) 0.94(4.50) 0.84(3.90) 0.82(5.24) 

T3 Cz 0.91(5.61) 0.94(4.70) 0.95(6.24) 0.90(5.82) 0.80(4.94) 0.86(6.64) 

T3 Pz 0.85(6.09) 0.93(4.16) 0.95(4.85) 0.94(4.68) 0.82(5.51) 0.87(6.78) 

T4 T5 0.89(3.45) 0.87(1.61) 0.84(3.04) 0.99(1.41) 0.68(1.47) 0.92(1.84) 

T4 T6 0.91(5.67) 0.92(4.73) 0.89(6.34) 0.82(7.64) 0.73(9.07) 0.68(10.65) 

T4 Fz 0.92(5.28) 0.95(3.90) 0.95(5.08) 0.92(4.84) 0.79(4.27) 0.69(6.95) 

T4 Cz 0.94(5.40) 0.97(3.44) 0.93(6.24) 0.87(6.32) 0.73(5.67) 0.65(6.54) 

T4 Pz 0.92(5.28) 0.94(3.79) 0.88(6.47) 0.91(4.98) 0.77(5.23) 0.71(6.30) 

T5 T6 0.90(5.91) 0.90(3.51) 0.87(6.83) 0.99(2.19) 0.84(3.64) 0.88(4.05) 

T5 Fz 0.88(3.86) 0.90(2.18) 0.94(4.06) 0.99(1.68) 0.77(2.54) 0.88(3.63) 

T5 Cz 0.92(5.25) 0.94(3.67) 0.93(4.03) 0.99(1.88) 0.85(5.59) 0.94(5.29) 

T5 Pz 0.93(5.62) 0.96(4.09) 0.91(7.04) 0.94(4.36) 0.88(6.23) 0.90(6.90) 

T6 Fz 0.87(4.27) 0.90(2.43) 0.93(4.97) 0.99(1.61) 0.83(3.26) 0.84(4.94) 

T6 Cz 0.87(6.93) 0.89(4.97) 0.84(5.22) 0.97(3.06) 0.82(4.36) 0.85(4.42) 

T6 Pz 0.89(7.46) 0.92(5.51) 0.86(7.17) 0.95(3.84) 0.84(6.79) 0.84(7.08) 

Fz Cz 0.97(3.49) 0.95(4.25) 0.94(5.87) 0.97(3.53) 0.95(5.22) 0.95(4.82) 

Fz Pz 0.91(5.25) 0.90(4.95) 0.90(5.92) 0.96(3.77) 0.86(4.60) 0.85(5.16) 

Cz Pz 0.94(4.53) 0.94(4.60) 0.95(5.12) 0.90(5.78) 0.94(4.75) 0.94(5.05) 
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Abstract 

Introduction: Erect and slouch body postures affect access to positive and negative emotions.  In an erect sitting 
posture participants reported more positive emotion and thoughts, while in a slouch position they reported more 
negative emotion and thoughts.  This study explored the electroencephalogram (EEG) patterns under erect and 
slouch body postures while recalling positive and negative events.  Methods: Twenty-eight healthy college 
students were instructed to sit quietly with their eyes closed for 1 min, and then to sit in erect or slouch postures 
while recalling happy or depressive events for 1 min each.  EEG, with linked-ear references, was recorded at Cz 
and analyzed under five conditions.  Results: There were significantly higher amplitudes of beta2, beta3, and 
beta4 in a slouch posture while recalling happy events than in an erect posture while recalling happy or 
depressive events.  There was no significant difference between body posture and emotional recall on low-
frequency oscillatory activity.  The reaction time was significantly longer to access positive event in the slouched 
position as compared to the erect position.  Conclusion: Evoking positive thoughts in a slouch body position 
takes more effort or arousal than other positions as indicated by the significant increase in high-frequency 
oscillatory activities.  The implication for cognitive behavior therapy is that body posture matters; clients have 
more difficulty shifting to evoking a positive emotional state when sitting in a collapsed position than when sitting 
in an erect position.  
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Introduction 

 
Body posture might affect our mental state, emotion, 
and memory recall (Michalak, Micschnat, & 
Teismann, 2014; Peper & Lin, 2012).  Peper and Lin 
have found that walking in a slouch posture may 
decrease subjective energy and increase negative 
emotion, such as sadness, loneliness, isolation, and 
sleepiness.  This slouch posture accompanied 
feelings of “wanting to just sit down”, “low energy,” 
“depressive feelings,” or being “zombie-like.”  While 
walking in an erect posture and skipping, 
participants increased their subjective energy and 
experienced more energetic, happy, and positive 
feeling.  In addition, they found that the erect posture 
makes subjects much stronger to resist the 

downward pressure compared to the collapsed 
position.  Nair et al. (2015) found that a slumped 
posture compared to an upright posture increased 
the emotional state of high negative arousals 
including fear, hostility, and nervousness. They also 
found that an upright-seated posture compared to a 
slumped posture had a protective effect on the 
emotion when experiencing a psychological 
stressor. 
 
The effect of posture on access to positive or 
negative memories was demonstrated by Wilson 
and Peper (2004), who found that negative thoughts 
and memories were easier to access in a collapsed-
slump position and that positive thoughts were 
easier to access when sitting in an upright position.  
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Michalak et al. (2014) found that patients with 
depression recalled more negative words in a slump 
posture, which indicated a recall bias depending 
upon posture.  However, the recall bias of positive 
and negative words did not occur under an upright 
sitting posture.  
 
Thibault, Lifshitz, Jones, and Raz (2014) and 
Zhavoronkova, Zharikova, Kushnir, and Mikhalkova 
(2012) explored the associations between changes 
in body posture and electroencephalogram (EEG) 
activity.  Thibault et al. found increased beta (14–30 
Hz) and gamma (30–50 Hz) activities in the frontal 
and occipital regions from lying supine to 45�
recline, as well as from 45�recline to sitting upright. 
Zhavoronkova et al. also found that there were 
increased beta (12.3–30.1 Hz) and gamma (30.1–
40.2 Hz) activities at the parietal and occipital areas 
from lying to sitting position, whereas there were 
decreased delta (2.0–3.9 Hz), theta (4.3–7.8 Hz), 
and alpha (8.1–12.1 Hz) activities from lying to 
sitting position.  In addition, there were increased 
alpha2 (10.5–12.1 Hz), beta (12.3–30.1 Hz), and 
gamma (30.1–40.2 Hz) activities from sitting to 
upright positions (Zhavoronkova et al., 2012).  
Changes in body posture (e.g., from lying supine to 
sitting, from sitting to upright) increase high-
frequency oscillatory activities.  
 
Previous studies have confirmed changes in body 
posture related to subject’s feelings, memory recall, 
and brain activity.  However, the brain activity when 
combining the body posture and emotional recall is 
unknown.  The purpose of this study was to explore 
the EEG patterns under erect or slouch postures 
while recalling happy or depressive events. 
 

Methods 
 
Participants 
Twenty-nine college students were recruited from 
the Kaohsiung Medical University; one participant 
was excluded from data analysis due to EEG 

recording problems.  The mean age of the students 
was 20.64 years (SD = 1.06) with 3 men and 25 
women.  All participants were instructed not to drink 
caffeinated beverages on the day of the study.  
Institutional Review Board approval was obtained 
from the ethics committee of the Kaohsiung Medical 
University Hospital, and written informed consent 
was obtained from each participant before the 
experiment. 
 
Experimental Procedure 
Participants were asked to fill out demographic and 
psychological questionnaires and then sat in a 
comfortable posture on a sofa.  The research 
procedure consisted of a 2 (erect and slouch 
postures; Figure 1) × 2 (recalling happy or 
depressive events) Latin Square design.  
 
 

Figure 1. The erect and slouch postures. 
 
 
The experimental stages consisted of a 1-min 
resting baseline with eyes closed, and then the 
participants were assigned randomly to experience 
A–D stages with eyes closed for 1 min each (Figure 
2): (A) erect posture while recalling happy event; 
(B) erect posture while recalling depressive event; 
(C) slouch posture while recalling happy event; or 
(D) slouch posture while recalling depressive event. 

 
 
 

 

 
 
 
 
 
 
 

Figure 2. The experimental procedure.  

Resting 
baseline 
(1 min) 

 
Erect or slouch body posture while recalling happy or depressive event 
(1) AàBàCàD (1 min each, total 4 min) 
(2) BàCàDàA (1 min each, total 4 min) 
(3) CàDàAàB (1 min each, total 4 min) 
(4) DàAàBàC (1 min each, total 4 min) 
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In the erect posture participants were asked to look 
up and straighten their back, whereas in the slouch 
posture participants were asked to lower their 
heads, look down, and sit hunch-backed. The 
instructions for recalling happy and depressive 
events were as follows:  
 

Instructions for recalling a happy event: 
Please keep the same posture and recall a 
happy memory from your past.  We 
experience joyful things such as doing the 
activities we enjoy, getting good scores on 
exams, gathering with friends, and striving 
for success.  The feeling is very happy and 
joyful.  Now please recall something happy. 
When you recall such a memory, let me 
know with a nod.  Please maintain the happy 
feeling for 1 min.  When the time is up, I will 
let you know. 
 
Instructions for recalling a depressive 
event: Please keep the same posture and 
recall a depressive memory from your past.  
We experience melancholy such as feeling 
hopeless and helpless, pressure from work, 
or the stress of school, work, and 
relationships.  The feeling is very depressing 
and sad.  Now please recall something 
depressive.  When you recall such a 
memory, let me know with a nod.  Please 
maintain the depressive feeling for 1 min.  
When the time is up, I will let you know. 

 
After recalling a happy or a depressive event, 
participants were asked to rate a score from 0 to 100 
in relation to how easy it was to recall that event (0 = 
not easy at all, 100 = extremely easy).  The reaction 
time was recorded when participants nodded their 
head to tell the researcher that they had a happy or 
a depressive event come into their mind. 
 

EEG Recording 
The one-channel EEG sensor was recorded from Cz 
with linked-ear reference based on the International 
10-20 system.  EEG signals were recorded using 
BioGraph Infiniti software (Version 6.0.4, n.d.) with a 
band-pass between 1–30 Hz.  The sample rate was 
256 Hz with 60-Hz notch filters, and the electrode 
impedances were lower than 5 kΩ.  
 
Data Reduction and Statistical Analysis  
After removing eye-blink and movement artifacts, 
the raw signals of the EEG were analyzed to 
calculate the EEG amplitude using the following 
bandwidth: total theta (4–8 Hz), total alpha (8–12 
Hz), total beta (12–32 Hz), beta1 (12–15 Hz), beta2 
(15–22 Hz), beta3 (22–28 Hz), and beta4 (28–32 
Hz) from the five experimental stages.  One-way 
analysis of variance (ANOVA) with repeated 
measures was used to examine the differences in 
the EEG amplitudes under the five experimental 
stages. The analysis was performed using SPSS 
predictive analytics software (Version 20.0). 
 

Results 
 
The participants reported that it was significantly 
easier to evoke depressive events in the slouch 
posture than in the erect posture (70.45 and 63.45), 
and evoke happiness events in the erect posture 
than in the slouch posture (80.69 and 73.83), as 
shown in Table 1.  It took significantly longer to 
recall happy events (7.33 s) in the collapsed position 
than erect position (3.85 s).  In addition, there was 
shorter reaction time in erect posture for recalling 
happy events than other conditions (F = 3.52, p 
< .5). 

 
Table 1 
The score of ease to recall and reaction time under different experimental stages. 
Variables Erect while 

recalling 
happy event 

 
(A) 

Erect while 
recalling 
depressive 
event 

(B) 

Slouch while 
recalling 
happy event 

 
(C) 

Slouch while 
recalling 
depressive 
event 

(D) 

F 
 
  

Post hoc 
Comparison 

Score of ease to recall 80.69 (13.21) 63.45 (23.83) 73.83 (20.34) 70.45 (19.98) 4.26* 1 > 2, 4;  
4 > 2 

Reaction time, in seconds  3.85 (4.86) 11.74 (18.25) 7.33 (9.51) 10.96 (13.33) 3.52* 1 < 2, 3, 4 
Note. *p < .05. 
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There were significant differences between the five 
stages in total beta, beta2, beta3, and beta4 (F = 
4.01, p < .05; F = 4.93, p < .01; F = 9.77, p < .001; 
and F = 17.87, p < .001, respectively).  The post hoc 
comparison found the following results (Table 2): (1) 
while recalling a happy event, there were 
significantly higher amplitudes of total beta, beta2, 
beta3, and beta4 in a slouch posture than in an erect 
posture; (2) while recalling a depressive event, there 
were significantly higher amplitudes of beta3 and 
beta4 in a slouch posture than in an erect posture; 
(3) under congruent body posture and emotional 

event (sitting collapsed and recalling depressive 
events; sitting erect and recalling positive events), 
there was no significant difference in brain activity 
between the experimental stages; and (4) under 
incongruent body posture and emotional event 
(sitting collapsed and recalling positive emotional 
events; sitting erect and recalling depressive 
events), there were significantly higher amplitudes of 
beta2, beta3, and beta4 in a slouch posture with 
recalling happy events than in an erect posture with 
recalling depressive events. 

 
 
Table 2 
The EEG amplitude under different experimental stages. 
Variables Baseline 

 
 
 

 (1) 

Erect while 
recalling 
happy event 
 

(A) 

Erect while 
recalling 
depressive 
event 

(B) 

Slouch while 
recalling  
happy event 
 

(C) 

Slouch while 
recalling  
depressive 
event 

(D) 

F Post hoc 
Comparison 

Total theta 12.51 (5.60) 11.27 (5.22) 11.62 (5.58) 11.49 (5.46) 11.58 (5.38) 6.00*** 1 > 2, 3, 4, 5 

Total alpha 16.86 (6.10) 15.00 (6.35) 15.26 (6.53) 15.44 (6.13)   15.33 (6.53) 4.09** 1 > 2 

Total beta 10.37 (2.26) 9.94 (2.56) 9.87 (2.50) 10.73 (2.66) 10.70 (2.97) 4.01*  1 > 3;  
4 > 2 

Beta1 5.20 (1.45) 5.02 (1.55) 5.14 (1.55) 5.24 (1.73) 5.31 (1.71) 1.02    

Beta2 6.60 (1.49) 6.10 (1.57) 6.09 (1.60) 6.64 (1.64) 6.60 (1.85) 4.93** 1 > 2, 3; 
4 > 2, 3 

Beta3 4.16 (0.88) 4.14 (0.98) 4.00 (1.04) 4.72 (1.10) 4.65 (1.35) 9.77*** 4 > 1, 2, 3; 
5 > 3 

Beta4 2.80 (0.54) 2.74 (0.59) 2.61 (0.66) 3.45 (0.77) 3.24 (0.95) 17.87*** 1 > 3; 
4 > 1, 2, 3; 
5 > 1, 3 

Note. *p < .05. **p < .01. ***p < .001.  
(1) 4 > 3 indicated that under incongruent of body posture and emotion recall there were higher beta2, beta3, and beta4 at 
slouch posture while recalling happiness event than that at erect posture while recalling depressive event.  
(2) 4 > 2 indicated that under recalling happy events there were higher beta 2, beta3, and beta4 at slouch posture than at 
erect posture. 

 
 

Discussion 
 
The initial results of this study found that the 
collapsed posture while recalling positive emotional 
events had higher beta activities than the other 
conditions.  These results were consistent with the 
findings of Thibault et al. (2014) and Zhavoronkova 
et al. (2012) who found increased high-frequency 
brain activity (such as beta and gamma) under 
changing body posture.  However, this study found 
that, independent of the body position, recalling 
happy events in a collapsed position significantly 
increased the high-frequency oscillatory activity than 

recalling depressive event in an erect posture.  This 
suggests that it takes much more effort and time to 
evoke and maintain positive thoughts in a collapsed 
position.  This was also confirmed by the significant 
increase in reaction time when attempting to recall 
positive events in the collapsed body position as 
compared to the erect body position. 
 
This may have significant implications for people 
who are depressed.  Most depressed people or 
patients have a slumped collapsed posture which 
would inhibit accessing positive thoughts, thus 
augmenting their depressive thoughts.  To increase 
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the access to positive thoughts, the person would 
need to sit erect and look up.  In this position, 
positive and negative thoughts can equally be 
accessed.  Most likely these patterns have been 
classically conditioned since early childhood. 
 
The EEG findings could explain why subjects 
reported that it was easier to evoke depressive 
events as compared to happy events in a collapsed 
posture because it took more effort and time to think 
of positive thoughts as indicated by the increase in 
beta amplitude and reaction time.  The EEG finding 
could not explain why positive thoughts were more 
easily recalled in the upright posture.  Possibly other 
EEG locations (e.g., left and right frontal) should 
have been recorded, or an explanation may be 
because the subjects were healthy students without 
a history of depression.  
 
Several limitations should be noted in this study.  
First, most participants were women and gender 
differences may influence EEG patterns.  Second, 
the recall of memory was a subjective experience, 
and the quality and intensity of the memory recall 
may vary between participants, which could affect 
the findings.  Third, the exact psychophysiological 
mechanisms of posture and emotional regulation 
remain unknown.  Fourth, the EEG recording was 
only from Cz, and possibly other locations such as 
frontal EEG may offer more information.  Fifth, the 
study was a cross-sectional study of college 
students, which limits the generalization to other 
populations.  
 
In conclusion, this study indicated that body 
postures and emotional recall were related to high-
frequency brainwaves inhibiting the access of 
positive thoughts in a collapsed position.  The 
finding may have significant implications for people 

who experience depression.  Sitting collapsed will 
tend to increase access to negative thoughts and 
emotions and limit access to positive thoughts and 
emotions, while sitting erect will tend to increase 
access of positive thoughts and emotions.  
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Abstract 

Myalgic Encephalomyelitis (ME) is a chronic illness with debilitating neurocognitive impairment that remains 
poorly understood.  Previous studies have characterized cognitive deficits as a process by which brain 
abnormalities are inferred from pre-established testing paradigms using neuroimaging with low temporal 
resolution.  Unfortunately, this approach has been shown to provide limited predictive power, rendering it 
inadequate for the study of neuronal communication between synchronized regions.  More recent developments 
have highlighted the importance of modeling spatiotemporal dynamic interactions within and between large-scale 
and small-scale neural networks on a millisecond time scale. Here, we focus on recent emergent principles of 
complex cortical systems, suggesting how subtle disruptions of network properties could be related to significant 
disruptions in cognition and behavior found in ME.  This review, therefore, discusses how electrical neuroimaging 
methods with time-dependent metrics (e.g., coherence, phase, cross-frequency coupling) can be a useful 
approach for the understanding of the cognitive symptoms in ME.  By providing a platform for utilizing real-time 
alterations of the perpetual signals as an outcome, the disruptions to higher-level cognition typically seen in ME  
can be readily identified, creating new opportunities for better diagnosis and targeted treatments. 
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Introduction 

 
The 19th-century neurologist John Hughlings 
Jackson (1835–1911) once said that a major 
impediment in understanding a neurological disease 
is a lack of a method for doing so (York & Steinberg, 
2011).  This problem has challenged the 
investigation of neurological disease for over a 
century and, more recently, has posed a significant 
challenge for the study of Myalgic Encephalomyelitis 
(ME).1  ME is a complex, multi-system disease that 
has remained poorly understood despite decades of 
empirical research (Afari & Buchwald, 2003; 
Cockshell & Mathias, 2014; Jason, Zinn, & Zinn, 
2015).  The most debilitating symptoms pertain to 

																																																								
1For the sake of clarity, throughout this article we will use ME 
even though a number of studies use Chronic Fatigue Syndrome 
(CFS) to describe their patient samples.   

neurocognitive dysfunction; that is, symptoms such 
as memory impairment, poor concentration and 
attention, and slow information processing speed 
are reported by nearly all (at least 90% of) patients 
as having a severe impact on their everyday living 
(Capuron et al., 2006; Cho, Skowera, Cleare, & 
Wessely, 2006; Cook, O'Connor, Lange, & 
Steffener, 2007; Lange et al., 2005; Marshall, 
Forstot, Callies, Peterson, & Schenck, 1997; 
Michiels & Cluydts, 2001; Ropper & Samuels, 2009; 
Sandman, Barron, Nackoul, Goldstein, & Fidler, 
1993; Yancey & Thomas, 2012).  This contrasts with 
a neuropsychological research base documenting 
only modest levels of cognitive impairment (Attree, 
Arroll, Dancey, Griffith, & Bansal, 2014; Cockshell & 
Mathias, 2014; DeLuca, Genova, Capili, & Wylie, 
2009) and a paucity of studies investigating the 
relationship with fatigue severity, sleep quality, and 
quality of life (Christodoulou et al., 1998; Metzger & 
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Denney, 2002; Tiersky et al., 2001; Tiersky, 
Johnson, Lange, Natelson, & DeLuca, 1997).  These 
paradoxical results might be explainable, however, if 
one considers the historical context whereby 
neuropsychological and neuroimaging findings 
typically do not align well with patient self-reports for 
patients with brain diseases (DeLuca, 2005; Hillary 
& DeLuca, 2007; Luria, 1980). 
 
A number of studies using neuropsychological test 
batteries have provided some support for 
neurocognitive deficits in ME (Cairns & Hotopf, 
2005; Chen, Feng, Zhao, Yin, & Wang, 2008; 
Deluca et al., 2004; Majer et al., 2008; Michiels & 
Cluydts, 2001; Thomas & Smith, 2009), while others 
did not (Cope, Pernet, Kendall, & David, 1995; 
Krupp, Sliwinski, Masur, Friedberg, & Coyle, 1994; 
Short, McCabe, & Tooley, 2002).  Neurocognitive 
deficits reported by patients include a lack of mental 
clarity/mental confusion, sustained attention deficits, 
verbal working memory deficits, longer reaction 
times, trouble with multitasking or learning, and 
problems with response inhibition (Christley, Duffy, 
Everall, & Martin, 2013; Cockshell & Mathias, 2010; 
Dobbs, Dobbs, & Kiss, 2001; Hou et al., 2013; 
Wearden & Appleby, 1997).  Notably, these findings 
have been shown by several authors to be unrelated 
to psychiatric issues, such as depression, anxiety, 
etc. (Cockshell & Mathias, 2010, 2012, 2014; 
Dickson, Toft, & O'Carroll, 2009; Smith, Behan, Bell, 
Millar, & Bakheit, 1993) as well as pain and 
medication effects (Attree et al., 2014; Christodoulou 
et al., 1998; Cockshell & Mathias, 2014; Dickson et 
al., 2009; Santamarina-Perez et al., 2011). 
 
The assessment of psychiatric influences on 
neurological symptoms has been studied for a long 
period of time (Strauss, Sherman, & Spreen, 2006) 
and remnants of this debate coupled with the 
continued absence of an established biomarker 
appear to be, in part, what is contributing to 
controversy over whether ME is a manifestation of 
psychopathology (Cope & David, 1996) or an 
independent neurological disorder (DeLuca et al., 
2009).  Some investigators have suggested that 
patients with ME may be exaggerating cognitive 
symptoms (Ocon, 2013), setting unrealistic 
expectations (Metzger & Denney, 2002) or 
underperforming due to lack of effort (Goedendorp, 
Bleijenberg, & Knoop, 2014).  Others posit that 
emotional or psychological factors are likely 
responsible for ME symptomology (Cope et al., 
1995; Fry & Martin, 1996; Mariman et al., 2013; 
Warren, Langenberg, & Clauw, 2013; White, 2010), 
suggesting environmental effects (Wearden & 
Appleby, 1997) or cultural effects, both resulting in 

sickness behavior (Abbey & Garfinkel, 1991).  More 
broadly, among neurological disorders overall, it is 
known that the prevalence of depressive symptoms 
in people with neurological disorders is higher than 
that of non-depressed people by nearly 40 percent 
(Fleminger, Oliver, Williams, & Evans, 2003; Stanton 
& Carson, 2015). 
 
ME is often misdiagnosed as depression (Griffith & 
Zarrouf, 2008), and co-morbid depression in patient 
samples has generated debate over whether it is 
primary or secondary to ME neurocognitive 
impairment (Twisk, 2014).  For those patients with 
both conditions, it has been shown that ME and 
depression are separate disorders sharing some 
common features (Hawk, Jason, & Torres-Harding, 
2006; Maes, 2011; Pazderka-Robinson, Morrison, & 
Flor-Henry, 2004).  Depression in ME does not 
exhibit symptoms of Beck’s cognitive triad 
(pessimism about the self, world, and future), a core 
feature of major depressive disorder (Hawk, Jason, 
& Torres-Harding, 2006).  Fatigue, another 
controversial symptom of ME, is a core feature of 
major depressive disorder and other forms of 
depression, and may share a common neuroimaging 
feature with ME, that is, activity in the anterior 
cingulate along with its connections (Angelakis & 
Lubar, 2002; Olvet et al., 2015; Zhang et al., 2015).  
The primary difference, however, between ME 
fatigue and fatigue in major depression has been 
demonstrated empirically to be a reaction to physical 
activity; people with ME feel considerably worse 
after physical activity (called post-exertional malaise, 
PEM), while people with major depression feel better 
(Griffith & Zarrouf, 2008).  This is an important 
distinction, since PEM is a central feature of ME 
(LaManca et al., 1998; Nijs et al., 2010), and 
inducing patients with depression to maintain some 
physical activity is a core strategy for improvement 
(Vancampfort, Stubbs, Venigalla, & Probst, 2015).  
The presence of depression (or other Axis 1 
disorders) in ME could be the phenotype of a 
dysregulated central nervous system with the 
somatic symptoms as a consequence of the disease 
process.2  Regardless of disease etiology, it is well 
known that neurocognitive impairment found in ME 
exerts deleterious consequences upon the quality of 
life for many individuals, and psychiatric factors do 
not fully account for their level of functional disability 
(Christodoulou et al., 1998).  The problem of finding 
out what drives this form of neurocognitive 
																																																								
2According to DSM-IV-TR, patients with psychiatric comorbidity 
would be classified under Axis III with the psychiatric problem 
being secondary general medical	 condition, unless it can be 
shown that the primary psychiatric condition existed before the 
onset of ME.	
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dysfunction with linkage of brain function to patient 
symptoms therefore warrants further attention. 
 
Neuroimaging Studies in ME 
One crucial issue for ME is a better understanding of 
the neurocognitive events that underlie behavior and 
cognition following illness onset.  The past several 
decades have been a time of considerable 
fluctuation in views of neurocognitive dysfunction for 
ME seen in the contradictory findings since the early 
1990s, while neuroimaging investigations have been 
unable to establish a clear biological biomarker or 
signature specific to ME.  In a recent literature 
review, Fischer and colleagues (Fischer et al., 2014) 
found neuroanatomical differences (using magnetic 
resonance imaging; MRI) between some patients 
with ME and healthy controls, but there is still no 
unifying explanation for the diversity of, or at times 
absence of, structural findings.  Results in some 
studies have suggested involvement of white matter 
(Lange et al., 1999; Natelson, Cohen, Brassloff, & 
Lee, 1993), but other studies found only grey matter 
abnormalities (de Lange et al., 2005; de Lange et 
al., 2004; de Lange et al., 2008; Okada, Tanaka, 
Kuratsune, Watanabe, & Sadato, 2004; Puri et al., 
2012) and two studies reported no significant 
abnormalities in ME (Cope & David, 1996; Perrin, 
Embleton, Pentreath, & Jackson, 2010).  Regarding 
functional characteristics in ME, cerebral 
hypoperfusion was found using single-photon 
emission computed tomography (SPECT) in some 
(Biswal, Kunwar, & Natelson, 2011; Costa, Tannock, 
& Brostoff, 1995; Ichise et al., 1992; Schwartz, 
Komaroff, et al., 1994) but not all studies (Lewis et 
al., 2001; MacHale et al., 2000; Schmaling, Lewis, 
Fiedelak, Mahurin, & Buchwald, 2003).  Results of 
metabolic activity from two positron emission 
tomography (PET) studies were inconclusive 
(Siessmeier et al., 2003; Tirelli et al., 1998), but 
abnormalities involving neurotransmitter 
biosynthesis was suggested in a line of more recent 
studies (Cleare, Messa, Rabiner, & Grasby, 2005; 
Nakatomi et al., 2014; Yamamoto et al., 2012).  
Task-evoked studies using blood-oxygen-level-
dependent functional MRI (BOLD fMRI) detected 
various functional differences in neural activity in ME 
related to motor imagery (de Lange et al., 2004) and 
verbal working memory tasks (Lange et al., 2005) 
depending upon increasing task load (Caseras et al., 
2006) and fatigue-inducing tasks (Caseras et al., 
2008; Cook et al., 2007; Tanaka et al., 2006).  
These studies, however, need replication with larger 
sized sample groups.  Taken together, the foregoing 
results of ME neuroimaging findings are inconclusive 
and remain unclear.  Despite discovering newer 
ways to assess the symptoms commonly reported in 

ME neurocognitive impairment, current findings do 
not fully account for patient symptoms. 
 
Functional Specialization (Segregation) 
The primary reason for the disparity between some 
findings may be due to an over-reliance on classical 
functional specialization (localizationism models) to 
examine ME neurocognitive dysfunction.  The 
functional specialization model rests on the premise 
that individual brain regions are specific and 
segregated (Deco, Jirsa, & Friston, 2012; Menon, 
2012; Rabinovich, Friston, & Varona, 2012). Gay 
and colleagues (Gay et al., 2015) were first to 
document regional activation profiles in ME using a 
functional connectivity approach, suggesting this 
paradigm may hold promise for identifying the 
properties of neurocognitive impairment in ME.  Due 
to the knowledge derived from the NIH Human Brain 
Project in the 1990s, the field of cognitive 
neuroscience has now established a framework for 
which complex brain systems can be studied and 
quantified to support new understandings of 
cognition and behavior (Thatcher, 2011).  Functional 
brain connectivity is currently the new paradigm 
focusing on distributed neuronal units or the 
synchronization of activation of brain regions at rest 
or when performing a particular cognitive task 
(Bazhenov & Makeig, 2012; Catani, 2011; Catani, 
Bodi, & Dell'Acqua, 2012; Rabinovich, Friston, et al., 
2012; Thatcher, 2012).  Distributed organization 
within large scale dynamic systems involving 
multiple brain regions which are spatially distant but 
functionally linked act together to form a given 
network (Catani, Dell'Acqua, et al., 2012; Friston, 
2010; Rabinovich, Friston, et al., 2012; Thatcher, 
2011).  Within this system, modular organization, 
common in complex systems to maximize efficiency, 
is achieved through use of a relatively small set of 
modules and hubs, whereby local groupings 
(clusters) of neurons rely on a small number of long 
distance connections in order to maximize the 
metabolic expense of wiring (Havlicek et al., 2015; 
Menon, 2012; van Straaten & Stam, 2013).  In this 
manner, dysregulation found within and among 
nodes and hubs of functionally specialized networks 
may form the primary basis for arriving at a clinical 
interpretation of symptoms (Thatcher, 2011, 2012, 
2015; Thatcher, North, & Biver, 2005; Thatcher et 
al., 2001). 
 
Models of ME Pathogenesis 
Despite decades of research, the definitive causes 
of ME remain unknown.  A common quote in 
medicine, “the absence of evidence is not evidence 
for absence,” could apply to ME with some similarity, 
for example, to Lyme disease where the pathogen 
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was serendipitously identified after 72 years 
(Pachner, 2012). There are nonetheless some 
promising models, which appear to explain patient 
symptoms.  An infectious pathogen in the etiology of 
ME has been proposed but has not yet been 
confirmed.  Schwartz, Komaroff, et al. (1994) 
hypothesized ME may be caused by a viral infection 
of neurons, glia, or vasculature.  Support for the 
deficient metabolism in ME was offered in some 
PET and SPECT imaging studies (Costa et al., 
1995; Schwartz, Garada, et al., 1994; Tirelli et al., 
1998).  Morris and Maes (2012) proposed an 
immune-inflammatory model for ME, which accounts 
for fatigue, post-exertional malaise, and 
neurocognitive symptoms.  Their model suggested 
the term “post activity relapse” be used for delayed 
abnormal responses to negligible increases in 
physical or mental activity that resemble acute 
phases of influenza (fatigue, malaise, hyperalgesia, 
brain fog).  The authors further suggested that 
fatigue in ME was suppressing brain function and 
modulating the autonomic system.  In a combined 
voxel-based analysis of four MRI imaging types (T1 
and T2 weighted, grey matter and white matter 
volume) performed by Barnden et al. (2011), 
brainstem abnormalities in ME were found to be 
associated with increasing fatigue duration and 
hemodynamic scores; white matter atrophy and 
neuroinflammation in the midbrain was accompanied 
by impaired cerebrovascular autoregulation. 
 
In a comprehensive review, Dickinson (1997) argued 
that a viral infection could cause multiple small 
lesions in the ascending arousal system (AAS).  Due 
to its densely compact size, even microscopic 
damage to the brainstem could lead to severe 
disruptions to sleep state transitions, contributing to 
fluctuations in cognitive symptomology (Saper, 
Fuller, Pedersen, Lu, & Scammell, 2010; Wright, 
Lowry, & LeBourgeois, 2012; Wulff, Gatti, Wettstein, 
& Foster, 2010).  In a follow-up study by Barnden, 
Crouch, Kwiatek, Burnet, and Del Fante (2015) 
which controlled for depression and anxiety, the 
brainstem was implicated again and compromised 
nerve conduction in the midbrain was associated 
with upregulation of myelination in the prefrontal 
cortex (PFC; dysregulated signal conduction 
velocity).  The upregulation of myelin (relative to the 
diameter of axons) may relate to the energy 
consumption of the fibers mediating the PFC to 
increase signal conduction velocity and firing 
capacity (de Hoz & Simons, 2015) at the expense of 
brain efficiency (more energy consuming ionic 
channel, axonal transport processes; increased 
thickness consuming more energy and taking up 
more space). 

Brain Efficiency Hypothesis and ME 
 
The brain’s energy expenditure is critically important 
given that it weighs approximately 3 pounds, yet it 
consumes about 20–40% blood oxygen 
consumption, a disproportionate rate of consumption 
(Raichle, 2010; Shulman, Rothman, Behar, & Hyder, 
2004).  A significant amount of this baseline energy 
is budgeted for neuronal signaling processes and 
glutamate neurotransmission by excitatory 
glutamatergic neurons (Shulman et al., 2004).  
Bullmore and Sporns (2012) explain the state of 
affairs in terms of parsimony; there is a continual 
drive to minimize the metabolic costs while 
supporting or creating adaptively valuable functional 
connectivity.  Within this system, the brain is seen as 
a continual process of negotiating these trade-offs.  
Glutamate, the chief excitatory neurotransmitter in 
the brain, is a primary factor, particularly due to its 
crucial involvement in coupling neuronal activity with 
glucose utilization and lactate production through 
reuptake by astrocytes (Pellerin & Magistretti, 1994).  
Glutamate also plays a key role in regulating α-
Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid 
(AMPA) receptors for making adjustments to 
synaptic strength (Bredt & Nicoll, 2003).  Nucleotide 
and protein synthesis secondarily contribute to 
energy demand, expanding size of synapses, 
creation of new synapses during wakefulness, 
regulating excitatory loops, and long-term 
potentiation (Kennedy, Beale, Carlisle, & Washburn, 
2005).  Electrical demands of neurons are more 
costly than blood oxygen and glucose, and cortical 
excitability is modulated by fluctuations in the 
delivery of glucose and adenosine triphosphate 
energy to neurons (Raichle, 2010). 
 
However, it remains unclear as to how metabolic 
failures within various brain regions affect 
neurocognitive function in ME.  Recent evidence 
regarding many neurological disorders suggests that 
metabolic dysfunction can lead to neuronal 
hyperexcitability and aberrant neuronal network 
activities, causing neural dysregulation and 
producing cognitive deficits through chronic 
activation of the stress response (McEwen et al., 
2015).  This can be seen in several diseases 
whereby metabolic changes are known to cause 
neural dysfunction (Stranahan & Mattson, 2008), 
often with the cognitive effects beginning well before 
the physiological ones are evident (Halassa & 
Haydon, 2010).  Energy deficits can induce 
unfavorable changes in resting membrane potentials 
and gamma-aminobutyric acid (GABA-induced) 
anionic currents, leading to neuronal hyperactivity 
that may initiate a cascade of pathological events 
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(Holmgren & Scheffer, 2010).  Another possible 
model posits that  neurocognitive dysfunction in ME 
may emanate from disruption of top-down control 
within the prefrontal cortex with its normal ability to 
exert influence over the hypothalamus in modulating 
sleep/wake parameters (Barnden et al., 2015; 
Wright et al., 2012).  Regardless of the underlying 
etiology, the “brain fog” (Ocon, 2013) in ME might be 
described as a generalized failure in the brain’s 
ability to allocate resources in a flexible manner, 
resulting in widespread inefficiency and producing a 
state that poses a threat to the adaptive mediation of 
homeostatic processes.  These nonlinear processes 
may be interactions between the metabolic system, 
stress system, and inflammatory responses in the 
immune system (McEwen, 2006).  The metabolic 
changes can, therefore, be taken as signs of 
allostatic load (effects of chronic stress) and though 
many of the changes are only partly understood, we 
are beginning to understand the chronic disruption in 
these systems and how it affects cognition in chronic 
disease, especially in ME. 
 
A recurrent theme throughout the ME literature, 
neuroimaging in particular, is that patients are 
underperforming, compensating, and otherwise 
utilizing neural resources more inefficiently than 
healthy controls (Caseras et al., 2006; Cook et al., 
2007; de Lange et al., 2004; Lange et al., 2005; 
Tiersky et al., 1997).  Behaviorally, patients are 
typically found to be less responsive, less vigilant, 
and slower to react or initiate movements (Tanaka et 
al., 2006; Thomas & Smith, 2009; Van Den Eede et 
al., 2011).  Gay et al. (2016) found evidence of 
reduced functional connectivity in patients with ME.  
Hypo-connectedness suggests there are fewer links 
to distant neurons, possibly driven by a homeostatic 
need to reduce energy costs.  All nodes within brain 
networks can exhibit the same functional properties 
but with varying degrees of efficiency and the 
resulting propensity for reorganization.  
Compensatory activity in the brain appears to be a 
mechanism of complex self-organizing systems via 
homeostatic processes (Hellyer, Jachs, Clopath, & 
Leech, 2015).  Nodes are small interacting units in 
the topology of a network while hubs are units that 
occupy a highly central position in the network.  Due 
to costly metabolic demands, hubs are more 
vulnerable to pathology (Crossley et al., 2014), and 
their failure tends to cause greater disruption within 
a given network hierarchy (Stam, 2014).  Hubs are 
also crucial for information integration coming in 
from other widely distributed brain regions (van den 
Heuvel & Sporns, 2013).  The controllability of finite 
timings within densely connected areas facilitating 
brain states depend on the underlying integrity of 

structural connections (Gu et al., 2015; Hagmann et 
al., 2008).  Local “small world” networks operate with 
local groupings (clusters) of neurons relying on a 
small number of short-distance connections (thereby 
maximizing the energy “expense” of wiring) while 
long distance connections between nodes and 
modules are inherently less stable (van Straaten & 
Stam, 2013).  Therefore, dysregulation found within 
and among specialized functional networks may 
form the primary basis for arriving at a clinical 
interpretation of neurocognitive symptoms (Menon, 
2011; Stam, 2014). 
 

Examining Spatiotemporal Dynamics in ME 
 
Another important facet of ME cognitive dysfunction 
may be the degree to which measurable 
spatiotemporal changes in normal dynamic brain 
function is occurring, thereby contributing to the 
diminishment of cognitive processes involved in 
attention, memory, and information transfer rates.  
Understanding neurocognitive impairment at the 
spatiotemporal level may sufficiently describe what 
may be happening to patients because these global 
state interactions may underpin disturbances to 
homeostatic systems and represent a failure to 
adapt in ME, thereby producing measurable deficits 
in cognition (Rabinovich, Afraimovich, Bick, & 
Varona, 2012; Rabinovich, Friston, et al., 2012).  
Highly time-dependent circuits of information flow 
involve the coordination of time-series segments of 
large neural populations distributed widely within the 
brain (Buzsáki, 2006), and the assessment of these 
subtleties requires analysis of network interactions 
with high spatiotemporal precision, across extended 
time periods (Tristan, Rulkov, Huerta, & Rabinovich, 
2014).  Maintained by an excitatory re-entrant 
process that alter their dynamics in the face of 
differing task demands, cognition and action depend 
upon time-based stability within large-scale brain 
circuits (Elson, Huerta, Abarbanel, Rabinovich, & 
Selverston, 1999; Hellyer et al., 2015), whether it is 
engagement with the environment through sensory 
systems or by disengagement from the environment, 
using learned experiences (Sporns, 2013).  Neurons 
are continuously in motion, but it is their 
synchronization or lack of synchronization that might 
be most important when studying cognitive control 
processes (Klimesch, Freunberger, Sauseng, & 
Gruber, 2008).  Accordingly, spatiotemporal 
dynamics are thought to emerge from homeostatic 
“tuning” of various factors such as 1) structural 
network topology, 2) neural noise, 3) time delays, 4) 
connectivity strength, 5) dynamic balance of 
excitation/inhibition, and 6) interactions with glial 
cells (e.g., changes in myelin microarchitecture; de 
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Hoz & Simons, 2015).  All of these factors operate 
within a narrow window of parameters, outside of 
which they operate within a pathological state 
(Buzsáki & Watson, 2012; Hellyer et al., 2015).  
Each factor co-varies with arousal levels and 
cognitive state, factors which are vital to 
performance levels of memory, perceptual, and 
problem-solving tasks (Tang, Rothbart, & Posner, 
2012).  
 
Diverse brain activity visible in the 
electroencephalogram (EEG) demonstrates how 
brain function is continually dynamic and in constant 
flux (Raichle, 2011), and it reflects the spatially 
diffuse synchronization of large masses of neuronal 
assemblies which give rise to cognition and behavior 
(Thatcher, 2015).  Quantitative EEG (qEEG) 
methods are well suited for the task of capturing 
temporal dynamics at the millisecond time-scale 
synchronization of brain processes which are largely 
invisible to other imaging modalities such as fMRI, 
SPECT, and PET (Thatcher, 2015).  Diffusion tensor 
imaging (DTI) provides an excellent static depiction 
of white matter and non-dynamic structural mapping 
of the cortex.  fMRI offers excellent spatial resolution 
but the examination of high temporal fluctuations in 
connectivity models is limited to constraints of the 
hemodynamic signal: indirect measurement of 
neuronal activity with low temporal resolution (on the 
order of seconds; Poldrack, Mumford, & Nichols, 
2011).  The spatial resolution of EEG has been 
adequately addressed through advancements in 
electrical neuroimaging, a promising approach for 
noninvasive examination of spatiotemporal 
interactions in the millisecond domain for mapping of 
intracortical sources in four dimensions (space and 
time frequency) through using a variety of distributed 
inverse methods (Grech et al., 2008). 
 
Electrical neuroimaging involves source analysis 
procedures to examine the cortex of all frequency 
bands (delta, theta, alpha, beta, and gamma) 
through spectrally transformed recordings from the 
scalp surface using 19-channel EEG (M.A. Zinn et 
al., 2014). Accurate estimations of the intracranial 
activity can be achieved with application of inverse 
methods such as low-resolution electromagnetic 
tomography (LORETA) and more recent iterations: 
standardized LORETA (sLORETA) and exact 
LORETA (eLORETA; Pascual-Marqui, Esslen, 
Kochi, & Lehmann, 2002; Pascual-Marqui, 
Lehmann, et al., 2011; Pascual-Marqui, Michel, & 
Lehmann, 1994).  These methods, which allow 
cross-validation through voxel by voxel co-
registration to PET, SPECT, fMRI for matching data 
to standard coordinate systems, have been used to 

characterize spatiotemporal dynamics in patients 
with a wide variety of clinical conditions such as 
Alzheimer’s disease (Babiloni, Binetti, et al., 2004; 
Babiloni, Cassetta, et al., 2006; Canuet et al., 2012; 
Gianotti, Künig, Faber, et al., 2008; Gianotti, Künig, 
Lehmann, et al., 2007), mild cognitive impairment 
(Babiloni, Carducci, et al., 2013; Babiloni, Del 
Percio, et al., 2014; Babiloni, Frisoni, et al., 2006), 
other dementias (Nishida et al., 2011; Styliadis, 
Kartsidis, Paraskevopoulos, Ioannides, & Bamidis, 
2015), epilepsy (Besenyei et al., 2012; Canuet et al., 
2011; Clemens et al., 2010), Parkinson’s disease 
(Babiloni et al., 2011; Moazami-Goudarzi, Sarnthein, 
Michels, Moukhtieva, & Jeanmonod, 2008), multiple 
sclerosis (Papageorgiou et al., 2007), chronic fatigue 
syndrome (Sherlin et al., 2007), congestive heart 
failure (Vecchio et al., 2015), obstructive sleep 
apnea (Toth, Faludi, Wackermann, Czopf, & 
Kondakor, 2009), migraine (Clemens et al., 2008), 
tinnitus (Vanneste et al., 2010), and Down’s 
syndrome (Velikova et al., 2011).  LORETA has also 
been used to investigate neuropsychiatric conditions 
including locked-in syndrome (Babiloni et al., 2010), 
anhedonia (Wacker, Dillon, & Pizzagalli, 2009), 
obsessive-compulsive disorder (Jones & 
Bhattacharya, 2014; Olbrich et al., 2013; Velikova et 
al., 2010), posttraumatic stress disorder (Todder et 
al., 2012), and major depression (Olbrich, Trankner, 
Chittka, Hegerl, & Schonknecht, 2014).  Cross-
validation has been demonstrated in multimodal 
studies combining LORETA with blood oxygen 
dependent fMRI (Mulert et al., 2004; Musso, 
Brinkmeyer, Mobascher, Warbrick, & Winterer, 2010; 
Vitacco, Brandeis, Pascual-Marqui, & Martin, 2002), 
and structural MRI (Worrell et al., 2000), PET 
(Dierks et al., 2000; Pizzagalli et al., 2004).  
Validation of LORETA is further supported by 
localization findings from invasive, intracranial 
recordings in humans, as established in several 
studies of epilepsy and cognitive event-related 
potentials (Volpe et al., 2007; Zumsteg, Friedman, 
Wieser, & Wennberg, 2006; Zumsteg, Lozano, 
Wieser, & Wennberg, 2006).  The promising aspect 
of this method is that it allows researchers to create 
dynamic causal models of brain networks and 
mental states, assessing the informational status of 
the individual nodes, linkages and clustering of 
connections (Pascual-Marqui et al., 2011).  Further 
advancements have even made it possible to 
examine cortical dynamics and interrogate causal 
information flow (Pascual-Marqui et al., 2014).  
 
Results using LORETA have already been reported 
by Sherlin et al. (2007) by investigating twins with 
ME, finding slowing of electrical activity in deeper 
brain structures and parts of the limbic system.  
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Exploring this further, M. A. Zinn et al. (2014) 
collected and evaluated pilot data using eLORETA 
to analyze the current source density in 50 patients 
with ME compared to 50 healthy controls.  This 
study found that patients had significantly higher 
current source density within delta (1–3 Hz) affecting 
widespread bilateral portions of the frontal lobe and 
limbic lobe.  Beta sources (19–21 Hz) were also 
reduced in the medial posterior parietal regions 
affecting the sensorimotor region and posterior 
cingulate in patients.  Furthermore, increased delta 
sources were linked to the Multi-dimensional Fatigue 
Inventory (MFI-20) reduced motivation subscale in 
many regions of the left frontal lobe, with maxima 
localized to Broca’s area (Smets, Garssen, Bonke, & 
De Haes, 1995).  The co-occurrence of delta and 
beta in these brain regions may have provided 
empirical evidence for a neurobiological basis for 
patient symptomology including impairment to higher 
cortical functioning.  More importantly, dysregulation 
in structures such as the parahippocampal gyrus, 
anterior cingulate, and insula, prefrontal cortex, and 
orbitofrontal gyrus could explain neurocognitive 
symptoms in patients (e.g., problems involving 
attention, memory, multi-tasking, goal-directedness, 
etc.).  Limbic regions, when dysregulated, have 
generally not been associated with universal 
domains of attention, working memory and executive 
function, but instead have been associated with 
symptoms such as apathy, abulia, reduced 
motivation, and impaired attention states known as 
negative (deficit) symptoms (Kuzis, Sabe, Tiberti, 
Dorrego, & Starkstein, 1999; McPherson, Fairbanks, 
Tiken, Cummings, & Back-Madruga, 2002).  
Therefore, the importance of negative symptoms in 

ME was underscored in this sample.  The 
association of the MFI-20 reduced motivation scale 
and eLORETA sources further suggested a 
psychophysiological model may be requisite to 
understanding this phenomenon. 
 
Use the same dataset, M. L. Zinn et al. (2014) also 
examined qEEG peak alpha frequency (PAF) 
computed within the 8–12 Hz frequency band based 
on each participant’s EEG.  Mixed ANOVA results 
found significantly decreased PAF over 58% of the 
entire cortex in patients with ME when compared to 
controls.  There were significant differences in PAF 
at 11 electrode sites (p < 0.05).  Two hierarchical 
multiple regression models found that subjective 
scores on both the MFI-20 and FSS (Fatigue 
Severity Scale; Krupp, LaRocca, et al., 1989) as 
separate dependent variables predicted fatigue.  
Findings were consistent with previous reports of 
reduced efficiency of thalamocortical connections in 
patients with ME suggesting that PAF measurement 
may have both diagnostic and prognostic value in 
patients.  The widespread nature of the PAF 
dysregulation strongly suggests subcortical 
pathology with some authors suggesting this 
pathology involves the brainstem (Barnden et al., 
2011; Dickinson, 1997; Tirelli et al., 1998).  These 
studies have set the stage for the next steps using 
network analyses and dynamic relationships to 
understand a number of cognitive domains where 
ME deficits have been found (see Table 1 which 
summarizes the qEEG case-control studies on 
patients with ME during wakefulness). 
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Table 1 
Case-control qEEG studies involving ME patients during wakefulness 

Author 
(Year) N Investigation Behavioral 

Measures Significant Findings 

Prasher, 
Smith, and 
Findley 
(1990) 

25 patients 
divided into 2 
groups with 
enteroviral 
antigen VP1 
test positive 
& negative 

 
25 healthy 

controls 

Event-related potentials  
recorded from  Fz, Cz, 
Pz 

Visual potentials: 
 Checkerboard pattern 
Somatosensory potentials: 
 Median nerve 

stimulation from cervical 
spine 

Cognitive potentials: 
Reaction time to audio tone 

in ms 
 

None Greater P3 latency and duration was 
found in ME sample. 

 
Results permit subgrouping patients 

by P3 amplitude: those with 
attention problems and those with 
slower information processing 
speed. 

Billiot, 
Budzynski, 
and 
Andrasik 
(1997) 

28 patients 
 
28 healthy 

controls 
matched for 
age and 
gender 

EEG activity recorded from 
Cz to measure peak 
frequency and 
theta/beta ratio during 
eyes closed and serial 
7s conditions 

 

Profile of Fatigue-
Related 
Symptoms 
(PFRS cognitive 
difficulty factors 
neg. correlated 
with serial 7s) 

Eyes closed: 
• ME > HC in theta band (5–7 Hz). 
• Peak alpha frequency (8–13 Hz) 

correlated with a subjective 
fatigue rating. 

• Peak frequency between 4–20 
Hz correlated with theta/beta 
ratio and fatigue scores.* 

Serial 7s: 
• ME > HC in theta band (5–7 Hz). 
• ME < HC in narrow alpha band 

(9–11 Hz). 
 

Siemionow, 
Fang, 
Calabrese, 
Sahgal, and 
Yue (2004) 

8 patients 
 

8 healthy 
controls 
matched by 
age 

58 channel EEG recordings 
measured subjects 
while performing 
handgrip contractions. 

  

None ME < HCs in maximum voluntary 
contraction force.* 

ME > HCs relative power in theta 
band, indicating higher cortical 
activity after moderate muscle 
exercise. 

 
Sherlin et 
al. (2007) 

17 pairs of 
monozygotic 
twins 
discordant 
for ME 

EEG source analysis using 
LORETA 3D imaging 
method during eyes 
closed condition and 
serial 7s. 

 

None ME twins > healthy twins in delta 
(2.0–3.5 Hz) in left uncus and left 
parahippocampal gyrus. 

ME twins > healthy twins in theta 
(4.0–7.5 Hz) in cingulate gyrus and 
right superior frontal gyrus. 

Serial 7s data not reported. 
 

Flor-Henry, 
Lind, and 
Koles 
(2010) 

61 female 
patients 

 
80 female 

controls 

EEG source analysis using 
BK Beamformer 
algorithm during eyes 
open and two cognitive 
conditions: word-finding 
and dot localization. 

 Only alpha (8–13 Hz) 
and beta (14–20 Hz) 
bands were analyzed.  

Basic personality 
inventory 

Multidimensional 
Aptitude Battery 
(MAB-II) 

 

Global source differences were found 
in both bands for all three 
conditions. 

ME < HCs in alpha during eyes-
closed condition. 

ME > HCs in beta during spatial 
cognitive condition. 

ME > HCs in alpha in Broca's area 
during word-finding condition. 

Spatial EEG patterns separated both 
groups at 83% classification rate in 
alpha band during word finding 
condition.  
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Table 1 
Case-control qEEG studies involving ME patients during wakefulness 

Author 
(Year) N Investigation Behavioral 

Measures Significant Findings 

Neu et al. 
(2011) 

15 patients with 
ME 

 
15 untreated 

sleep apnea-
hypopnea 
syndrome 
(SAHS) 

 
16 healthy 

controls 

Event-related potentials 
recorded from Fz, Cz, 
and Pz measuring 
spectral theta and beta. 

P300 assessment with 
standard auditory 
oddball paradigm 

WAIS 
 Digit Span 
 Symbol span 
Rey Auditory Verbal 

Learning Test 
Finger-tapping test 

Fatigue Severity 
Scale (FSS) 

Epworth Sleepiness 
Scale (ESS) 

Pittsburgh Sleep 
Quality Index 
(PSQ)  

Beck Depression 
Inventory  

 13 item short 
form (BDI) 

Hamilton Anxiety 
Scale (HAS) 

Hamilton 
Depression Scale 
(HDS) 

 

FSS: ME > SAHS > HC 
ESS: ME < SAHS > HC 
PSQ: ME < SAHS > HC 
BDI: ME > SAHS > HC 
HAS: ME > SAHS > HC 
HDS: ME > SAHS > HC 
WAIS: ME > SAHS < HC in both digit 

span and symbol span 
RAVLT: ME > SAHS < HC 
 

Duffy, 
McAnulty, 
McCreary, 
Cuchural, 
and 
Komaroff 
(2011) 

70 patients with 
ME 

 
24 patients with 

MDD 
 
148 patients 

with general 
fatigue 

 
390 healthy 

controls 
 

EEG recordings to 
measure coherence 
during awake, alert 
eyes-closed state 

  

None EEG spectral coherence measures 
distinguished ME patients from 
HCs and MDD groups with nearly 
90% accuracy. 

M. L. Zinn 
et al. (2014) 

50 patients 
 
50 healthy 

controls 
matched by 
age, gender, 
educational 
level. 

 

Used qEEG to measure 
peak alpha frequency 
(8–12 Hz) during an 
eyes-closed resting 
condition. 

Multidimensional 
Fatigue 
Inventory (MFI-
20) 

Fatigue Severity 
Scale (FSS) 

Found significantly reduced peak 
alpha rhythms over 56% of cortex 
in patients.  

MFI-20, FSS were strongly 
associated with peak alpha 
frequency (8–12 Hz). 

M. A. Zinn 
et al. (2014) 

50 patients 
 
50 healthy 

controls 
matched by 
age, gender, 
educational 
level. 

Used eLORETA to 
measure current source 
densities during an 
eyes-closed resting 
condition. 

Multidimensional 
Fatigue 
Inventory (MFI-
20) 

Fatigue Severity 
Scale (FSS) 

ME > HC in delta (1–3 Hz) 
predominately in bilateral 
frontal/limbic regions.  

ME < HC in beta (19–21 Hz) medially 
in superior parietal lobule 
(precuneus and sensorimotor 
areas). 

Maximal current densities for delta 
band in left Broca’s area predicted 
by higher scores on the 
Multidimensional Fatigue Inventory 
(MFI-20), reduced motivation 
subscale. 

No associations found with the FSS. 
*p < .01.  
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Importance of Cross-Frequency  
Interactions, Vertical Brain Organization,  

and Arousal Systems 
 
All perceptual, cognitive, and emotional processes in 
the brain arise from precisely coordinated timings 
(Rabinovich, Friston, et al., 2012) with a vertical 
organization of structures reflecting the phylogenic 
scale and forms of consciousness (including 
sleep/coma) beginning with the earliest reptilian 
structures (Thatcher & John, 1977).  Coupling 
between subcortical brain structures (e.g., 
brainstem), the limbic system (e.g., hippocampus) 
and the neocortex (e.g., dorsolateral prefrontal 
cortex) allows the brain to achieve multiple levels of 
adaptation critical for survival with subcortical 
structures exerting influence over the cortex, and 
vice-versa.  A preponderance of slow-wave (delta, 
theta) activity cross-frequency coupled with faster 
rhythms (beta, gamma) is equally involved in the 
refinement of higher order information processing 
(Buzsáki & Watson, 2012; Friston, Bastos, Pinotsis, 
& Litvak, 2015).  The nesting of brain rhythms 
reflects populations of neurons fluctuating in 
accordance to a hierarchical system modulated by 
ultraslow (~0.1 Hz) frequencies (Buzsáki & Watson, 
2012).  This effect demonstrates the inter-
dependency of the rhythms; therefore, disruption in 
any frequency band could produce significant effects 
on the rhythms in other frequencies. 
 
The correlation between lesions in white matter and 
increased delta waves was demonstrated by Gloor, 
Ball, and Schaul (1977).  Bilateral lesions of the 
midbrain tegmentum produced bilateral delta activity 
in the cortex, while lesions in the reticular formation 
produced a gradual change in brain state with 
elevated delta rhythms, suggesting signaling 
depletion of a biochemical regulator.  The authors 
explained that the lesions themselves did not 
produce delta activity; rather, the lesions interrupted 
important afferent connections to the cortex 
(deafferentation) from white matter, thalamus, 
hypothalamus, or brain stem leading to delta activity.  
Elevations in delta activity during the waking state 
have been a frequent finding in patients with acute 
phases of encephalitis and are correlated with 
infection severity, spatial involvement, arousal state, 
and metabolic factors (Schaul, Lueders, & Sachdev, 
1981; Westmoreland, 2005).  African 
trypanosomiasis (sleeping sickness), which has 
characteristics similar to ME such as disturbance in 
sleep-wake cycles and excessive daytime 
drowsiness, is thought to arise from delta disruption 
during deep sleep stages (Westmoreland, 2005).  

Delta is also implicated in disturbances of white 
matter and that is consistent with Purger, Gibson, 
and Monje (2015) who described in their review how 
varying levels of neuronal activity can result from 
subtle changes in myelin microstructure, perturbing 
neural function, resonances, and attunement of 
cognition and behavior.  Similarly, patients with 
multiple sclerosis exhibit slow waves (delta) which 
tend to wax during symptom exacerbation periods 
and wane during remission while cognitive 
impairment in those patients is characterized by the 
extent and degree of slow oscillations found 
(Westmoreland, 2005).   
 
The earliest clinical correlates of brain pathogenesis 
are often seen with subtle, fluctuating levels of 
attention and arousal (Ropper & Samuels, 2009) 
and concomitant alterations in consciousness are 
then likely to follow with intracranial disease (e.g., 
infectious, inflammatory, neoplastic, vascular, and 
traumatic etiologies; Niedermeyer & Lopes da Silva, 
2005).  In analyzing patients with deep brain lesions, 
Luria (1980) noticed that changes in specialized 
higher cortical processes remained intact, and he 
observed that the primary symptoms manifested by 
patients were generalized decreases in “cortical 
tone” accompanied by a substantial degree of 
slowness and proneness to fatigue, affecting all the 
spheres of their activity.  Another feature of Luria’s 
patients was large fluctuations in symptom severity; 
during some hours or days the patients’ symptoms 
grew worse, while at other hours or days the same 
symptoms took on a milder form.  Moreover, the 
changes described by Luria are remarkably 
characteristic of neurological illnesses involving 
central fatigue (Chaudhuri & Behan, 2004) with 
striking similarity to ME.  Neurocognitive functioning 
depends on an intact AAS in promoting effective 
transmission across many thalamocortical, cortio-
basal-thalamic, and cortico-cortical circuits operating 
continuously during sleep and wakefulness in 
accordance with circadian rhythms (Heyder, 
Suchan, & Daum, 2004; Wright et al., 2012).  The 
hierarchical cross-frequency interactions are 
mediated by reticulothalamic and monoamine 
projections (e.g., acetylcholine in the basal forebrain, 
serotonin and norepinephrine in the pons, histamine 
and orexin in the hypothalamus, dopamine and 
acetylcholine in the midbrain) which serve to 
dampen the slower frequencies (delta), reduce the 
number of refractory neurons (more neurons 
available for allocation), and sustain the generalized 
maintenance of alert levels of consciousness (see 
Figure 1).  
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Figure 1. Neurocognitive impairment in ME model based on vertical brain organization, ascending arousal system (AAS), and 
cross-frequency interactions involved in the metastable dynamic flow of information in higher cortical function [adapted from 
Rabinovich, Afraimovich, et al. (2012), Stratton and Wiles (2015), Thatcher and John (1977), Wright et al. (2012)].  A) Cross-
frequency interactions (coupling) showing gamma, theta, and delta frequencies are woven together by phase relationships 
occurring spontaneously across different brain regions at multiple hierarchical levels.  If dysfunction exists in any of the sites 
(e.g., increased delta), the temporal “fabric” changes accordingly.  Inefficient cross-frequency coupling within the raw EEG 
signal can be separated and analyzed by qEEG and electrical neuroimaging methods (Pinal, Zurrón, Díaz, & Sauseng, 2015).  
B) Brain function at the systems level which is modeled on the vertical organization of the brain circuits in millisecond timings 
and cycling of oscillatory rhythms (Tristan et al., 2014), accounting for the primary role of arousal promoting nuclei in the 
brainstem, for example, site 4 (pons) in promoting the encoding and processing of sensory information (e.g., visual stimuli in 
occipital lobe) influencing the cross-coupled signaling in the dorsal stream of information flow between gamma activity in site 1 
(parietal) and site 2 (premotor) coupled with theta rhythms in site 3 (memories recalled by the hippocampus) mediated by 
prefrontal cortex (filtering out irrelevant stimuli, context-dependent response selection) and cortico-basal-thalamic circuits 
(anticipatory information), ultimately giving rise to behavior, emotion, and cognition (Fuster, 2009; Rabinovich, Afraimovich, et 
al., 2012; Stratton & Wiles, 2015).  This general hypothesis states that the AAS (dashed green lines) regulates the capacity for 
neuronal excitability within the information streams (blue arrows) perpetuated by local and long-distance connections within 
and between networks.  Characterizing the metastable dynamics in the brain may be crucial in understanding neurocognitive 
impairment, particularly in ME; that is, disruptions in signaling at any point (e.g., red arrow pointing to thalamocortical afferent 
pathways) underpinning information processing deficits and influencing pyramidal neuronal populations in the cortex visible in 
the qEEG (McCormick & Bal, 1997; Stratton & Wiles, 2015).  This model calls for a deeper understanding of dysregulation in 
the central nervous system in patients; that is, how communication by way of network properties and arousal affects the quality 
and quantity of the mental representations in the cortex at any given moment in time (Varela, 2014).  Within this model, the 
homeostatic balance of efficient ongoing processing, in turn, produces increased responsiveness of cortical networks that 
depend on intact subcortical structures.  Accordingly, mismatched timings may be indexed by underlying phase mechanisms 
(Thatcher, North, & Biver, 2014) associated with a variety of conditions such as multiple sclerosis (Yao et al., 2012), autism 
(Thatcher et al., 2009), Alzheimer’s disease (Xu et al., 2008) and short-term memory decline (Pinal et al., 2015).  
Abbreviations: acetylcholine (ACh), dopamine (DA), histamine (HS), orexin (OR), norepinephrine (NE), serotonin (SE). 
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The role of brain rhythms and vertical brain 
organization affecting behavioral performance with 
time-evolving variability in brain states may be of 
prime importance to ME.  The ability to flexibly 
switch and maintain brain states to mandate a given 
performance level is critical to shifting environmental 
demands (Tang et al., 2012) and ME is known for 
supporting derangements in set shifting.  Delta is 
associated with potassium (K+) conductance of the 
membrane potential which can be readily abolished 
by monoamine-producing nuclei in the pons and 
midbrain reticular formation (e.g., acetylcholine or 
norepinephrine) for maintenance of normal 
consciousness (Steriade, 2006).  Severe damage to 
the midbrain reticular formation produces coma 
whereby lack of sustained input from the neocortex 
precludes all function (Nolte, 2009).  Cortical arousal 
becomes initiated by the cholinergic basal forebrain 
which plays a key role in blocking K+ conductance 
(Metherate & Ashe, 1993) and strong cholinergic 
activity during REM and wakefulness is mainly 
responsible for depolarizing thalamocortical neurons 
to suppress the occurrence of delta oscillations and 
diminished excitation in the cortex (McCormick & 
Bal, 1997).  Furthermore, the thalamic neurons 
projecting to the well-defined areas of the cortex 
operate in a different manner, and they have 
essentially two physiological modes: tonic mode and 
burst mode.  Delta rhythms produced by these 
particular neurons switch their operating mode from 
tonic mode to burst mode where hyperpolarization of 
neurons is below the threshold for the tonic mode, 
thus interrupting normal relay of information back to 
the neocortex (Sherman & Guillery, 1996).  During 
burst mode, the thalamocortical neurons are 
operating with increased calcium (Ca+2) influx, 
making them behave differently; they are more 
prone to fire in an all-or-none fashion (Zhan, Cox, 
Rinzel, & Sherman, 1999).  This type of irregular 
transmission produces a type of hyper-responsivity 
which negates the proper functioning of cortical 
systems (Elson et al., 1999; Steriade & Paré, 2006).  
The instability might be semantic in that the 
remaining information that gets forwarded to the 
neocortex is compromised, disrupting the ability of 
neocortical systems to perform their task of 
discrimination and refinement of incoming sensory 
information.  Likewise, the instability could be 
produced temporally where the message is the 
same but the order has been randomized or the 
tempo of information is too erratic and, with regard 
to attention, making it difficult to process relevant 
information (Tristan et al., 2014). 
 

Using EEG Coherence and Phase Metrics to 
Investigate ME Neurocognitive Impairment 

 
Using time-dependent EEG metrics such as 
coherence and phase within brain rhythms could 
form a new conceptual basis of studying 
neurocognitive impairment in patients with ME.  EEG 
coherence was used by Duffy et al. (2011) as a way 
of distinguishing ME from depression and healthy 
control groups.  Coherence is the most widely used 
measure which examines similarity between two 
cortical regions as well as provides a robust 
measure of white matter maturation/disease (Nunez, 
Srinivasan, & Fields, 2014).  Coherence looks at 
phase differences to directly measure the timing of 
neural activity to elucidate the coordination of action 
potentials (Klimesch et al., 2008) between any two 
brain areas and infer a functional relationship is 
likely happening (phase coupling; Buzsáki & 
Watson, 2012).  Areas with higher coherence are 
referred to as having increased phase consistency 
whereby phase differences are clustering very close 
together over time.  However, if the phase 
differences are fairly scattered over time, there is an 
inconsistency of phase differences, and those 
neurons become suppressed.  This suggests a 
fundamental mechanism for selection of neurons: 
neurons are very likely to fire together when their 
phases are coupled and the firing threshold is lower, 
but they become suppressed when their phases are 
decoupled due to lack of entrainment (decoupling; 
Hughes et al., 2004).  More importantly, high 
coherence measures demonstrate that neurons are 
delivering large quantities of neurotransmitters, 
which rapidly turn neurons on/off, and the 
neuromodulators, which modulate synaptic 
transmission and RNA signaling (Kandel, Schwartz, 
Jessell, Siegelbaum, & Hudspeth, 2012).  Findings 
of intracranial studies show functional coupling in the 
frontal cortex and connected areas is essentially 
linked to fundamental memory processes (Johnson 
& Knight, 2015).  Furthermore, a coupling of EEG 
signals, in addition to power, has been shown to 
modulate temporal attention intervals contributing to 
task performance and reaction speed (Stefanics et 
al., 2010).  
 
We can understand coherence more 
comprehensively by examining control processes for 
how the information is being encoded and packaged 
through analysis of phase reset mechanisms and 
their constituent subcomponents of phase shift and 
phase-lock duration.  Phase shift and phase lock are 
fundamental brain mechanisms continually in flux at 
various frequencies and across nodes of networks 
during the execution of any behavioral or cognitive 
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task.  According to Canavier (2015), phase-reset 
performs several functions to represent our 
thoughts, feelings, and actions: 1) phase alignment 
to specific reference points, 2) time windows for 
encoding and decoding, and 3) coordination 
between mutually connected, phase coupled, brain 
regions.  Recent evidence demonstrates the 
processes of phase reset on human cognition, 
especially in clinical disorders (Frey, Ruhnau, & 
Weisz, 2015).  The homeostatic balance of switching 
dynamics between phase shifting and phase locking 
and of rhythm patterns has been related to normal 
brain function, and instabilities have been implicated 
in pathological conditions such as autism (Thatcher 
et al., 2009), epilepsy (Chavez, Le Van Quyen, 
Navarro, Baulac, & Martinerie, 2003; Le Van Quyen, 
Martinerie, Navarro, Baulac, & Varela, 2001), 
Alzheimer’s disease (Stam et al., 2002), and 
traumatic brain injury (Sponheim et al., 2011).  
 
At any given moment, millions of neurons are briefly 
synchronized (phase locked) across domains or 
networks within milliseconds and then released 
(phase shift), and this process happens continually 
with different neurons being involved (Thatcher, 
2012).  Phase shift refers to the recruitment process 
of allocating all available neurons for performing a 
given function and typically varies between 40 and 
80 milliseconds in length, and it has been shown to 
positively correlate with intelligence (Thatcher, 
North, & Biver, 2008).  Phase lock refers to the 
synchronization of phase-shifted neurons selected 
for mediating a given function over a sustained 
period of time, usually between 100 and 600 
milliseconds.  For example, phase-locking periods of 
100 ms in the alpha band in the auditory cortex was 
recently shown to modulate visual perception in the 
occipital lobe (Romei, Gross, & Thut, 2012).  Longer 
phase-lock periods were found to be inversely 
correlated with intelligence due to the brief increase 
in committed neurons which creates a momentary 
reduction in neurons available for other phase shifts 
(Thatcher et al., 2008). It is possible to apply this 
phase reset model to understanding the inner 
workings of the brain in ME. If patients were shown 
to have a higher rate of phase resets than normal in 
the high beta/gamma range, the information transfer 
within neocortical local circuits might be happening 
too quickly. Looking further at phase shift and 
phase-lock duration, if both of these processes 
appeared to be significantly shorter, that might 
further suggest there are fewer neuronal resources 
allocated in ME for subsequent phase-lock periods.  
This could lead to inefficiency as a function of time 
and, if both periods of phase shift/lock durations 
were too short, that might contribute to an increased 

rate of phase reset.  Also, with phase-locking 
periods being too brief, that would be consistent with 
the associated lower rate of information processing 
and reaction times found in the ME literature.  
 
To create a better understanding, however, it 
becomes necessary to describe the aberrant 
coherence and phase within the nodes of large-
scale networks dedicated to maintaining higher 
cognitive functions affecting daily living (e.g., spatial 
attention, salience recognition, autobiographical 
memory, sensation and movement, language and 
sound).  Cooperative sequencing and millisecond 
interactions of dynamic functional systems in the 
brain (interconnected groupings) are involved in 
overall function at any given moment of time and 
can be interrupted by a number of different types of 
neurological derangements (Menon, 2011; Sporns, 
2013).  In addition to hierarchical levels of brain 
rhythms, there are also hierarchical levels of nodes 
and hub constituents of brain networks.  Given their 
central importance and susceptibility to failure in 
many clinical disorders (Crossley et al., 2014), 
coherence and phase analysis within hubs could be 
another tool for measuring the functional integrity of 
their connections.  The degree to which 
dysregulation within the nodes or hubs of a given 
network is found could serve as an index for the 
inefficiency of information processing and greater 
energy expenditure, particularly in the compensatory 
nodes; the dysregulated nodes and hubs continue to 
function while other nodes attempt to compensate 
for the information processing deficits, producing 
greater inefficiency.  More powerful and versatile 
data-driven approaches using independent 
component analysis to characterize frequencies and 
spatial correlations simultaneously might yield new 
insights identifying cortico-cortical, cross-frequency 
interactions, which can account for compensatory 
mechanisms (Calhoun, Liu, & Adali, 2009; Pascual-
Marqui et al., 2011).  Unique to exploring the realm 
of dynamic connectivity electrical neuroimaging can 
capture co-varying correlations of regions, including 
connection strength, direction, and spectral 
characteristics, from intracranial electric signals.  
Dynamic connectivity has recently been shown to 
offer more reliability and sensitivity for measuring 
network properties in Parkinson’s disease 
(Madhyastha, Askren, Boord, & Grabowski, 2015).  
Direct paths of effective information flow can be 
assessed using newly established metrics such as 
isolated effective coherence (Pascual-Marqui et al., 
2014) and phase slope index (Nolte & Müller, 2010; 
Nolte et al., 2008), which can be used in causal 
connectivity modeling to describe transmission of 
preferential oscillations between nodes.  In 
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summary, using electrical neuroimaging methods 
may help identify dysregulated nodes within large-
scale brain networks and dynamic connectivity 
models which could better characterize the nature 
and extent of neurocognitive impairment in ME. 
 
Clinical Interpretation of Dysregulated Networks 
in ME 
Clinical interpretation ultimately rests upon linking 
the patient’s symptoms to dysregulated nodes and 
hubs of large-scale brain systems (Thatcher, 2012).  
These large distributed networks were mapped 
through numerous neuroimaging experiments 
showing areas of endogenous brain activity that 
were highly correlated and ultimately referred to as 
resting-state networks (Allen et al., 2011; Fox, 
Zhang, Snyder, & Raichle, 2009; Raichle, 2011).  To 
gain a deeper understanding of connectivity 
influences of brain disease on cognitive processing, 
the assessment of neuropsychological symptoms in 
patients can be linked to specific alternations in the 
resting-state networks.  Initial steps for investigating 
neurocognitive impairment in ME could begin with 
the default-mode network (Raichle et al., 2001).  The 
default-mode network is the first resting-state 
network to be identified and has been a robust 
finding in the literature (Raichle, 2011; Raichle et al., 
2001).  The nodes identified in this network include 
the medial prefrontal cortex, posterior 
cingulate/precuneus, and the bilateral temporal-
parietal junction.  Collectively, these nodes are 
jointly active during passive moments—while one is 
recalling past events, ruminating, self-monitoring—
but they deactivate during initiation of a goal-
directed task (Buckner, 2012).  Cognitive symptoms 
produced by a failure within this network would 
involve decreased attention, mentalizing, decision-
making, self-referential thought, and self-recognition.  
The default-mode network has been implicated in 
symptoms of a variety of neurocognitive disorders 
such as Alzheimer’s disease (Greicius, Srivastava, 
Reiss, & Menon, 2004), Parkinson’s disease (van 
Eimeren, Monchi, Ballanger, & Strafella, 2009), 
traumatic brain injury (Bonnelle et al., 2011), multiple 
sclerosis (Zhou et al., 2014), epilepsy (Haneef, 
Lenartowicz, Yeh, Engel, & Stern, 2014), autism 
(Jann et al., 2015).  In ME, the relative interactions 
between nodes of the default-mode network could 
be examined using phase and coherence metrics 
within LORETA to explore temporal dynamics within 
a graph theoretical framework; the connectivity of 
edges between dysfunctional nodes identified as 
hyper/hypo connected according to EEG frequency 
band (Pascual-Marqui et al., 2011).  To show how it 
relates to fatigue, the results could then be 
regressed against scores on neuropsychological 

tests and subjective behavior measures.  These 
procedures could be then repeated for testing the 
integrity of other resting-state networks (e.g., 
salience network, the executive control network, 
dorsal/ventral attention networks, visual network, 
sensorimotor network, and auditory networks; 
(Raichle, 2011) to potentially reveal highly essential 
clues specific to ME neurocognitive impairment.  
Specific patterns that are identified using the 
approach will likely serve as potential targets for 
treatment (e.g., EEG biofeedback). 
 
Multi-modal EEG Integration 
One of the ultimate goals of neuroscience is to find 
ways of bringing together imaging modalities for the 
best clinical outcome.  Through an integration of 
neuroimaging (e.g., EEG/MEG with MRI and fMRI 
techniques), we take advantage of what each 
modality has to offer to increase our understanding 
of adverse conditions in the brain (Liu, Ding, & He, 
2006).  Electrical neuroimaging findings can be co-
registered with respect to all these imaging 
modalities and integrative EEG studies thus far are 
yielding important noninvasive insights regarding 
state changes in functional brain architecture (Michel 
& Murray, 2012).  Moreover, DTI modeling of 
connections in the brain infrastructure forms the 
basis for understanding and cross-validation of the 
electric neuroimaging results (Hagmann et al., 2008; 
Thatcher, North, & Biver, 2012).  Finally, combining 
other modalities is one way to expand our novel 
approaches for selection of new treatments and 
differential diagnosis for patients with ME in 
particular. 
 

Conclusion 
 
Neural dynamics is fundamental for all types of brain 
processes.  Targeting neural dynamics in real time 
remains attractive but currently poses a significant 
challenge to researchers and clinicians, particularly 
in ME.  Progress in developing better methods to 
assess neurocognitive impairment has been limited, 
possibly due to the lack of newer methods 
developed and perceived redundancy between 
animated and static neuroimaging methods.  The 
potential to assess, and possibly treat, 
neurocognitive problems in ME is evident as per the 
quantitative EEG methods and preliminary data 
presented in this article. 
 
An important area of future research is to better 
understand the manner in which neurons 
communicate through networks and how that 
process is truncated in disease.  Although it is fairly 
evident that central nervous system connectivity is a 
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likely candidate, much more needs to be known 
about its effect upon neurocognitive dysfunction in 
ME in order to develop new concepts for the 
understanding, diagnosis, and treatment of patients. 
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One might wonder why a journal committed to 
research and theory related to neuromodulation 
would want to review a book that is essentially about 
ethics and morality in the 21st century.  The reason 
is that the author does an excellent job of integrating 
some of our most recent findings about the brain into 
his discussion of the “science of altruism, selfishness 
and immorality.” 
 
Music is a child and adolescent psychotherapist at 
the Tavistock and Portman Clinics in London, UK, 
and an adult psychotherapist in private practice.  He 
does a yeoman’s task of bringing together research 
and findings as diverse as attachment, 
neuroscience, ethics, history, evolutionary biology, 
sociology, and psychology.  He weaves his way 
through these diverse topics following a 
developmental path mirroring human development in 
order to examine what all of these fields of study 
might tell us about human beings’ capacity for 
compassion, altruism, selfishness, and immorality in 
our current times and what this might bode for our 
future.  In a nutshell, he asks: Can we hope to 
accomplish the “Good Life” given our current state? 
 
Music begins his journey by asking the fundamental 
question of whether humans are primarily and 
naturally good and kind, or if are we basically selfish 
and motivated only by what we can get to satisfy our 
needs and desires.  He presents the research and 
theoretical literature that supports each point of view 
and seeks to walk the fine line of holding some of 
each position in his conclusions for going forward in 
his discussion of human development and the 
possibilities for the ethical “Good Life.”  Music tells 
us in his introduction that he has three primary 
reasons for writing this book.  The first is his own 
curiosity about the human situation.  He is aware, as 

I hope we all are, that we can be quite different 
people at different times.  I can be very kind and 
generous one moment—and cruel and heartless the 
next.  Have the latest developments and research 
across the various domains of human knowledge 
helped us to better understand how that might be?  
The second is his work as a psychotherapist.  His 
work with children who have experienced significant 
trauma has provided him with glimpses into both the 
worst and the best of the human condition.  He has 
seen children (and adults) who have been too 
damaged to ever be able to truly live a “fulfilled” life.  
He has also witnessed the incredible resiliency of 
the human spirit and its ability to recover from 
horrific experiences and, through human bonding 
and loving care, be fully restored and functional 
loving people.  The third reason is linked to his 
observation that the western world seems to be 
moving in a less humane and connected direction, 
leaving increasing numbers of people disconnected 
and diminished and just so many cogs in the wheel 
of economic growth and Gross Domestic Product 
(GDP). 
 
The book proceeds to examine in a logical and well-
articulated fashion the steps necessary to ask and 
answer the questions required to try and accomplish 
the overarching concern.  He begins by fine-tuning 
the discussion as to whether humans are primarily 
destined for good or just a “part of brutal nature.”  
This leads him into a discussion of attachment and 
how dependent development and connection 
depends on those initial connections, and then to a 
discussion of empathy, stress, impulsiveness, self-
regulation, and aggression.  He carefully links each 
topic to psychological, developmental, and 
neurological research and understanding. 
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These initial chapters might be said to explain the 
rootedness of our potential for living a life of 
connection and satisfaction in our birth and early 
development internally and through our external 
connections.  The remaining chapters move this 
examination out into what we might describe as the 
adult world of real relationships and consequences.  
Here he discusses such topics as aggression and 
psychopaths, emotion and reason, cooperation and 
competition, reputations and shaming, and his 
penultimate chapter “consumerism, society and our 
divided brain.” 
 
This was for me one of the most striking and 
disturbing chapters.  One paragraph may serve to 
highlight why: 
 

We are all capable of moving into either 
more competitive or caring states of mind.  
As we have seen, the extent to which we do 
either is influenced by early experiences and 
family life, and also the kinds of work 
environments, communities and societies 
we inhabit.  In competitive environments we 
are more likely to see others as rivals, 
compare ourselves with them and make 
judgments.  When people feel compared to 
others, irrespective of whether these 
comparisons are positive or negative, then 
several days later they are less empathic 

and prosocial than control groups (Yip and 
Kelly, 2013).  The huge amount of data on 
the devastating effects of inequality on 
levels of trust underscore this (Wilkinson 
2005; Wilkinson and Pickett, 2009).  (Music, 
2014, p. 170). 

 
In the end, Music’s book seeks to encourage all 
those who resonate with his concern that perhaps 
the world is not headed in a direction that will lead 
us to the enhanced and more possible place of 
connection, intimacy, and community but rather 
towards a place of increased suffering, 
disconnection and inequality.  It is his hope and 
mine that reading this book might serve as an 
impetus and motivation to seek to find ways to 
correct our course so that we can indeed have a 
chance to live the “Good Life.” 
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