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Welcome to NeuroRegulation Volume 6, Issue 1.  
Thank you for joining us as we open the first issue of 
this year with a truly international offering; we are 
pleased to have articles from Russia, Turkey, and 
China, in addition to the United States.  In the 
Research section of this issue, Olga R. Dobrushina, 
Zukhra Sh. Gadzhieva, Sofya N. Morozova, Elena I. 
Kremneva, Marina V. Krotenkova, and Larisa A. 
Dobrynina examine the role of the prefrontal cortex 
and compensatory mechanisms in mild cognitive 
impairment that may be a target for neuromodulation 
techniques.  Then, Barış Gökşin, Bülent Yılmaz, and 
Kutay İçöz present data on the effects of 
neurofeedback of the alpha band on working memory 
performance in a normative sample of students.  
Finally, Lauren Kelley, Whitney Strunk, Rex Cannon, 
and Jeffrey Leighton present pilot data examining 
differences between groups of children with 
intrauterine drug exposure (IUDE) and attention 
deficit/hyperactivity disorder (ADHD).  In the 
Perspectives section, Mark Trullinger, Allen Novian, 
Lori Russell-Chapin, and Deepti Pradhan present a 
perspective on recent publications exaggerating the 
effects of placebo in neurofeedback with specific 
focus on how non-inert shams, the false no-effect, ad 
hoc explanations, and confirmation bias lead to Type 
III statistical errors.  In the Technical Notes section, 
Stewart P.W. Lam, Henry S.R. Kao, Xiaoyang Kao, 
Miranda M. Y. Fung, and Tin Tin Kao present 
technical and pilot data of an app that utilizes Chinese 
calligraphic finger-writing and Guqin music to produce 
changes in heart rate variability (HRV). 
 
NeuroRegulation thanks these authors for their 
valuable contributions to the scientific literature for 
neurofeedback, neuroscience, and learning.  We 
strive for high quality and interesting empirical topics.  
We encourage the members of ISNR and other 
biofeedback and neuroscience disciplines to consider 

publishing with us.  It is important to stress that 
publication of case reports is always useful in 
furthering the advancement of an intervention for both 
clinical and normative functioning.  We encourage 
researchers, clinicians, and students practicing 
neurofeedback to submit case studies, or groups of 
case studies! 
 
In our sixth year, NeuroRegulation has made great 
strides for increasing the scientific integrity of 
neurofeedback, biofeedback, and applied 
neuroscience.  We would like to thank our associate 
editors, reviewers, and contributors for this success.  
Moreover, we extend an invitation to all researchers 
and clinicians interested in human performance, the 
human brain, and methods to improve its functionality 
to submit reviews, theoretical articles, and research 
data.  If we are rigorous in our efforts and clear with 
our data presentation, learning methods and 
confounds that exist in the polemic discourse 
between disciplines might be reduced, making way 
for a united, unambiguous pursuit to ensue.  Our 
primary purpose is to aid individuals in improving 
functionality, no matter the obstacles one may 
struggle with.  If we are clear in purpose, we are 
capable of much.  I look forward to more discoveries 
and processes uncovered to aid in improving human 
performance across all functional domains.   
 
We thank you for reading NeuroRegulation! 
 
 
Rex L. Cannon, PhD, BCN 
Editor-in-Chief 
Email: rcannonphd@gmail.com 
 
 
Published: March 25, 2019 
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The Compensatory Role of the Frontal Cortex in Mild 
Cognitive Impairment: Identifying the Target for 
Neuromodulation  
Olga R. Dobrushina*, Zukhra Sh. Gadzhieva, Sofya N. Morozova, Elena I. Kremneva, Marina 
V. Krotenkova, and Larisa A. Dobrynina 

Research Center of Neurology, Moscow, Russia 
 

Abstract 

Introduction: Development of individualized neuromodulation techniques for mild cognitive impairment (MCI) is 
a feasible practical goal.  Preliminary research exploring the brain-level compensatory reserves on the base of 
neuroimaging is necessary.  Methods: Twenty-one older adults, representing a continuum from healthy norm to 
MCI, underwent functional MRI while performing two executive tasks—a modified Stroop task and selective 
counting.  A functional activation and connectivity analysis were conducted with the inclusion of a BRIEF–MoCA 
covariate.  This variable represented the difference between the real-life performance measured by Behavior 
Rating Inventory of Executive Function (BRIEF) and the level of cognitive deficit measured by Montreal Cognitive 
Assessment (MoCA) Scale, an ability to compensate for impairment.  Results: Both tasks were associated with 
activation of areas within the frontoparietal control network, along with the supplementary motor area (SMA) and 
the pre-SMA, the lateral premotor cortex, and the cerebellum.  A widespread increase in the connectivity of the 
pre-SMA was observed during the tasks.  The BRIEF–MoCA value correlated, first, with connectivity of the left 
dorsolateral prefrontal cortex (LDLPFC) and, second, with enrollment of the occipital cortex during the counting 
task.  Conclusion: The developed neuroimaging technique allows identification of the functionally salient target 
within the LDLPFC in patients with MCI. 
 
Keywords: mild cognitive impairment; executive functions; fMRI; functional connectivity 
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Introduction 

 
Neurocognitive disorders are a major burden of the 
aging population (Hugo & Ganguli, 2014).  While 
dementia is a frequent cause of death, even mild 
cognitive impairment (MCI) is associated with 
increased mortality (Bae et al., 2018).  The incidence 
of MCI is high: 6.7% for ages 60–64, 8.4% for 65–69, 
with a subsequent increase up to 25.2% for ages 80–
84.  Neurocognitive disorders dramatically affect 
quality of life (Hugo & Ganguli, 2014), and a key 
contributor to maladaptation is executive dysfunction 
(Marshall et al., 2011). 

 
Treatment options for MCI are limited.  
Cholinesterase inhibitors, commonly used to treat 
dementia, along with other drugs showed no benefit 
in MCI (Petersen et al., 2018).  Thus, the 
development of nonpharmacological approaches for 
the improvement of cognitive functioning in MCI is 
feasible.  The clinical application of 
neurophysiological research has resulted in an 
increased use of neuromodulation techniques, such 
as repetitive transcranial magnetic stimulation (rTMS) 
and transcranial direct current stimulation (tDCS).  
While there is currently insufficient evidence to 
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evaluate the efficacy of these methods in MCI, some 
trials show promising results (Drumond Marra et al., 
2015).  
 
In a study by Drumond Marra et al. (2015), 34 patients 
with MCI were randomized for 10 sessions of high-
frequency rTMS over the left dorsolateral prefrontal 
cortex (LDLPFC) or sham TMS.  The intervention 
resulted in enhanced everyday performance 
according to the Rivermead Behavioural Memory 
Test, with the effect lasting at least one month 
(Drumond Marra et al., 2015).  According to another 
study, rTMS of the LDLPFC in MCI leads to 
compensatory recruitment of the frontoparietal control 
network (FPCN), which may explain its beneficial 
effects (Solé-Padullés et al., 2006).  Artificial 
stimulation during neuromodulation has similarities 
with the natural functional adaptation of the brain 
observed in cognitive decline—increased recruitment 
of the cortex during challenging tasks, especially in 
the frontal areas (Clément, Gauthier, & Belleville, 
2013; Naumczyk et al., 2017).  This mechanism is 
also in line with the gold standard of 
neuropsychological rehabilitation: since memory 
training is proven to be ineffective, promoting 
compensations that improve everyday life is the main 
aim of rehabilitation (Wilson, Gracey, Evans & 
Bateman, 2009).  At the same time, the importance of 
adjustment of the neuromodulation protocol on the 
base of neuroimaging is discussed, since MCI is a 
heterogenous phenomenon (Anderkova, Eliasova, 
Marecek, Janousova, & Rektorova, 2015).  Along with 
evaluation of the clinical efficacy of neuromodulation, 
it is important to continue improving these techniques.  
 
In the current study, we evaluate the organization of 
executive functions in MCI in conjunction with 
everyday functioning.  As an a priori hypothesis, we 
assume that the top-down regulatory influences of the 
frontal cortex during an artificial task reflect the same 
brain-level mechanisms that allow compensation for 
cognitive decline in real life.  We aim to reveal these 
mechanisms using functional connectivity analysis.  
This study is forming a basis for the development of 
individualized neurostimulation approaches. 
 

Methods 
 
Participants 
Participants were selected among older adults (45 
years and older) who volunteered to participate in the 
project.  First, a structured interview and a 
neurological examination were performed to exclude 
participants with neurological and psychiatric 
diseases other than MCI.  Second, a neuroimaging 

inclusion criterion was applied; that is, a structural 
brain MRI scan graded as 0 or 1 on the Fazekas scale 
(absent or minor white matter lesions; Fazekas, 
Chawluk, Alavi, Hurtig, & Zimmerman, 1987).  Any 
other brain damage, including any findings with a 
Fasekas rating of 2 or higher, served as an exclusion 
criterion, in order to avoid excessive heterogeneity of 
the sample.  The study included 21 adults aged 45‒
71 years (median 57; 1st quartile 52; 3rd quartile 
59.5), representing a continuum from healthy norm to 
MCI.  Subjects with lower cognitive levels did not 
enter the study, because of their failure to fit into the 
Fasekas 0‒1 range.  We did not aim to define a clear 
margin between normal aging and MCI within the 
scope of the study, as this is problematic in this 
borderline group. 
 
All participants underwent a cognitive assessment, 
performed by the same trained examiner, that 
included the Montreal Cognitive Assessment Scale 
(MoCA; Nasreddine et al., 2005), the Frontal 
Assessment Battery (FAB; Dubois, Slachevsky, 
Litvan, & Pillon, 2000), the Luria Memory Words Test 
(Luria, 1980), and the Trail Making Test (Delis, 
Kaplan, & Kramer, 2001).  Executive functioning in 
daily life was self-rated using the Behavior Rating 
Inventory of Executive Function (BRIEF; Gioia, 
Isquith, Guy, & Kenworthy, 2000).  To account for 
emotional factors, the Hospital Anxiety and 
Depression Scale (HADS) was also included into the 
assessment (Zigmond & Snaith, 1983). 
 
The protocol and informed consent form were 
approved by the Ethics Committee and the 
Institutional Review Board of the Research Center of 
Neurology, and all participants signed the informed 
consent form before entering the study. 
 
fMRI acquisition and preprocessing.  MRI was 
performed with a Siemens MAGNETOM Verio 3T 
scanner (Erlangen, Germany) located at the 
Research Center of Neurology.  Functional images 
were acquired using Т2*-gradient echo imaging 
sequences (TR 3000 ms, TE 30 ms, FA 90, voxel size 
3x3x3 mm3, FOV 192 mm).  Four extra functional 
volumes were acquired at the start of the session and 
discarded by the scanner software in order to prevent 
the usage of artifactual data obtained before the 
magnetic equilibrium is reached.  A three-dimensional 
structural image consisted of a sagittal T1-weighted 
3D-MPRAGE sequence (TR 1900 ms, TE 2.5 ms, FA 
9, voxel size 1x1x1 mm3, FOV 250 mm). 
 
All participants underwent two fMRI sessions with a 
block design with an interval of no less than 48 hours: 
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a simplified version of a classical Stroop task (Stroop; 
Stroop, 1935) and an original selective counting 
paradigm developed at our center (Count).  Each task 
consisted of four active and four rest blocks with a 
duration of 30 s (4 min total).  During the Stroop 
session, the rest periods (fixation cross) alternated 
with a slideshow consisting of 20 stimuli (1.5 s each): 
a word indicating a color (red, blue, green, or yellow) 
was presented on the display, written in either 
congruent or conflicting font color.  The participants 
were required to inwardly answer “yes” if the color of 
the word corresponded to the text.  During the Count 
task, eyes-open rest periods alternated with the 
selective counting task: the participants were 
instructed to inwardly count up from one, omitting the 
numbers divisible by three (one, two, four, five, seven, 
etc.).  Before both sessions, a 5- to 10-min training 
was performed outside the scanner.  Such simplified 
variants of executive tasks specifically address the 
population of cognitively impaired patients and allow 
further transfer of the technology to patients with 
dementia. 
 
Data were analyzed in MATLAB 2017b 
(http://www.mathworks.com), with the use of the 
statistical parametric mapping software SPM12 
(http://www.fil.ion.ucl.ac.uk/spm) and CONN17f 
(http://www.nitrc.org/projects/conn).  A standard 
preprocessing protocol was utilized and included 
motion correction, slice-timing correction, 
realignment, co-registration of functional and 
anatomical data, normalization into the Montreal 
Neurological Institute (MNI) stereotactic space, 
segmentation of the average structural image into 
tissue images (grey matter, white matter, and CSF 
volumes) and smoothing with an 8-mm Gaussian 
kernel.  All coordinates are presented in MNI space 
(x, y, z). 
 
To evaluate block consistency, the raw activation 
data were extracted with the use of the MarsBaR 
toolbox (http://marsbar.sourceforge.net), and a 
comparison between blocks was performed with the 
SPSS v22 (http://www.ibm.com/products/spss-
statistics) package using a general linear model. 
 
The functional neuroimaging results were rendered 
and visualized with the use of the MRIcroGL program 
(http://www.cabiatl.com/mricrogl). 
 
Functional activation and connectivity analysis.  
Statistical parametric maps for each participant were 
calculated using a general linear model.  To compute 
group activation maps, a second-level analysis was 

performed using one-sample T-tests with p < .001 
uncorrected at the voxel level.  
 
The task-related functional connectivity analysis 
aimed to evaluate the regulatory influences of the 
areas within the frontal lobes during the executive 
tasks.  On the basis of the activation analysis for both 
the Stroop and Count conditions, we identified the key 
areas within the frontal cortex, and the regions of 
interest (ROIs) for the connectivity analysis were 
constructed as spheres of 10-mm radius around the 
centers of these clusters (see Results section, Table 
2). 
 
Based on the assumption that the task-based 
connectivity of the frontal areas might correlate with 
the ability to compensate for cognitive decline in real 
life, we included the second-level covariates BRIEF 
and BRIEF–MoCA into the analysis.  To compute the 
BRIEF–MoCA value, we transformed absolute BRIEF 
and MoCA scores into scales from 0 to 10 (MoCA: 0 
for the lower and 10 for the higher value in the 
sample, BRIEF: 0 for the higher and 10 for the lower 
value in the sample) and then calculated the 
difference between these ratings.  A higher BRIEF–
MoCA value represents better executive functioning 
in everyday life, despite a cognitive deficit. 
 
Denoising of the functional data included linear 
regression of the confounding effects of the white 
matter, CSF, correction for realignment and 
scrubbing, and the application of a band-pass filter of 
0.008‒0.09 Hz.  Functional connectivity evaluation 
was performed using Pearson’s correlation analysis 
with a subsequent Fischer transformation during the 
first-level analysis.  Multiple-comparison adjustments 
were implemented with a false discovery error rate 
(FDR) of q < .05 at the cluster-level, given a voxel-
wise statistical threshold of p < .001 uncorrected.  A 
Bonferroni correction was applied for the number of 
ROIs entered into the ROI-to-voxel connectivity 
analysis. 
 

Results 
 
Cognitive assessment data.  The results of the 
cognitive assessment are summarized in Table 1.  
According to the MoCA scale (Nasreddine et al., 
2005), the study sample included a continuum from 
healthy norm to MCI, with a range of 25‒30.  The 
evaluation of executive functions with the FAB   
revealed no significant impairment (score 17‒18 of 
18), while the results of the more sensitive TMT 
indicated some decline in performance.  According to 
the BRIEF, the participants experienced variable 
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difficulties with self-regulation in daily life.  While 
these tests gave us only a general impression 
regarding the level of executive functioning, this 
battery, in combination with the neuroimaging 
procedure, was already very demanding for our 
sample of older adults. 

 
HADS ratings indicated that the majority of the 
subjects did not have clinically significant anxiety or 
depression, and it is thus unlikely that emotional 
factors had any valuable influence on cognitive 
performance.

Table 1 
The results of the cognitive assessment. 

 Median Min First Quartile Third Quartile Max 

Montreal Cognitive Assessment 
Scale (MoCA) 

28 25 25 29 30 

Frontal Assessment Battery 
(FAB) 

18 17 17 18 18 

Behavior Rating Inventory of 
Executive Function (BRIEF) 

123 88 107 139 156 

Luria Memory Words Test 
(quantity of words memorized 
after 5 trials, of 10) 

9 7 9 10 10 

Luria Memory Words Test 
(quantity of words recalled after 
30-min interference, of 10) 

8 2 7 9 10 

Trail Making Test, part A  
(time in seconds) 34 21 28.5 42.5 65 

Trail Making Test, part A 
(normalized percentile) 

30 10 10 60 80 

Trail Making Test, part B  
(time in seconds) 89 54 59.5 103.5 154 

Trail Making Test, part B 
(normalized percentile) 

20 10 10 60 70 

HADS Anxiety 5 0 2 7.5 11 

HADS Depression 4 2 3 5.5 11 

 
 
Functional activation analysis.  Both the Stroop 
and Count task resulted in activation of areas within 
the frontoparietal control network, along with the SMA 
and pre-SMA, the lateral premotor cortex, and the 
cerebellum (see Figures 1, 2).  In addition, there was 

a predictable activation of the occipital cortex during 
the Stroop task.  Outside of the visual cortex, we 
found no significant differences between activation 
patterns during the two tasks. 
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Figure 1. Activation map for the Stroop task (p < .001 
uncorrected). 
 

 
 
Figure 2. Activation map for the Сount task (p < .001 
uncorrected). 
 

Table 2 
Regions of interest within the frontal cortex (MNI coordinates of the center of the cluster). 

 Stroop Task Count Task 

 x y z x y z 

LDLPFC −37 44 21 −41 42 9 

RDLPFC 33 57 18 38 47 0 

SMA 2 −1 61 0 −3 65 

Pre-SMA −8 16 48 −2 10 54 

L lateral premotor 
cortex superior 

−43 −3 58 −40 2 36 

L lateral premotor 
cortex inferior 

−56 9 12 −59 7  9 

R lateral premotor 
cortex superior 

51 4 50 34 4 61 

R lateral premotor 
cortex inferior 

51 27 26 55 4 41 

 

On the basis of the activation analysis for both the 
Stroop and Count condition, we identified the 
following areas within the frontal cortex that were 
used as ROIs for the connectivity analysis: LDLPFC, 

RDLPFC, SMA, pre-SMA, and left and right lateral 
premotor cortex (divided into superior and inferior 
parts due to elongated form of the clusters; Table 2). 
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To evaluate block consistency, a post hoc analysis 
was performed for the pre-SMA ROI (the selection of 
this area was influenced by the results of the 

connectivity analysis, as outlined below).  No 
significant differences were observed between the 
four task blocks (see Figures 3, 4). 

 
 

 
 

Figure 3. Time course of the activation of the pre-SMA during the Stroop task. Rest 
and task blocks are shown on the diagram; activation is expressed as the difference 
from baseline; boxes represent first to third quartile; whiskers represent minimal to 
maximal values; middle line represents the median; “x” sign represents the mean. 

 
 

 
 

Figure 4. Time course of the activation of the pre-SMA during the Count task. Rest and 
task blocks are shown on the diagram; activation is expressed as the difference from 
baseline; boxes represent first to third quartile; whiskers represent minimal to maximal 
values; middle line represents the median; “x” sign represents the mean. 
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Functional connectivity analysis.  Both the Stroop 
and Count task were associated with a widespread 
increase in connectivity in the pre-SMA, suggesting a 
major regulatory role of this area (Tables 3 and 4; 
Figures 5 and 6).  
 

To a lesser extent, there was an increase in 
connectivity of other premotor areas: the left lateral 
premotor cortex during the Count task and the right 
lateral premotor cortex during the Stroop task.  The 
counting task was also associated with functional 
coupling of the RDLPFC and the posterior cingular 
cortex. 

 
 
Table 3 
Connectivity of the frontal cortex during the Stroop task. 
Seed ROI Clusters showing an 

increase in connectivity 
with the seed ROI 

Activation peak Cluster size p (cluster, 
FDR-

corrected) 

p (peak, 
uncorrected) x y z 

Pre-SMA 

L lateral occipital 
cortex −32 −90 8 463 < .001 < .001 

R lateral occipital 
cortex 26 −88 8 213 .004 < .001 

R paracingulate gyrus, 
superior frontal gyrus 8 36 38 167 .016 < .001 

R lateral premotor 
cortex superior L postcentral gyrus −42 −32 44 86 .02 < .001 

 
 
Table 4 
Connectivity of the frontal cortex during the Count task. 
Seed ROI Clusters showing an 

increase in connectivity 
with the seed ROI 

Activation peak Cluster size p (cluster, 
FDR-

corrected) 

p (peak, 
uncorrected) x y z 

Pre-SMA 

R angular gyrus, 
superior parietal lobule, 
lateral occipital cortex 

40 −56 46 267 .005 < .001 

L superior temporal 
gyrus, planum 
temporale, middle 
temporal gyrus 

−66 −26 2 190 .02 < .001 

R planum temporale, 
superior temporal 
gyrus 

62 −12 4 164 .04 < .001 

RDLPFC R posterior cingulate 
cortex 

14 −50 24 90 .03 < .001 

L lateral premotor 
cortex superior 

R insular cortex and 
putamen 

30 14 −4 171 .04 < .001 

L lateral premotor 
cortex inferior 

R superior frontal gyrus 8 52 34 346 < .001 < .001 
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Figure 5. Connectivity map of the pre-SMA during the 
Stroop task (Stroop vs. rest, p < .001 uncorrected at voxel 
level). 
 

 
 
Figure 6. Connectivity map of the pre-SMA during the 
Count task (Count vs. rest, p < .001 uncorrected at voxel 
level).

 
Table 5 
Connectivity of the frontal cortex during the Count task: Effects of BRIEF–MoCA value. 
Seed ROI Clusters showing an 

increase in connectivity 
with the seed ROI 

Activation peak Cluster size p (cluster, 
FDR-

corrected) 

p (peak, 
uncorrected) x y z 

LDLPFC 

R and L cuneal cortex 20 –72 20 712 < .001 < .001 

L superior frontal gyrus –16 –2 68 148 .05 < .001 

L inferior frontal gyrus –60 16 4 141 .05  .001 

Pre-SMA R cuneal cortex 14 –74 22 370 < .001 < .001 

SMA L intracalcarine cortex, 
lingual gyrus 

14 –68 8 176 .02 < .001 

 
 
Next, we evaluated the correlations between the 
BRIEF–MoCA value and task-based connectivity in 
the frontal areas.  This analysis enabled us to reveal 
two main effects, both stemming from the counting 
task (Table 5).  The ability to compensate for cognitive 
decline, measured by the BRIEF–MoCA value, 
correlated, first, with connectivity in the LDLPFC, and, 
second, with enrollment of the occipital cortex (Table 
5; Figure 7).  To exclude a possible effect of outliers, 
the main correlation effects were also explored 
visually (Figures 8A–8D). 
 
 
Figure 7. Connectivity map of the LDLPFC during the 
Count task: correlation with BRIEF–MoCA value (count vs. 
rest, effect of BRIEF–MoCA covariate, p < .001 uncorrected 
at voxel level). 
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Figure 8A. Correlation of the BRIEF–MoCA value with 
connectivity in the frontal cortex during the Count task: 
between the LDLPFC and the cuneal cortex. 
 
 

 
 
 
 
Figure 8C. Correlation of the BRIEF–MoCA value with 
connectivity in the frontal cortex during the Count task: 
between the LDLPFC and the left superior frontal gyrus 
(SFG). 
 
 

 
 
 
 
Figure 8B. Correlation of the BRIEF–MoCA value with 
connectivity in the frontal cortex during the Count task: 
between the LDLPFC and the left inferior frontal gyrus 
(IFG). 
 

 
 
 
 
Figure 8D. Correlation of the BRIEF–MoCA value with 
connectivity in the frontal cortex during the Count task: 
between the pre-SMA and the cuneal cortex. 
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Discussion 
 
While designing the study, we kept in mind a very 
practical goal—the possible application of fMRI maps 
for individualized neuromodulation.  Despite the 
increasing clinical use of rTMS and tDCS, the 
complex problem of target individualization remains 
to be solved (Fitzgerald et al., 2009; Luber et al., 
2017).  First, the preference of the LDLPFC over other 
functionally salient brain areas is not based on 
systematic investigation; the correctness of this 
empirical choice is unknown.  Second, the standard 
method of DLPFC identification—positioning the coil 
5 cm anterior to the motor “hotspot”—is very 
inaccurate; it allows correct positioning of the coil over 
the DLPFC in only 36% of cases (Ahdab, Ayache, 
Brugières, Goujon, & Lefaucheur, 2010).  Third, the 
prefrontal cortex is known to be functionally 
heterogenous; in fact, there are multiple areas within 
the DLPFC with different functional profiles (Cieslik et 
al., 2013; Fox, Liu, & Pascual-Leone, 2013).  
Mispositioning of the stimulation coil or electrode may 
interfere with the efficacy of neurostimulation. 
 
To overcome the limitations related to individual 
variance in structural and functional brain anatomy, 
navigated TMS can be used.  Neuronavigation allows 
a precise delivery of the stimulus based on 
neuroimaging, which results in an enhanced efficacy 
of rTMS, at least in motor applications (Bashir, 
Edwards, & Pascual-Leone, 2011).  Functional 
neuroimaging can be used for identification of the 
salient areas.  Both paradigms, Stroop and Count, 
being easy in comprehension and technically simple, 
may be implemented in clinical practice for the goal of 
pretreatment executive function mapping in 
cognitively impaired patients. 
 
The pattern of activation elicited by both paradigms is 
typical for brain-level organization of task 
management (Figures 1, 2).  The revealed areas 
within the frontoparietal control network—the DLPFC 
and the posterior parietal cortex—participated in high-
order regulation.  However, the main control region 
was the secondary motor cortex (lateral premotor, 
SMA, pre-SMA)—the stereotypical character of the 
paradigms allowed the delegation of control towards 
lower-order frontal areas (automatization).  The 
secondary motor cortex is known to participate in 
various tasks including, but not limited to, motor 
paradigms (Lima, Krishnan, & Scott, 2016).  While the 
SMA is responsible for movement generation and 
control, the pre-SMA supports more complex aspects 
of action, including action preparation and 
sequencing (Rizzolatti, Cattaneo, Fabbri-Destro, & 

Rozzi, 2014; Sakai et al., 1999).  In general, the 
revealed patterns of activation were close to the 
findings of earlier studies (Kaufmann et al., 2008; 
Naumczyk et al., 2017). 
 
The results of the connectivity analysis support a 
major regulatory role of the pre-SMA.  During the 
Stroop condition (Figure 5), increased connectivity 
was seen between the pre-SMA and the lateral 
occipital cortex, responsible for the synthesis of visual 
information, and between the pre-SMA and the 
anterior cingulate cortex, which has been linked to 
error detection (Bush, Luu, & Posner, 2000).  A 
different pattern was observed during the Count task 
(Figure 6).  Functional connectivity of the pre-SMA 
indicated that the task was accomplished with the use 
of verbal working memory: the superior temporal 
gyrus is involved in sound processing, and the 
angular gyrus is responsible for manipulations 
involving numbers in their verbal form, such as “one”, 
“two”, and “three” (Dehaene, Piazza, Pinel, & Cohen, 
2003).  As predicted, recruitment of the temporal 
cortex was seen predominantly on the left side.  More 
surprising, the connectivity between the pre-SMA and 
the parietal cortex was lateralized towards the right 
angular gyrus.  The right parietal cortex is known to 
be responsible for number processing that is spatially 
organized by numerical proximity (Zago et al., 2008).  
In the current task, the right angular gyrus might be 
involved in manipulation of the number line that 
represents a spatial structure. 
 
From a practical point of view, executive tasks used 
in the fMRI settings are of questionable ecological 
value: it is unclear to what extent the observed brain 
functioning reflects its performance in real life.  To 
address this limitation, we included a measure of 
everyday functioning—the BRIEF questionnaire—
into our analysis.  We propose that this score is a 
composite of cognitive capacities per se and of the 
ability to compensate for existing weaknesses.  To 
clearly separate the second factor, which represents 
the main target of rehabilitation, we calculated the 
BRIEF–MoCA value and explored the correlation of 
this covariate with task-related connectivity in the 
frontal areas. 
 
The covariate functional connectivity analysis (Table 
5) revealed two main findings.  First, the ability to 
compensate for cognitive decline, measured by the 
BRIEF–MoCA value, correlated with connectivity 
between the LDLPFC and premotor areas, including 
the Broca area (Figure 7).  The Broca area is involved 
in the transformation of the sensory representations 
of words forwarded from the temporal cortex into 
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articulatory code (Flinker et al., 2015).  It also resolves 
the conflict between alternative representations in 
verbal and other domains (Hsu, Jaeggi, & Novick, 
2017).  In the Count task, this area might be 
responsible for the selection and encoding of the 
correct number in a situation of conflict (e.g., “four” vs. 
“three”) and, thus, has a major regulatory role.  The 
LDLPFC exerts higher-order supervision over the 
secondary frontal areas, and identical top-down 
control might serve to compensate for cognitive 
decline in everyday life.  Second, the BRIEF–MoCA 
value correlated with the enrollment of the medial 
occipital cortex: cuneal, intracalcarine, and lingual 
gyrus (Table 5; Figure 7).  This phenomenon may 
reflect compensatory strategies based on the 
recruitment of an additional modality—visual Arabic 
representations of numbers (i.e., “1”, “2”, “3”). 
 
The results of our study may be implemented in 
clinical practice.  In order to increase the efficacy of 
neuromodulation, the target area within the LDLPFC 
may be identified during pretreatment executive 
function mapping with the developed modified 
counting task.  The utility of this individualized 
approach remains to be evaluated in further studies. 
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Abstract 

To examine whether it was possible to improve short-term memory performance of healthy participants by 
increasing relative alpha band power (7–11.5 Hz) using neurofeedback, we first converted a commercial EEG 
device (EmotivEpoc) to a neurofeedback tool and collected data from 11 healthy Turkish male graduate students 
in five neurofeedback sessions.  Before and after neurofeedback training, a memorization task using 10 English 
words and their Turkish meanings was applied to all participants.  The results indicated that 6 out of 11 
participants were able to enhance their relative alpha band power with respect to other bands in the frequency 
spectrum during neurofeedback sessions.  Although there was no obvious improvement in their short-term 
memory performance, we may conclude that neurofeedback training was beneficial for the participants to focus 
their minds consciously.  However, it is not easy to mention that neurofeedback training certainly improved or 
was irrelevant with short-term memory performance.  This study is important in the sense that for such a focused 
group the use of a commercial, customized low-cost EEG device was shown to be feasible for neurofeedback 
training sessions. 
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Introduction 

 
It is a fact that human physical and psychological 
functions start to degrade with aging, which causes a 
significant decrease in life quality (Wang & Hsieh, 
2013).  Considering all the cognitive functions of the 
brain, memory is likely to be one of the most important 
cognitive abilities for individuals to sustain their life 
quality and productivity.   
 
Klimesch, Doppelmayr, Pachinger & Ripper (1997) 
reported that there was a relationship between 
memory performance and the alpha band activity.  
When an individual’s resting-state alpha activity was 
high, long-term memory performance was also high 
(Klimesch, 1999).  Besides that, it was reported that 
not only alpha activity is related with memory but also 
some other bands’ activities are related to memory 
performance (Reis et al., 2016).  Wang and Hsieh 

(2013) reported that frontal-midline theta band 
enhancement improves working memory and 
attention.  Vernon et al. (2003) reported that 
enhancement of sensorimotor rhythm (SMR; 12–15 
Hz) activity improves working memory performance.  
Although there are many reports that memory 
performance is associated with alpha activity, Bauer 
(1976) studied whether increasing (8.5–12.5 Hz) 
alpha activity improves recall performance, but he 
could not observe such a relationship for short-term 
memory.   
 
Neurofeedback training (NFT) method gives subjects 
audio/visual feedback of their brain wave activity so 
that they can learn to control their own brain rhythm.  
In addition, it has been studied for several decades 
as an alternative to traditional medication for some 
psychological disorders such as attention-
deficit/hyperactivity disorder (ADHD; Friel, 2007), 
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substance addiction (Sokhadze, Cannon, & Trudeau, 
2008), epilepsy (Sterman & Egner, 2006), and autism 
(Coben, Linden, & Myers, 2010).  NFT has also been 
used to enhance the cognitive performance of healthy 
participants.  Besides its function in psychological 
disorders, NFT has been shown to have some 
positive effects on cognitive performance of healthy 
individuals having different occupations, for example, 
musicians and surgeons (Gruzelier, Egner & Vernon, 
2006; Ros et al., 2009).  Although there are many 
studies which support that NFT has positive effects 
on some areas including cognitive performance 
improvement using alpha band power (Marzbani, 
Marateb, & Mansourian, 2016), there are limited 
studies which show the effects of NFT on short-term 
memory in the literature (Conway, Cowan, Bunting, 
Therriault & Minkoff, 2002).   
 
Lecomte and Juhel (2011) investigated whether 
increasing upper alpha band (10–12 Hz) power over 
theta band (4–7 Hz) power could improve short-term 
memory performance or not.  In their 
electroencephalography (EEG) experiments, C3, C4, 
and Cz (ref) electrodes were used, and an audio-
visual feedback was employed.  After four 
neurofeedback training sessions, they showed that 
subjects could increase alpha band power and 
alpha/theta band power, however, there was no 
memory performance improvement in elderly 
participants.  Kober et al. (2015) examined whether 
increasing the SMR (12–15 Hz) band power or upper 
alpha (10–12 Hz) band power could improve short-
term memory performance in post-stroke patients.  In 
EEG experiments, Cz electrode was used for SMR, 
Pz electrode was used for upper-alpha training, and 
a visual feedback was employed.  After 10 
neurofeedback training sessions, they showed that 
participants who took the SMR training were able to 
improve their visuospatial short-term memory 
performance.  Moreover, participants who took the 
upper-alpha training could improve their working 
memory performance.  Nan et al. (2012) investigated 
the potential of increase in the individual alpha band 
power to improve the short-term memory 
performance.  In the experiments, only Cz electrode 
was used, and a visual feedback was employed.  
After 20 neurofeedback training sessions, they 
showed that participants could increase their 
individual alpha band power and improve the short-
term memory performance.  Finally, Wang (2017) 
examined whether increasing the alpha band power 
could improve the working memory performance in 
the students with ADHD.  In EEG experiments, only 
FCz electrode was used.  After 10 neurofeedback 
training sessions, he showed that the participants 

could increase alpha band power and improve 
working memory performance.    
 
In this study, we first converted a wireless EEG device 
(Emotiv EPOC) to a neurofeedback tool.  Later, we 
examined whether it was possible to improve short-
term memory performance of 11 healthy participants 
by increasing relative alpha band power using 
neurofeedback training.  Before and after 5 days of 
neurofeedback training sessions, we measured the 
improvement on participants’ short-term memory by 
performing a test that consisted of memorizing and 
recalling the Turkish meanings of some English 
words which were not previously known by the 
participants. 
 

Materials and Methods 
 
Participants 
The 11 subjects who participated in the experiments 
were chosen among male graduate students, with an 
average age of 29 and with standard deviation of 
±3.04.  One participant was left-handed and five of 
them wore glasses.  For the experiment, there was no 
payment to the participants except for a chocolate bar 
for every session.  Before experiments, written 
approval from Abdullah Gül University Internal 
Review Board and oral consent from participants 
were received. 
 
EEG Recordings 
During the experiments the setup shown in Figure 1 
of the Emotiv EPOC system, a 14-channel wireless 
EEG device with 128-Hz sampling frequency, was 
used.  According to Emotiv manufacturer, the 
“measurement accuracy of the device is technically: 
minimum voltage resolution 0.51 PV, 14-bit accuracy, 
0.2–43 Hz bandwidth” (“How Accurate Is Your 
Detection”, 2019).  The voltage resolution was 
suitable to measure EEG signals, because the EEG 
signal varied around a voltage level that was above 
±10PV.  The reference electrodes were placed on the 
left and right mastoids.  Another important component 
of the EEG recoding was the real-time signal 
acquisition and processing of the brain waves.  For 
this purpose we first installed MATLAB 2012b (32-bit 
version) to our computer and Visual C++ 2010 to 
compile MATLAB.  Later, we used the modified 
version of a MATLAB file called “eeglogger.m” that 
was developed and shared by the manufacturer of the 
wireless headset.  By means of the modifications we 
were able to convert the system into a neurofeedback 
tool (necessary files can be found as supplementary 
materials).  In this work we used only P8 electrode 
(according to the international 10–20 system), 
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because it was one of the suitable places to record 
the signals without getting affected from the 
eyeblinks. 
 
 

 
 
Figure 1. Experimental setup. 
 
 
Study Design 
Before the neurofeedback training sessions were 
started, a baseline EEG measurement obtained with 
eyes open and a pretraining test was given to the 
participants to be able to measure short-term memory 
performance of the participants.  The pretraining test 
included 10 words such as exigency, innocuous, and 

desultory, which were not known by the participants 
beforehand.  Firstly, the participants were let 
memorize the words by looking at the selected words 
shown one by one on the screen followed by its 
meaning.  There was no time limit in this part.  Once 
the memorization part was over, it was requested 
from each participant to remember the meanings 
when each English word was shown on the screen.  
No multiple-choice type approach was followed.  
Memorization time, recall time, and the number of 
accurately recalled words were recorded manually. 
After the pretraining test, five sessions of 
neurofeedback training were applied (Figure 2).  Each 
day only one session was applied, and the training 
sessions lasted at most for 10 days according to the 
availability of the participants.  One session included 
three subsessions and five trials constituted one 
subsession, and thus one training session included 
15 trials.  Each trial lasted for 45 s, and 10 s were 
placed between two subsequent trials.  After five trials 
(one subsession) the participants had enough time to 
rest, approximately one to two minutes.  After the 
neurofeedback training sessions, a posttraining test 
was given to the participants.  This test also included 
10 different English words with similar memorization 
difficulty.  The recall performances of the participants 
were manually recorded. 

 
 

 
 
Figure 2. Neurofeedback training paradigm. 
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Neurofeedback Training 
During the design stage, we recorded EEG signals 
from an individual with closed and open eyes for a few 
times, and then found the intersection of these two 
cases.  The data collected with open and closed eye 
method made it possible to observe alpha band 
synchronization and desynchronization, which can be 
used to figure out alpha frequency band by using 
band crossings (Nan et al., 2012).  We found that 
open and closed eyes spectra intersect at 
approximately 7 Hz and 11.5 Hz, and we decided to 
use this band for all participants in our experiments.  
Relative band power (RBP) was used as the 
neurofeedback parameter.  RBP represents the ratio 
between the absolute band power in 7–11.5 Hz range 
and the absolute band power in 3.5–35 Hz range.  
 
During the training, the participants were able to see 
the panels shown in Figure 3.  We oriented the 
participants about the system and the feedback panel 
before the sessions had started.  The blue bar on the 
left panel indicated the dynamically changing relative 
alpha band power, and the red bars depicted the 
mean value of the relative alpha band power 
measured during the baseline recordings.  The mean 
power values were updated after each training 
subsession.   
 
 

 
Figure 3. User interface of neurofeedback training 
sessions. 
 
 
The participants tried to increase the blue bar’s level 
to pass the red bars (baseline level), which worked as 
a visual feedback.  We also used an audio feedback 
as a beep sound when the level was surpassed.  
Some participants asked us to turn the sound off, 
because they thought that it was distracting their 
concentration.  On that panel the red, blue, and green 
lines showed some levels that the participant would 
aim to pass as a challenge.  They were utilized to 

motivate the participants.  On the right panel, the 
dashed pink line showed relative alpha band power, 
and the blue line indicated the absolute alpha band 
power.  We asked them to focus on the left panel only. 
 
Before the training session started, several thinking 
strategies were advised to the participants.  For 
example, the alpha power generally is related to the 
relaxation process, and positive thinking such as 
thinking about the family, friends and natural scenes 
increase the alpha power (Nan et al., 2012).  On the 
first, second, and third sessions it was requested from 
the participants to determine the best thinking 
strategy that helped them to increase their alpha 
power.  However, on the fourth and fifth sessions, it 
was requested not to find any new thinking strategies 
but to focus on what they had figured out before to 
increase the relative alpha band power as much as 
they could.  At the end of the subsessions, the 
participants were able to see their performances as 
shown in Figure 4. 
 
Real-time EEG Processing 
Before performing the real-time spectrum analysis of 
the EEG signals obtained, several preprocessing 
steps were applied.  When we acquired the EEG 
signals, we observed that there was a positive offset 
around 4150 PV, and we removed that offset by 
subtracting 4150 from each value in the dataset.  After 
offset removal, the signal was fed into a fifth-degree 
Butterworth high-pass filter whose cut-off frequency 
was 3 Hz.  Because we were only interested in the 
alpha band power, we selected this cut-off in order 
not to affect any spectral coefficients in that band.  
When we did not perform the filtering excessive low-
frequency power dominated the spectral coefficients. 
 
In the power spectrum computations Welch’s method 
was used.  This method first divides data into 
windows (200 samples per iteration).  Adjacent 
windows have some overlap (50%) between each 
other, and the method calculates the spectrum of 
these windows.  Finally, averaging is applied to 
compute the spectrum of the data.  The spectrum 
coefficients were computed for every 0.25 Hz 
(frequency resolution).  During the training sessions, 
before computing alpha band power values in real-
time, sufficient number of samples had to be 
collected.  The first computed power spectrum was 
seen on the screen once we acquired 700 samples.  
During the spectrum computations, the last 512 
samples were used (last 4 s).  In addition, in real-time 
computations, there was no artifact removal. 
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Figure 4. EEG spectra of the participant #10 from the first day, third subsession.  
Relative band power (RBP) is also shown on the bottom-right panel. 

 
 

Results 
 
Table 1 summarizes the results obtained during this 
study indicating the average alpha band power 
(ARABP) values during the baseline recordings and 
each training session, pretraining and posttraining 
memorization and recall durations and the number of 
correct answers. 
 
It is important to note that 6 out of 11 participants were 
able to increase their ARABP values between 2.7% 
and 11.75%, 3 participants slightly increased their 
ARABP ~1%, and 2 of them slightly decreased their 
ARABP values below approximately 1%.  Taking all 
participants into consideration, it was observed that 
the ARABP increase was on average 4.4% as 
depicted in Figure 5.  Including only the successful 
participants, who increased alpha band power over 
1%, they were able to increase the ARABP 7.73% as 
depicted in Figure 5. 

Four participants who increased ARABP were also 
able to increase the number of the correct recalls, 
which they increased recall performances between 2 
and 4 folds.  One of the successful participants could 
not increase or decrease the number of correct 
recalls.  One participant increased the ARABP (> 1%) 
but decreased the number of correct recalls.  Two 
participants who were able to slightly increase 
ARABP could increase the number of correct recalls 
(5 to 7 folds).  One participant who was able to slightly 
increase alpha band power decreased the number of 
correct recalls.  Two participants decreased their 
alpha band power but increased the number of 
correct recalls (2 to 2.25 folds).  When all participants 
were considered, they were able to increase the 
number of correct recalls 2.63 fold on average.  All 
subjects increased posttraining memorization 
duration compared to the pretraining memorization 
duration of 4.76 s per word.
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Table 1 
Results obtained during neurofeedback experiments combined in one table. 

Participant Baseline Day 1 Day 2 Day 3 Day 4 Day 5 
Pretest 

Memorization 
Duration (s) 

Posttest 
Memorization 
Duration (s) 

Pretest 
Recall 

Duration 
(s) 

Posttest 
Recall 

Duration 
(s) 

Pretest 
# of 

Correct 
Answers 

Posttest 
# of 

Correct 
Answers 

#1 0.1601 0.1978 0.1999 0.1841 0.2515 0.2284 95 123 N/A 59 3 9 

#2 0.1071 0.1491 0.1646 0.1937 0.1726 0.1885 86 91 120 136 3 2 

#3 0.2128 0.2055 0.2143 0.2241 0.1945 0.2382 46 75 69 61 1 7 

#4 0.1759 0.2116 0.1892 0.2000 0.1950 0.2185 117 182 103 105 2 8 

#5 0.2158 0.2458 0.2201 0.2057 0.2486 0.1897 42 45 45 85 4 1 

#6 0.1567 0.1513 0.1622 0.1498 0.1641 0.1505 82 116 113 105 2 4 

#7 0.1429 0.2110 0.1854 0.1909 0.2024 0.204 139 241 N/A 78 4 8 

#8 0.2797 0.3090 0.3965 0.4211 0.423 0.4363 90 159 62 51 8 8 

#9 0.1789 0.1887 0.1848 0.1833 0.1817 0.1860 64 101 N/A 86 1 5 

#10 0.3039 0.2301 0.313 0.3071 0.3163 0.3233 88 153 N/A 62 4 9 

#11 0.1073 0.1529 0.1394 0.1792 0.1926 0.1612 94 162 103 94 4 7 

Mean 0.1856 0.2048 0.2154 0.2217 0.2311 0.2295 82 129 - - 3.27 6.18 

 
 

 
Figure 5. All (left) and successful (right) participants’ average relative alpha band power enhancement day by day. 

 
 

Discussion 
 
In this study we asked two related questions about 
the relative alpha band power during the 
neurofeedback training sessions and short-term 
memory improvement.  The first question was the 
following: “Is it possible to increase the alpha band 
power intentionally when compared to respect to 
other bands (theta, beta, and gamma bands) of the 

EEG spectrum?”  According to our results, the answer 
to this question may be positive.  More than half of the 
participants were able to increase their alpha band 
power when compared to the other bands. 
 
The second question we investigated was the 
following: “Were participants, who increased relative 
alpha band power, also able to improve short-term 
memory performance?”  In this study 8 out of 11 
participants were able to increase the number of 
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words correctly remembered (correct recalls).  
However, for the successful participants, only four of 
them were able to increase the number of correct 
recalls.  Therefore, we were not able to give a positive 
answer to this question.  This did not mean that 
neurofeedback training was not related to short-term 
memory performance.  These findings comply with 
the results of the study undertaken by Lecomte and 
Juhel (2011).  In that study, a group of elderly 
participants experienced four neurofeedback training 
sessions, and the participants were requested to 
memorize a list of words.  They found that the 
participants were able to increase alpha band power; 
however, there were not any improvements in the 
memory performance. 
 
Feedback from the participants revealed that positive 
thinking such as thinking of the family, friends, 
beautiful scenes and so forth was effective in 
increasing the alpha band power.  However, not only 
positive thinking increases alpha band power but also 
some participants used negative motives such as 
getting angry with someone or something in order to 
improve the desired band power. This finding 
complies with the study of Nan et al. (2012). 
 
Another finding was that when some subjects focused 
on one type of thinking style, this increased their 
alpha band power first, but decreased later.  In one 
participant, the relative alpha band power firstly 
increased, and then decreased after the third trial of 
a subsession.  This observation was generally true 
especially after the third and fourth trials.  This finding 
might have arisen due to the exhaustion of the brain 
while thinking about the same feeling or object for a 
long time.  Therefore, it may be useful for someone to 
have a rest during the neurofeedback sessions by 
changing the thinking style or the work, which they did 
from one session to another.  One neurological 
explanation of this suggestion might be that the 
activation of another neural network might help the 
exhausted one rest. 
 
A limitation of this study was the number of subjects 
who participated in the neurofeedback sessions.  
Inclusion of only 11 graduate students in the study 
might have biased the interpretation of the results; 
however, we think that this study is important in the 
sense that for such a focused group the use of a 
commercial, customized low-cost EEG device was 
shown to be feasible.  Another limitation was the 
number of sessions and their durations.  Although 
there are studies reported in the literature which 
included experiments with five sessions such as 
Escolano, Aguilar, and Minguez (2011) and Zoefel, 

Huster, and Herrmann (2011), the number of training 
sessions and session durations might not be 
sufficient for some participants to adapt with the 
environment, and determine strategies to control their 
brains in parallel with the aim of the study, which was 
increasing the alpha band power.  However, we 
thought that if we increased the number of sessions 
or durations the participants would get bored, and this 
might affect the results negatively.  In addition, 
several subjects mentioned that they got bored of 
viewing bar graphs in all training sessions.  If we were 
to use a game in the neurofeedback sessions, it 
would have been more interesting and motivating for 
the participants, and they might have been more 
enthusiastic about the sessions.  In our future 
endeavor we will increase the number of participants, 
the neurofeedback training sessions and their 
durations to investigate the phenomenon on the 
children with learning difficulties. 
 
In the neurofeedback literature, during the 
experiments participants were requested to find their 
way to synchronize with the feedback signals (visual 
or auditory) by themselves.  There was an “aha” point 
which participants could understand and synchronize 
with the screen or the sound (Collura, 2000).  
However, in our study, due to the limited number of 
sessions we advised some thinking strategies to the 
participants before the neurofeedback training.  
Participants indicated that they could not fully 
synchronize with the blue bar during training, which 
means they were not sure whether one type of 
thinking style increased or decreased the alpha 
power.  However, at the end of the trial, they 
mentioned that a particular thinking style was 
generally useful in increasing the alpha power. 
 
In the literature, this is the first study in which Turkish 
students were trained via neurofeedback sessions in 
order to improve their short-term memory 
performances by using English words. 
 
According to the findings reported by Klimesch in 
1997, memory retrieval performance of subjects who 
had high resting state peak of alpha frequency, which 
is the frequency of maximum amplitude in alpha 
band, was better than others. In a future study, 
memory performance improvement may be examined 
by increasing the peak alpha frequency with 
increased number of participants and number of 
sessions using motivating games. 
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Conclusion 
 
In conclusion, the findings of this study are neither 
sufficient to prove that neurofeedback training 
improves the short-term memory performance, nor it 
is irrelevant with the short-term memory performance.  
However, we may mention that the neurofeedback 
training is beneficial for the subjects to orient their 
conscious minds to their goals. 
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Abstract 

Introduction: Intrauterine drug exposure (IUDE) including neonatal abstinence syndrome (NAS) is a group of 
problems that occur in a newborn exposed to drugs in the womb.  Currently, there is no consensus on diagnostic 
criteria for addressing the cluster of problems present in children suffering from IUDE.  The current data sought 
to examine differences between IUDE and attention-deficit/hyperactivity disorder (ADHD) clients to elucidate 
specific differences between these groups in the Conners Continuous Performance Test (CPT-3/K-CPT) and 
EEG source localization data using standardized low-resolution electromagnetic brain tomography (sLORETA).  
Methods: This study utilizes archived data from two groups 14 IUDE and 9 clients with standing diagnosis of 
ADHD between the ages of 4 and 13 without the presence of fetal alcohol syndrome (FAS).  All clients completed 
a standard protocol to assess functional domains, including diagnostic interview, review of records, and tests of 
attention, executive functions, and psychological status.  IUDE clients at time of initial assessment were taking 
one or more medications.  ADHD clients consisted of medicated and unmedicated individuals.  Results: 
Significant differences were found between resting-state baseline sLORETA parameters in temporal, limbic, and 
precuneus regions.  Conclusions: IUDE presents a growing problem in the United States due to current opioid 
problems, and it is imperative to accurately classify these children according to this specific set of problems.  
sLORETA assessment may be useful as one marker of IUDE.  Directions for future treatment paradigms are 
discussed as well as potential applications of neurofeedback and learning. 
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Introduction 

 
Prenatal exposure to drugs of abuse (illicit, legal, or 
prescribed) has been a major public health concern 
for decades and is subsumed by the term intrauterine 
drug exposure (IUDE).  In recent years the opioid 
epidemic and its effects have increased attention to 
this crisis.  It is estimated that 5.9% of pregnant 
women engage in illicit drug use; thus, it is difficult to 
convey the very high need for specific diagnostic and 

treatment paradigms to aid these children across the 
developmental continuum until one has encountered 
them in the clinical setting.  The smallest victims of 
the opioid and polydrug exposure epidemic are 
underserved and present great challenges to 
socioeconomic, healthcare, and education systems.  
An extensive review of prenatal drug exposure and 
descriptive patterns of effects of substances on the 
developing brain provides a well-done knowledge 
base (Ross, Graham, Money, & Stanwood, 2015), 
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with projected rates of exposure and substance 
specific characteristics.  Numerous studies have 
described behavior and attentional problems in 
children exposed to drugs in utero as well as 
associated patterns in overall cognitive functioning 
(Butz, Pulsifer, Leppert, Rimrodt, & Belcher, 2003; 
Franck, 1996; Freeman, 2000; Kelley, 1992; Kne, 
Shaw, Garfield, & Hicks, 1994; Mayes, Cicchetti, 
Acharyya, & Zhang, 2003; McNichol, 1999).  The 
sequelae of IUDE include deficits of sustained 
attention, language, social and emotional 
comprehension and affect regulation, social 
executive, and adaptive functions.  IUDE includes 
neonatal abstinence syndrome (NAS) and fetal 
alcohol spectrum disorder (FASD).  Notably, FASD 
has surpassed genetic anomalies as the leading 
contributor to mental retardation in North America 
(Nash, Sheard, Rovet, & Koren, 2008; Ross et al., 
2015).  Disruptions to numerous systems of the body 
may accompany IUDE including motor slowing, 
gastrointestinal difficulties, cardiovascular issues, 
and other disrupted homeostatic and regulatory 
functions (Eiden et al., 2009; Kleiber et al., 2014; Li et 
al., 2009; Wu, Yan, Qu, Feng, & Jiang, 2012; Zhao et 
al., 2015). 
 
IUDE may produce negative effects on neural 
proliferation, migration, dendrite growth, and axonal 
elongation (Geng, Salmeron, Ross, Black, & Riggins, 
2018; Riley, Kopotiyenko, & Zhdanova, 2015; 
Roitbak, Thomas, Martin, Allan, & Cunningham, 
2011; Yip et al., 2014), as well as the disruption of the 
functional integrity of neural networks (Chater-Diehl, 
Laufer, Castellani, Alberry, & Singh, 2016; Posner & 
Rothbart, 2007; Schweitzer et al., 2015; Willford, 
Singhabahu, Herat, & Richardson, 2018).  Studies of 
neonatal electroencephalogram (EEG) have shown 
delayed maturation and reduced hemispheric 
functional connectivity in IUDE children at 1 month of 
age (Akyuz et al., 2014; Conradt et al., 2014; Fisher 
et al., 2011; LaGasse et al., 2011; Lester, 2000; 
Lester et al., 2012).  IUDE children also show 
characteristics of attention-deficit/hyperactivity 
disorder (ADHD), tend to have poorer performance in 
an attention test battery and show EEG alterations in 
P300 and N200 event-related potential (ERP) 
measures.  These findings suggest that there may be 
deleterious long‐term effects of prenatal drug 
exposure on executive function domains of attention, 
classification, and decision-making (Jaeger, Suchan, 
Schölmerich, Schneider, & Gawehn, 2015).  
Studies of prenatal development have shown 
important interdependencies between the insula and 
amygdala in affective and social adaptivity (Bellucci, 
Feng, Camilleri, Eickhoff, & Krueger, 2018; Di 

Cesare, Marchi, Errante, Fasano, & Rizzolatti, 2018; 
Grecucci, Giorgetta, Bonini, & Sanfey, 2013; Klumpp, 
Post, Angstadt, Fitzgerald, & Phan, 2013).  The 
interactions between these regions and the noted 
deficits suggest important to potential treatment 
paradigms for IUDE given the rate of growth in the 
prenatal period and disruptions in connectivity 
amongst these regions in adolescents and adults with 
IUDE or cocaine dependence (K. Li et al., 2013; Li et 
al., 2009; Z. Li et al., 2013; McHugh et al., 2013; 
McHugh et al., 2014; McHugh, Gu, Yang, Adinoff, & 
Stein, 2017).  Differences in functional connectivity 
between insula, amygdala, orbitofrontal, anterior 
cingulate, and sensorimotor cortices have been 
implicated in behavioral issues including attention 
and arousal deficits found in IUDE children (Grewen, 
Salzwedel, & Gao, 2015; Salzwedel et al., 2015).  
Connectivity issues associated with the 
consequences of IUDE involve numerous regions 
and functions.  Of these, the orbitofrontal, amygdala, 
insula, sensorimotor, anterior cingulate, cuneus, 
precuneus, inferior parietal, subcortical, and limbic 
regions are also found disrupted in adolescent and 
adult populations with substance use disorders 
(SUD).  IUDE children have shown reduced global 
brain volume as well as regional differences in the 
cortex, amygdala, nucleus accumbens, cerebellum, 
brainstem, and basal ganglia.  White matter volume 
and disruptions in functional connectivity at rest have 
been noted in IUDE, as well as associations with 
cognitive deficits related to processing speed, 
mathematics ability, executive functions, and eye-
blink conditioning (Adinoff et al., 2015; Grewen et al., 
2015; Lotfipour et al., 2010; McHugh et al., 2017; 
Rando, Chaplin, Potenza, Mayes, & Sinha, 2013; 
Riggins et al., 2012; Roussotte et al., 2012; 
Salzwedel, Grewen, Goldman, & Gao, 2016; 
Salzwedel et al., 2015; Tamnes et al., 2010).  
 
The effects of IUDE opioid and polydrug exposure on 
the brain continue into childhood, and data have 
shown reduced cortical volume and thinner layer 
surface than normative controls (Nygaard et al., 
2018).  It has also been proposed that many of the 
regulatory difficulties found in these children may not 
be fully actualized until they begin the education 
process.  These problems are proposed to increase 
after the age of 4 and progress over the course of 
further development.  The reasons for this increase 
are suggested to include the increasing complexity of 
social, educational, and adaptive demands and the 
lack of functional integration of multiple concepts by 
these children.  It has been reported that 36% of 
individuals exposed to substances prenatally are 
likely to receive a diagnosis of ADHD as contrasted to 

http://www.neuroregulation.org/
http://www.neuroregulation.org/
http://www.neuroregulation.org/
http://www.neuroregulation.org/
http://www.neuroregulation.org/


Kelley et al. NeuroRegulation
  

 

 
25 | www.neuroregulation.org Vol. 6(1):23–37  2019 doi:10.15540/nr.6.1.23 
 

2% of nonexposed controls (Nygaard, Slinning, Moe, 
& Walhovd, 2016).  In the current data set, 99% of the 
IUDE population had received a diagnosis of ADHD—
primarily combined type prior to admission—and 96% 
of these children were being treated with traditional 
and nontraditional pharmacological agents.  
 
Low-resolution electromagnetic brain tomography 
(LORETA) is a method of probabilistic source 
estimation of EEG signals in a standardized brain 
atlas space utilizing a restricted inverse solution 
(Pascual-Marqui, Esslen, Kochi, & Lehmann, 2002; 
Pascual-Marqui et al., 1999).  LORETA and 
standardized LORETA (sLORETA) have been used 
to examine EEG sources in depression (Pizzagalli, 
Oakes, & Davidson, 2003), in epilepsy (Zumsteg, 
Wennberg, Treyer, Buck, & Wieser, 2005) and to 
evaluate temporal changes associated with 
differential task-specific default network activity 
(Cannon & Baldwin, 2012).  LORETA has been 
adapted to provide real-time feedback to participants 
in order to facilitate operant conditioning.  For 
example, LORETA investigation has documented 
learning of improved regulation of the current source 
density in a specific frequency range at a specific 
region of training within Talairach space.  The effects 
of LORETA neurofeedback have also been replicated 
(Cannon, Congedo, Lubar, & Hutchens, 2009; 
Cannon et al., 2007; Cannon, Lubar, Sokhadze, & 
Baldwin, 2008), and seen increasing use clinically 
(Cannon, 2014; Cannon, Strunk, Carroll, & Carroll, 
2018).  In recent years LORETA and the standardized 
version have been shown to localize medial default 
network regions with complementary accuracy, as 
well as detecting anomalies in network connectivity 
(Cannon, Kerson, Hampshire & Coleman, 2012). 
 
It is important to consider the greatest common 
factors (e.g., sustained attention, mood regulation, 
social and emotional delays, and specific cognitive 
issues) found in IUDE populations across specific 
substances and then progress on a course to 
influence the brain in such a way as to facilitate 
learning and self-regulation of one or more of the 
identified regional connective hubs to adjust the 
brain’s performance (e.g., neural efficiency) and 
facilitate data acquisition, encoding, and learning.  
The most salient symptoms found in IUDE across the 
developmental continuum include emotional 
dysregulation and reactivity, developmental delays, 
motor slowing, impulsivity and hyperactivity, 
difficulties with sustained attention, impaired 
executive functions and self-regulation, deficient 
social comprehension and interactions, social 

development delays, learning impairment, and 
processing speed difficulties.  
 
This study sought to examine differences between 
groups of children with IUDE and a contrast group of 
children with ADHD.  We hypothesized that there 
would be significant differences on the functional 
measure of attention and notable group differences 
between EEG sources in an eyes-opened baseline 
sample using sLORETA. 
 

Participants 
 
This study examined archived data from 23 (10 
female) children and early adolescent clients with 
mean age 8.38, SD = 2.80, (ages 4–13 years) seen 
at an outpatient mental health clinical in Knoxville, 
TN.  Fourteen of the clients were exposed to drugs of 
abuse in utero without the presence of fetal alcohol 
syndrome (FAS) with mean age 7.86, SD = 2.79, 
(ages 4–13).  All IUDE clients (7 female) would be 
classified as polydrug exposed.  All IUDE clients had 
been removed from biological parents and had been 
adopted by family members or foster parents.  99% of 
the IUDE group had received a prior diagnosis of 
ADHD.  The second group (3 female) were clients 
admitted for ADHD with three having comorbid 
generalized anxiety disorder (GAD) with mean age 
10, SD = 2.29 (ages 6–13).  There were no reports or 
records to indicate the ADHD children had been 
exposed to drugs or alcohol during the prenatal 
period.  The IUDE group on average was younger 
than the ADHD group.  The differences did not reach 
significance in this study population with t(21) = 
−1.91, p = .067.  There was no difference for gender 
between groups, t(21) = −0.438, p =.66, and 
medications showed no differences, t(21) = 0.249, p 
= .806.  The IUDE group was taking medications for 
ADHD symptoms, which included Clonidine, Adderall, 
Concerta, Tenex, Straterra, and combinations 
thereof.  The ADHD group was taking Ritalin or 
Adderall.  All assessment data were reviewed with 
parents and informed consent was reviewed and 
signed. 
 

Methods 
 
This study was conducted with approval from an 
institutional review board (IRB) at Maryville College, 
Maryville, TN, to examine attention and drugs of 
abuse in utero.  All clients completed a standard 
protocol for admission to the program, including a 
diagnostic interview, prior record review, and 
psychological and neurophysiological measures.  
This manuscript examines select components of this 
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protocol for contrasting the two clinical groups.  The 
clients completed the Conners Kiddie Continuous 
Performance Test, 2nd Edition, (K-CPT 2); or the 
Conners Continuous Performance Test 3rd Edition 
(CPT 3).  Both are computerized performance tests.  
The K-CPT 2 is a 7.5-min performance-based 
assessment that uses pictures of objects familiar to 
young children, whereas the CPT 3 is a 14-min, 360-
trial administration in which respondents are required 
to respond when any letter appears, except the 
nontarget letter “X” (MHS Assessments, Tonawanda, 
NY). 
 
The clients were prepared for EEG recording using a 
measure of the distance between the nasion and 
inion to determine the appropriate international 10–20 
system cap size for recording (Blom & Anneveldt, 
1982).  The head was measured and marked prior to 
capping for placement of frontal electrodes.  The ears 
and forehead were cleaned for recording with a mild 
abrasive gel to remove any oil and dirt from the skin.  
After fitting the caps, each electrode site was injected 
with an electrode gel and prepared so that 
impedances between individual electrodes and each 
ear were less than 10 KΩ.  The data were collected 
and stored utilizing the Deymed TruScan amplifier 
and acquisition software (Deymed Diagnostics, 
Payette, ID) with a band-pass set at 0.5–64 Hz, and 
a sampling rate of 256 samples per second.  Standard 
6-mm tin cup ear electrodes were used.  All 
recordings were carried out in a quiet, comfortably lit, 
clinical neurofeedback room at the clinic.  Lighting 
and temperature were held constant for the duration 
of the data collection.  We elected to use eyes-
opened baseline recordings, as many of the IUDE 
population struggled to keep the eyes closed during 
this condition, while others could not maintain the 
condition of keeping their eyes closed for more than 
a few seconds at a time. 
 

Data Processing 
  
The EEG stream was edited using Eureka 3 software 
(NovaTech EEG, Mesa, AZ).  EEG editing and 
resampling was obtained by means of natural cubic 
spline interpolation (Congedo, Özen, & Sherlin, 
2002).  All active task conditions and baseline data 
were processed with particular attention given to eye 
movement and jaw tension in frontal and temporal 
leads.  All episodic eye blinks, eye movements, teeth 
clenching, jaw tension, body or neck movements, and 
possible electrocardiogram (EKG) artifacts were 
removed from the EEG record.  Fourier cross-spectral 
matrices were then computed and averaged over 
75% overlapping 4-s artifact-free epochs, which 

resulted in one cross-spectral matrix for each subject 
for each discrete frequency.  The EEG data were 
analyzed utilizing the following frequency domains: 
delta (1.0–4.0 Hz); theta (4.0–8.0 Hz); alpha 1 (8.0–
10.0 Hz), alpha 2 (10.0–13.0 Hz) and beta (13.0–32.0 
Hz). 
 

Data Analyses 
 
In order to assess the electrophysiological differences 
between groups, sLORETA was employed to localize 
the sources of scalp EEG power spectra.  The 
sLORETA solution space is restricted to the cortical 
gray matter in the digitized Montreal Neurological 
Institute (MNI) atlas with a total of 6,329 pixels with 
5mm3 spatial resolution (Pascual-Marqui et al., 2002; 
Pascual-Marqui et al., 1999).  To test the specific 
hypotheses of the differences in cortical activity 
between groups, independent t-tests were used.  The 
average common reference was computed prior to 
the sLORETA estimations.  The calculated 
tomographic sLORETA images correspond to the 
estimated neuronal generators of brain activity within 
each frequency domain (Frei, Gamma, Pascual-
Marqui, Lehmann, Hell, & Vollenweider, 2001).  This 
procedure results in one 3D LORETA image for each 
subject for each frequency range.  The significance 
threshold is based on a randomization test utilizing 
5,000 data randomizations. 
 
The Conners CPT assessment includes nine scales 
to measure distractibility, omissions, commissions, 
perseverations, reaction time, reaction time standard 
deviation, variability, reaction time block change, and 
reaction time for interstimulus intervals.  The scores 
are expressed in T-scores with higher scores 
indicating greater severity.  We utilized independent 
t-tests to contrast the nine scales of the CPT between 
groups. 
 

Results 
 
Figure 1 shows the mean T-scores and standard 
deviation for each CPT scale, side by side for each 
group.  The test results show elevations on nearly all 
scales for the IUDE group as contrasted with the 
ADHD group except for perseverations.  The only 
scale that showed significance between IUDE and 
ADHD groups was omissions, yet results of all scale 
differences are important to the overall description.  
The results show distractibility (D), t(21) = 1.65, p 
= .113; omissions (O), t(21) = 2.62, p = .016; 
commissions (C), t(21) = 0.917, p = .370; 
perseverations (P), t(21) = −0.195, p = .847; reaction 
time (HRT), t(21) = 1.66, p = .111; reaction time 
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standard deviation (HRTS), t(21) = 1.57, p = .130; 
variability (V), t(21) = 0.361, p = .722; reaction time 
block change (HRTB), t(21) = 0.220, p = .828; and 
reaction time for interstimulus intervals (HRTISI), 
t(21) = 0.570, p = .575.  The results show clear 

differences between the two groups with IUDE 
performing with less accuracy and speed than the 
ADHD group on most measures except for 
perseverations.  

 
 

 
Figure 1: Contrast results between groups for scales on the Conners CPT.  Red is the IUDE group and black the ADHD group. 
From left to right the measures are distractibility (D), omissions (O), commissions (C), perseverations (P), reaction time (HRT), 
reaction time standard deviation (HRTS), variability (V), reaction time block change (HRTB) and reaction time for interstimulus 
intervals (HRTISI). *Only the omission scale was statistically significant at p = .016.  
 
 
Table 1 shows the sLORETA statistical contrasts 
between groups (IUDE > ADHD).  In the table from 
left to right are the frequency range, sLORETA x, y, 
and z coordinates, hemisphere, anatomical 
label/Brodmann area (BA), t value for the IUDE 

versus ADHD contrasts, and its probability.  From top 
to bottom are the frequency domains and coordinates 
for both the maximum and minimum levels of current 
source density (CSD) at specific regions of interest for 
sLORETA findings. 
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Table 1 
sLORETA Results for Contrasts IUDE > ADHD 
Frequency 

Range  x, y, z 
Coordinates Hemisphere Anatomical Label t Value p 

Delta  –  – – ns 

Theta 
 
 

 
Max 
Min 

 
−30, −85, 40 

−35, −15, −35 

 
L 
L 

 
BA 19, precuneus, parietal 

BA 20, uncus, limbic 

 
1.74 

−0.74 

 
     .096 

    ns 
Alpha 1 

 
 

 
Max 
Min 

 
−30, −85, 40 
−40, 35, 35 

 
L 
L 

 
BA 19, precuneus 

BA 9, superior frontal gyrus 

 
2.11 

−1.65 

 
  .047* 

     .113 
Alpha 2 

 
 

 
Max 
Min 

 
70, −35, −5 
−50, −70, 35 

 
R 
L 

 
BA 21, middle temporal gyrus 

BA 39, angular gyrus 

 
0.048 
−2.37 

 
    ns 

.027* 
Beta 

 
 

 
Max 
Min 

 
−40, 35, 35 

15, −100, 15 

 
L 
R 

 
BA 9, superior frontal gyrus 

BA 18, cuneus 

 
2.16 
2.32 

 
.042* 
.030* 

Note: *p values are statistically significant.  
 
 
In Figure 2 the images shown are horizontal, sagittal, 
and coronal slices of the brain in MNI space. There 
were no significant effects for gender in any of the 
measures.  CSD differences were not significant for 
the delta frequency bin.  Theta CSD was elevated in 
the IUDE group in posterior parieto-occipital regions 
but did not reach statistical significance.  The lower 
range of alpha 1 CSD did show significant elevations 

in IUDE compared to ADHD in BA 19, posterior 
parietal regions, notably the same region of interest 
as theta power.  Alpha 2 CSD showed significantly 
less CSD in IUDE as compared to ADHD at BA 39, 
angular gyrus.  Beta CSD showed significant 
elevations in IUDE as compared to ADHD in left BA 
9, superior frontal gyrus, and less CSD in right BA 18, 
cuneus.   

 
 

 sLORETA Regions of Interest Contrasts IUDE > ADHD 
 

 

Theta   
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 sLORETA Regions of Interest Contrasts IUDE > ADHD  
 

Alpha 1  
 

Alpha 2  
 

Beta  
 

 
 

Figure 2. sLORETA contrast images for IUDE group compared to ADHD group.  From left to right 
are horizontal, sagittal, and coronal slices from the MNI atlas.  The brighter the colors the greater the 
CSD amplitude difference between groups (red, yellow, orange) whereas the darker the colors 
indicate less CSD amplitude between groups (light blue, blue).  Delta showed no differences between 
groups.  Theta CSD levels between groups neared significance with p = .096.  The lower end of alpha 
power showed significantly elevated CSD in IUDE as compared to ADHD with p = .047.  Alpha 2 
showed significantly less CSD in IUDE as compared to ADHD with p = .027.  Beta CSD showed 
differences between groups with elevated CSD in left BA 9 superior frontal gyrus (SFG) with p = .042, 
and less CSD in right cuneus, BA 18 with p = .030.  The last row in the figure shows the scale for the 
contrast results for IUDE compared to ADHD. 
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Discussion 
 
The present findings are the first of their kind showing 
differences between children with IUDE compared to 
children with ADHD using sLORETA.  The current 
data show children with IUDE perform less well than 
children with ADHD on the Conners CPT.  
Specifically, IUDE children showed more omissions, 
to a statistically significant degree.  Given the CPT 
and classification procedures T-scores of 60 or above 
would produce atypical results for the test and 
increase the likelihood of positive classification in the 
ADHD index.  With the pattern of results, it is not 
surprising that 99% of the IUDE population had 
received a prior diagnosis of ADHD at or before the 
age of 5, even though 96% of the IUDE population 
was taking medications for ADHD at the time of 
admission to the program.  These medications 
included Clonidine, Adderall, Concerta, Tenex, 
Straterra, and combinations thereof.  Prior research 
has shown that IUDE children exhibit extreme 
difficulties with self-regulation across numerous 
domains associated with attention including arousal, 
emotional reactivity, sustained attention (Accornero 
et al., 2007; Gabriel & Taylor, 1998; Garavan et al., 
2000; Gendle et al., 2003; Jaeger et al., 2015; Noland 
et al., 2005; Slinning, 2004; Willford et al., 2018), and 
in some cases at our clinic a lack of understanding 
about the importance and significance of giving an 
appropriate effort on these types of tests.  Close 
monitoring during test administration in these children 
and clear instructions are good clinical practice to 
increase the accuracy of the results.  It is also 
important to consider that the IUDE children will not 
meet all criteria for ADHD, and in many cases the 
more pronounced issues are impulsivity and 
emotional reactivity, motor slowing (reaction time), 
and difficulties with sustained attention (Nygaard et 
al., 2016). 
 
The sLORETA contrasts show significant CSD 
differences between IUDE and ADHD groups in the 
alpha and beta bands.  Theta (4.0–8.0 Hz) showed a 
nonsignificant trend toward elevated CSD in IUDE as 
contrasted with the ADHD group at BA 19 and 
associated posterior regions.  This is an important 
finding given the indications that excess theta power 
has been associated with a higher likelihood of having 
ADHD and the potential comodulated slowing 
between theta and alpha power (Bink et al., 2015; 
Gloss, Varma, Pringsheim, & Nuwer, 2016; Koehler 
et al., 2009; Tye, Rijsdijk, & McLoughlin, 2014).  
Mazaheri and colleagues (2010) found a functional 
disconnection between frontal and occipital regions in 
children with ADHD as contrasted with normal 

controls and suggested a deficit in top-down 
regulated attentional processes.  Cannon (2014) 
showed specific inverse correlations between 
posterior alpha and frontal theta in children with 
ADHD.  
 
Maturation of the alpha rhythms is associated with an 
increase in frequency and reduction in amplitude 
between ages of 3 and 10.  The significant difference 
between IUDE and ADHD groups in lower alpha CSD 
is found at BA 19 (precuneus and associated 
posterior areas).  Interestingly, alpha and theta power 
showed elevations in the same area with differing 
effects in a hypothesized self-regulation network 
(SRN) ipsilateral and contralaterally (Cannon, 2014; 
Cannon, Strunk, Carroll, & Carroll, 2018), although 
not reaching significance.  Alpha rhythms are 
suggested to perform as other EEG phenomena and 
exhibit an opposite relationship between amplitude 
and frequency.  For example, the higher the 
amplitude the slower the signal becomes.  One can 
think of this in terms of information being carried along 
a signal.  The greater the peaks and valleys, the 
slower the information travels.  This carrier signal and 
these patterns are important to numerous processing 
speed and learning processes (Cannon, 2015).  
Certain drugs of abuse and conditions may cause 
reductions of alpha frequencies together with 
increased amplitudes, while others may be more 
associated with increased amplitude of low-frequency 
beta activity superimposed on scalp alpha rhythms 
(Nunez, 2006; Sokhadze, Cannon, & Trudeau, 2008).  
Although it is difficult to ascertain specific EEG 
patterns related to exposure to drugs of abuse in 
children, adolescent and adult populations provide 
replicable information concerning these patterns.  
Alpha 2 (10–13 Hz) shows a significant deficit in IUDE 
children as contrasted with the ADHD group in BA 39 
and associated cortex.  The angular gyrus (BA 39) 
has broad implications associated with receptive 
language, perceptual, memory, and sensory 
processes as well as learning (Bonnici, Cheke, 
Green, FitzGerald, & Simons, 2018; Boylan, 
Trueswell, & Thompson-Schill, 2017; Bravo et al., 
2017; Matchin, Liao, Gaston, & Lau, 2019; Thakral, 
Madore, & Schacter, 2017; van der Linden, Berkers, 
Morris, & Fernández, 2017; van Kemenade, Arikan, 
Kircher, & Straube, 2017).  Studies have examined 
alpha EEG power in attentional, saccadic, and 
cognitive processes, although the higher band of 
alpha power is often described as having no 
association with the maintenance of  attention 
(Babiloni et al., 2004; Dockree, Kelly, Foxe, Reilly, & 
Robertson, 2007; Jaime et al., 2016; Klimesch, 
Doppelmayr, Russegger, Pachinger, & Schwaiger, 
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1998; Kornrumpf, Dimigen, & Sommer, 2017; 
Sauseng et al., 2005) and therefore may play are 
more important role in encoding the stream of 
information being attended to (e.g., related to 
learning; Fell et al., 2011; Lenartowicz et al., 2016; 
Molle, Marshall, Fehm, & Born, 2002; Wang, 
Kamezawa, Watanabe, & Iramina, 2017), and 
associated language and working memory indices.  
 
Beta CSD shows elevations in IUDE as compared to 
ADHD in left superior frontal gyrus (SFG) and insular 
cortex, and in the right cuneus (BA 18).  The SFG and 
associated cortex has been implicated in motor, 
language integration, impulse control, and speech 
production, as well as executive and social functions 
(Fujii et al., 2015; Hu, Ide, Zhang, & Li, 2016; W. Li et 
al., 2013; Ookawa et al., 2017; Tsujii, Sakatani, 
Masuda, Akiyama, & Watanabe, 2011; Vogel et al., 
2016).  BA 18 and associated regions are implicated 
in visual and perceptual processes, as well as 
symptoms of anxiety, panic, posttraumatic stress, and 
other psychiatric issues (Heesink et al., 2017; Lai & 
Wu, 2013; Parise et al., 2014; Whitford et al., 2012; 
Yu et al., 2018). 
 
The insular cortex is typically divided into three 
subsections—the anterior, middle, and posterior.  The 
anterior insula is proposed to be associated with 
subjective intensity and self-awareness concerning 
experience and perception.  The middle insula is 
suggested to be associated with polymodal 
integration and may also play an important role in 
motor processes and regulation.  The posterior insula 
is proposed to be associated with interoceptive 
processes and awareness of the bodily state, as well 
as potential in attention, sensory, and social 
processes (Di Cesare, Pinardi, et al., 2018; Duval, 
Joshi, Russman Block, Abelson, & Liberzon, 2018; 
Schiff et al., 2018; Wang et al., 2018; Zhang et al., 
2019).  It is of note that most differences, even those 
not reaching significance, were found in the left 
hemisphere.  In prior research it has been shown that 
important interactions exist between frontal theta and 
posterior alpha power distributions in ADHD (Cannon, 
2014).  It appears that IUDE children show an inverse 
pattern of EEG CSD levels as contrasted with ADHD 
samples, distinct parietal and associated network and 
parieto-frontal interactions, and associated social and 
emotional issues found in ADHD samples 
(Castellanos, 2015; Castellanos & Elmaghrabi, 2017; 
Castellanos & Hyde, 2010; Castellanos & Proal, 
2012; Cortese et al., 2012; Petrovic & Castellanos, 
2016).  
 

Further, data have shown that prenatal exposure can 
alter development of opioid and dopaminergic 
systems in striatal and mesocorticolimbic areas given 
there is a rapid and massive growth and organization 
process during prenatal development (Wang, Dow-
Edwards, Anderson, Minkoff, & Hurd, 2006).  Data 
have reported reductions in bilateral caudate and left 
anterior insula connections with the cerebellum, as 
well as right caudate connectivity disruptions with 
occipital and fusiform regions in IUDE as contrasted 
with nonexposed infants (Grewen et al., 2015; 
Salzwedel et al., 2016).  Additional data have shown 
disruptions in connectivity amongst frontal, amygdala, 
insula, thalamus, and anterior cingulate regions.  
These functional associations involving the thalamus 
are important to arousal regulation, sustained 
attention, detection of salient qualities of stimuli, and 
working memory (Salzwedel et al., 2016).  
 
The current data are in line with other neuroimaging 
data concerning IUDE and its effects on the brain and 
attentional processes.  There have been numerous 
studies indicating substance exposure in utero 
impacts the developing brain in significant fashion.  
The orbitofrontal region has been implicated in 
learning, sensory processing, reward prediction, and 
behavioral responses (McDannald, Jones, 
Takahashi, & Schoenbaum, 2014; Sadacca et al., 
2018; Wikenheiser, Marrero-Garcia, & Schoenbaum, 
2017).  Social cognition and the perception of social 
interactions and behavioral and emotional responses 
are also reported to involve orbitofrontal, insula, and 
default network engagement and potential integrity 
anomalies (Li et al., 2011; Weng et al., 2010) that 
persist into adolescent years.  Social and emotional 
processes involve a complex interaction between 
brain regions and networks, and substance exposure 
creates a complex disruption in these processes that 
delays the maturation and adaptive development of 
these vital functions (Estelles, Rodríguez-Arias, 
Maldonado, Aguilar, & Miñarro, 2005; Fernandes, 
Rampersad, & Gerlai, 2015; Greenwald et al., 2011; 
Kabir, Kennedy, Katzman, Lahvis, & Kosofsky, 2014; 
Kully-Martens, Denys, Treit, Tamana, & Rasmussen, 
2012; Sobrian & Holson, 2011).  There are data 
suggesting IUDE impacts the maturation of the brain 
and its contributions to behavior and attentional 
processes (Chiriboga, Starr, Kuhn, & Wasserman, 
2009; Church, Overbeck, & Andrzejczak, 1990; 
Hammer & Scheibel, 1981; Tamnes et al., 2010; 
Walhovd, Tamnes, & Fjell, 2014); however, there are 
few data providing behavioral and standardized 
assessment examples of what these deficits may 
resemble in the clinical setting.  
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In the clinical environment, one of the most prevalent 
issues reported by parents and teachers is the 
discrepancy between age-expectation of behavior 
and actual social/emotional regulation maturation 
which can differ by years in context.  For example, a 
10-year-old throwing tantrums, hitting, or breaking 
things in response to environmental demands and not 
getting what he/she wants is age inappropriate.  
Likewise, there may be behaviors present such as 
taking others’ property, or performing acts that are 
dangerous with an impairment in understanding the 
inherent danger (e.g., why is it dangerous to play with 
fire in your bedroom?  “It is against the rules and I am 
not 18 yet”).  In future research paradigms it would be 
useful to attempt to determine the greatest common 
factors impacted by IUDE including regional brain 
differences, cognitive or attentional processes, and 
social and emotional delays.  These issues are 
present in most studies examining the effects of 
IUDE.  However, in order to begin the first step in 
planning interventions these commonalities across 
substances must be uncovered and targeted 
(McDannald et al., 2014; Morrow et al., 2006).  In this 
study’s sample, the first intervention in 99% of the 
IUDE children was for ADHD.  This is an important 
finding due to the lack of specific criteria for diagnosis 
and treatment for this growing population with IUDE.  
It is also important to consider the increased risk in 
IUDE of cognitive deficits, antisocial behaviors, 
substance abuse, academic and educational failure, 
and emotional/mood disorders (Li et al., 2011), not to 
mention the side effects of medications on these 
children.  
 
The current study has several limitations, which 
suggest steps for subsequent research.  First, a 
larger sample size for both IUDE and ADHD groups 
will provide statistical tests with greater power to 
detect real differences between groups.  Second, a 
healthy normal control group will also provide a 
contrast that shows the clinical significance of the 
IUDE group.  Third, a contrast between subgroups of 
IUDE children with and without exposure to adverse 
childhood experiences (ACE) would be of interest.  
Last, eyes-closed resting states are relevant to 
evaluate.  
 
Prenatal drug exposure is not a new problem; 
however, over the past few decades more attention 
has been directed to it.  The numbers of children 
exposed to drugs prenatally is growing, not all of 
whom are born addicted.  IUDE children do exhibit 
attentional difficulties that strongly increase the 
likelihood of an ADHD diagnosis.  Sensory and 
auditory processing issues may also be present.  

There are also major delays in social cognition and 
emotional regulation associated with a frontal, insula, 
and amygdala dysregulation that have been noted in 
numerous studies including this study data.  The 
sLORETA findings in this study provide some insight 
into regions of the brain and frequency distributions 
that may serve as markers to monitor treatment 
methods or develop novel approaches to help this 
population including neurofeedback-based models 
(Cannon, Strunk, Carroll, & Carroll, 2018). 
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Abstract 

Evaluating the efficacy of electroencephalography neurofeedback (EEG-nf) for the treatment of attention-
deficit/hyperactivity disorder (ADHD) has been a topic of vigorous debate over the past few years.  However, 
many of the articles state a lack of efficacy and insist on placebo as the explanation for any positive effects found 
in the EEG-nf treatment group.  Several critical flaws in this analysis are discussed including the existence of 
non-inert shams, the false no-effect, and placebo as an ad hoc explanation.  These flaws lead to Type III statistical 
errors, which are often repeated in other articles.  It is recommended that journals, books, and media articles 
publishing new research and reviews on the efficacy of EEG-nf be vigilant for these errors in order to improve 
the quality of the EEG-nf body of research.  Requiring researchers and authors reviewing the literature to verify 
assumptions of non-inert shams, ensure the use of best practices in the EEG-nf treatment groups, and clearly 
identify ad hoc conclusions can avoid these Type III errors. 
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Reviews of electroencephalography neurofeedback 
(EEG-nf) have led to an often published, yet flawed, 
conclusion that EEG-nf research does not support 
efficacy for the treatment of attention-
deficit/hyperactivity disorder (ADHD) and that effects 
of EEG-nf arise primarily from placebo (Ghaziri & 
Thibault, 2019; Thibault, Lifshitz, Birbaumer, & Raz, 
2015; Thibault, Lifshitz, & Raz, 2016, 2017a, 2017b; 
Thibault & Raz, 2017; Thibault, Veissière, Olson, & 
Raz, 2018).  This analytical approach is commonly 
based on a literature review, specifically examining 
randomized placebo-controlled trials of EEG-nf with a 
preference towards higher amounts of blinding.  
However, these literature reviews commit at least two 
Type III statistical errors, as we illustrate below.  We 
therefore suggest that the conclusions of inefficacy of 

EEG-nf in the treatment of ADHD and the placebo 
explanation are misguided and invalid. 
 
The argument against the efficacy of EEG-nf is based 
on the assumption that sham EEG-nf is inert, thus 
rendering it an effective sham.  Sham control study 
designs require an inert sham, which is a fake 
treatment that does not have a significant specific 
(i.e., non-placebo) effect on the condition being 
studied, such as the effect of a sugar pill in medication 
studies (Thornton, 2018).  Most EEG-nf studies lack 
inert shams, and instead use another active treatment 
as a sham.  An active sham, or non-inert sham, is 
when the treatment in the sham condition has a 
significant positive effect on ADHD that is comparable 
to other known treatments or beyond what could be 
due to placebo.  This means that these studies are 
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actually comparing two active conditions, both of 
which are found to have a positive treatment effect on 
ADHD symptoms.  Since such study questions 
hypothesize a result based on comparing EEG-nf to 
an inert sham, which would have no effect beyond 
placebo, it often appears as if EEG-nf is not creating 
a significant change in comparison to the sham 
control.  This study design only works if the sham 
control does not create a statistically significant effect 
itself.  Moreover, if learning occurs on the target EEG 
variables within the sham group, which is the active 
ingredient of EEG-nf, then the sham is rendered 
ineffective because it is actually a valid form of EEG-
nf. 
 
The recent reviews of EEG-nf claiming a lack of 
efficacy in the treatment of ADHD, positing placebo 
as the explanation for any positive effect, base their 
argument on studies that contain a non-inert EEG-nf 
sham condition (Ghaziri & Thibault, 2019; Thibault et 
al., 2015; Thibault et al., 2016, 2017a, 2017b; 
Thibault & Raz, 2017; Thibault et al., 2018).  The 
EEG-nf shams used in many of these cited studies 
are not inert because they have a significant and 
positive effect on ADHD symptoms, with effect sizes 
comparable to known effective treatments for ADHD 
(Shönenberg et al., 2017; Van Doren et al., 2018).  
When a study, or group of studies, does not find 
separation between an active (non-inert) sham and 
true EEG-nf, it is an illusion called a false no-effect. 
 
In instances of a false no-effect, no conclusions are 
to be drawn from these studies on efficacy or the 
presence of placebo because they are entirely 
subjective and absent of objectivity (Horn, Balk, & 
Gold, 2011).  This flaw is well understood in 
complementary and alternative medicine (Horn et al., 
2011), and the issue of active shams are specifically 
identified as being present in studies of EEG-nf in the 
treatment of ADHD by both supporters and detractors 
of EEG-nf (Loo & Makeig, 2012; Van Doren et al., 
2018).  Thibault and Raz (2018) even pointed out that 
the sham in all but two of the studies they cite have a 
positive effect on ADHD symptoms (Logemann, 
Lansbergen, Van Os, Böcker, & Kenemans, 2010; 
Vollebregt, van Dongen-Boomsma, Buitelaar, & 
Slaats-Willemse, 2014).  The two studies excluded 
from that statement did not follow best practices in the 
actual EEG-nf condition, which likely explains the lack 
of difference between the sham and attempted EEG-
nf (Pigott, Cannon, & Trullinger, 2018).  This creates 
an easy-to-make Type III statistical error, or an error 
in which the data is collected and analyzed correctly 
but while it rejects the null hypothesis, it does not 

confirm the hypothesis that the researchers originally 
proposed (Tate, 2015). 
 
Due to the misinterpretation of the false no-effect in 
these trials as an actual lack of effect, researchers 
often provide an ad hoc explanation, or a specific 
reason given to explain why a significant difference is 
or is not shown in the data.  However, presenting ad 
hoc explanations is not advisable because they are 
not the specific, or only, difference between 
conditions being studied (Tate, 2015).  There are 
possible reasons, other than placebo, that could 
contribute the lack of difference between EEG-nf and 
sham.  Yet, the placebo is often presented definitively 
as the source of positive effects from EEG-nf in 
reviews of the literature (Ghaziri & Thibault, 2019; 
Thibault et al., 2015; Thibault et al., 2016, 2017a, 
2017b; Thibault & Raz, 2017; Thibault et al., 2018).  
The continual repetition of this ad hoc placebo 
explanation in publications damages the overall 
quality and reliability of the published research, 
especially in the evaluation of efficacy, because it is a 
Type III statistical error and an unsubstantiated 
conclusion. 
 
The sham EEG-nf designs of studies cited by several 
recent publications (Ghaziri & Thibault, 2019; Thibault 
et al., 2015; Thibault et al., 2016, 2017a, 2017b; 
Thibault & Raz, 2017; Thibault et al., 2018) use sham 
conditions that have not been validated as effective.  
One example is van Dongen-Boomsma, Vollebregt, 
Slaats-Willemse, and Buitelaar (2013), in which the 
sham condition trained a simulated signal of the EEG 
not coming from the participant with an 80% positive 
reinforcement rate that was adjusted to maintain that 
reward level identical to the reward ratio and 
adjustments in the actual EEG-nf condition.  The 
participants receiving this sham treatment would be 
told that they are attempting to change their 
brainwaves through doing better at the assigned task, 
or similar instructions, which were identical to those 
given to the participants in the actual EEG-nf group. 
 
The sham used by van Dongen-Boomsma et al. 
(2013) may actually achieve a significant amount of 
contingent reinforcement on the target EEG variable.  
Therefore, the sham may not actually represent a 
different treatment from what was administered in the 
actual EEG-nf condition (Thatcher & Lubar, 2014).  
Moreover, the only way to know for sure would be to 
analyze whether or not learning occurred on the 
target EEG variable in the sham condition.  Yet, the 
authors of this study did not do that.  Neither did the 
recent reviews that cited these articles when claiming 
a lack of efficacy for EEG-nf in the treatment of ADHD 
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and explanatory placebo effects (Ghaziri & Thibault, 
2019; Thibault et al., 2015; Thibault et al., 2016, 
2017a, 2017b; Thibault & Raz, 2017; Thibault et al., 
2018). 
 
Another example is Shönenberg et al. (2017), in 
which the sham condition received the sham during 
only 50% of the sessions.  The EEG-nf treatment 
used in the actual EEG-nf group made up the last 
50% of the sessions in the sham condition.  Clearly, 
this sham condition cannot be assumed to be 
effective, or very different from the actual EEG-nf 
condition, because half of the treatments were 
identical to those administered to the actual EEG-nf 
group.  Therefore, the risk of a false no-effect error is 
even higher in Shönenberg et al. (2017) because of 
the similarity between the sham and actual EEG-nf 
conditions.  These are just two examples, but an 
analysis of all of the citations provided by these recent 
reviews of the literature (Ghaziri & Thibault, 2019; 
Thibault et al., 2015; Thibault et al., 2016, 2017a, 
2017b; Thibault & Raz, 2017; Thibault et al., 2018) 
reveals that the sham conditions may have had some 
level of contingent reinforcement on the targeted EEG 
signal and did not provide evidence to prove 
otherwise. 
 
Since the EEG-nf sham likely achieved some level of 
contingent reinforcement in the studies cited in recent 
reviews due to poor behavior modification designs 
(Ghaziri & Thibault, 2019; Thibault et al., 2015; 
Thibault et al., 2016, 2017a, 2017b; Thibault & Raz, 
2017; Thibault et al., 2018;), these sham conditions 
are actually another form of EEG-nf with a 
theoretically less optimal behavioral modification 
paradigm.  Therefore, they are not an effective sham 
and certainly cannot be assumed to be inert.  In an 
even more recent publication, Ghaziri and Thibault 
(2019) state that that EEG-nf is not efficacious and 
the majority of the effect is placebo.  They go on to 
state that EEG-nf needs to be compared to a specific 
sham condition, training a recorded signal that is not 
coming from the actual participants’ real-time EEG, to 
prove EEG-nf is efficacious and not due to placebo.  
However, they do not cite any new research since 
Thibault et al. (2018) that has tested this sham to 
prove it is effectively not reinforcing the target EEG-nf 
variable.  Nor do they provide any evidence that it is 
inert and does not significantly improve ADHD 
symptomology. 
 
Just as those who support the efficacy of EEG-nf 
have to prove it works beyond placebo and 
generalized treatment effects, when researchers 
argue that placebo explains all of the effects of EEG-

nf, they too must provide convincing proof that all 
other explanations for the effect are incorrect and cite 
research that shows placebo accounts for all of the 
positive clinical effect.  As has been pointed out in this 
article, those claiming that placebo explains all of the 
effects of EEG-nf (Ghaziri & Thibault, 2019; Thibault 
et al., 2015; Thibault et al., 2016, 2017a, 2017b; 
Thibault & Raz, 2017; Thibault et al., 2018) have only 
succeeded in committing two distinct Type III 
statistical errors.  There simply is not sufficient 
research to support the idea that placebo can make 
significant and sustainable changes that can explain 
the entirety of the effect of EEG-nf in the treatment of 
ADHD. 
 
In fact, there is direct evidence that EEG-nf cannot be 
fully explained by placebo.  A recent meta-analysis 
proves that the effects of appropriately administered 
EEG-nf last over time, even after the effects of 
placebo would wear off (Van Doren et al., 2018).  
Moreover, a second recent reanalysis of Cortese et 
al. (2016) statistically calculated results in a subgroup 
of the data that used the best practices in EEG-nf for 
their true EEG-nf condition.  The studies that used the 
best practices in the EEG-nf field yielded significant 
evidence that EEG-nf effects in the treatment of 
ADHD cannot be fully explained by placebo in short-
term studies (Bussalb et al., 2019) despite the 
presence of a non-inert sham.  Therefore, professing 
that placebo can explain all of the effect of EEG-nf in 
the treatment of ADHD is unsupported by the 
literature and exaggerates the effects of placebo 
interventions. 
 
In the future, it is recommended that journal 
reviewers, editors, book publishers, and the general 
media should require authors to prove assumptions 
that the shams used in cited studies are both inert and 
effective.  Additionally, the publishers should require 
proof that the EEG-nf condition being evaluated is a 
form of EEG-nf that is in alignment with the best 
practices of the field in all of the studies being cited.  
Finally, ad hoc explanatory explanations, such as 
placebo, are a Type III statistical error and should be 
excluded from the publication or appropriately and 
clearly identified as an ad hoc explanation and a Type 
III statistical error.  Future research should assess the 
efficacy of EEG-nf as a treatment for ADHD within a 
more objective framework designed for dealing with 
non-inert shams, complex behavioral modification 
principles that need to be effectively administered, 
and a multifactorial effect of the treatment.  The 
American Psychological Association has criteria for 
evaluating psychotherapy that meet these 
requirements (Chambless & Hollon, 1998). 
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Abstract 

Introduction.  Previous research shows that brush Chinese calligraphy handwriting (CCH) improves one’s 
cognitive functions as well as emotional and mental health.  Similarly, Guqin, the popular Chinese musical 
instrument, induces positive emotions and emotional stability.  The present study tested the efficacy of using the 
index finger to achieve similar mind–body changes.  Methods.  We employed a heart rate variability (HRV) 
Calligraphy–Guqin biofeedback intervention that was implemented with a Zephyr HxM Bluetooth chest heart rate 
monitoring device and an Android smartphone.  A web-based HRV big database app stored the data from three 
consecutive sessions: (1) 5 min of Guqin music listening; (2) 5 min of CCH finger writing of calligraphy; and (3) 
again 5 min of Guqin music listening.  The second session was designed to explore additive effects of the finger-
writing task.  One subject participated with the index finger employed for the writing task.  Results.  The results 
showed that the first and third Guqin sessions elicited 55% and 68% HRV coherences, respectively, while the 
CCH finger writing in the second session elicited 31% of high HRV coherence.  The increase in HRV coherence 
between the two Guqin sessions was attributed to the calligraphy finger writing training effect.  The practice of 
finger writing contributed to increased HRV regulation through heightened attention and concentration. 
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Introduction 

 
Background 
Research in Chinese calligraphy handwriting (CCH) 
has produced interesting and highly significant 
findings in the nature, processing, and outcomes of 
the practice of Chinese script.  It is established that 
the processing of Chinese characters exerts positive 
and beneficial effects on one’s perceptual, cognitive, 
and brain activities during handwriting.  The 
contributing factors relate to the interactions between 
the character’s visual-spatial properties and its 
associated cognitive and neural activities of the 
practitioner (Kao, Lam, & Kao, 2018).  Sustained 
practice of Chinese character writing has the function 
of perceptual and cognitive activation and has been 

shown to contribute to functional plasticity in the 
human cerebral cortex.  
 
Previous studies have also discovered that the 
cingulate cortex is involved in the process of visual 
stimulus, premotor planning, and memory operations, 
which are vital in CCH training.  The finding of a 
smaller cingulate gyrus volume (CGV) in the CCH 
groups suggested that long-term CCH practice may 
reshape the brain structure by increasing the 
efficiency of neural activity (Chen, Chen, He, Wang, 
& Wang, 2016).  Recent neuroimaging research also 
finds that CCH practitioners show better neural 
functions of updating and inhibition.  The CCH group 
also shows stronger resting-state functional 
connectivity than the control group in the brain areas 
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also shows stronger resting-state functional 
connectivity than the control group in the brain areas 
involved in updating and inhibition.  These outcomes 
suggest that long-term CCH training may be 
associated with improvements in specific aspects of 
the executive functions and the strengthened neural 
networks in related brain regions (Chen et al., 2017).  
At a deeper level of analysis, when processing the 
visual-spatial configurations of Chinese characters at 
the cortical level, the act of writing can initiate and 
facilitate cognitive activities and functions of related 
cortical substrates (Kao et al., 2018; Xu, Kao, Zhang, 
Lam, & Wang, 2013). 
 
The Theory  
A conceptual framework has been advanced to 
account for the character’s roles and practical impact 
on handwriting within a dynamic behavioral 
cybernetic system (Kao, 2006, 2010).  Handwriting 
consists of three main components in the writing of 
script: the hand, the writing instrument, and the paper 
or surface of writing material.  The theory of 
handwriting operation and skills training has its 
conceptual origin in the context of a cybernetic 
system of perception and motor performance (Kao & 
Smith, 1969; Smith & Smith, 1962, p. 341).  The 
writing of script and the tool used during handwriting 
result in different forms of feedback: reactive 
feedback from the hand itself, instrumental feedback 
from the action of the writing instrument, and 
operational feedback from the resulting handwriting 
traces on the paper or writing surface (Smith, 1961; 
Smith & Smith, 1962; Smith & Smith, 1988).  
Moreover, skill learning such as handwriting occurs 
as a result of motor control mechanisms interfacing 
the motor displacements relative to the 
spatiotemporal coherence between mind–body 
movements and its instrumental sensory feedbacks 
during the task.  This displacement control process is 
mediated by neuronal detector mechanisms (Smith & 
Smith, 1988) as well as a full spectrum of behavioral 
feedback mechanisms (Kao, 2000) underlying the 
writing motions with the characters. 
 
The theoretical bases for calligraphy writing by brush 
are threefold (Kao, 2000; Zhu et al., 2014).  First is 
the sensory feedback: the individual receives sensory 
feedback from the graphic record while practicing 
calligraphy.  Second is the bioemotional feedback: 
the calligraphy involves the movement of the arms 
and the body as the guide to regulate their 
movements.  Finally, the cognitive feedback: the 
subjective experiences of heightened attention, 
alertness, and quickened responses during the 
writing acts (Xu et al., 2013; Zhu et al, 2014).  Our 
past research has been guided by these measures of 
brush handwriting. 

As for the crucial role of the Chinese characters as 
the materials in brush handwriting, we have followed 
a set of psychogeometric which states that characters 
with Gestalt and topological properties such as 
balance, closure, orientation, connectivity, etc. are 
space-structured, easily recognized, and speedily 
processed.  The visual facilitating effect of each single 
property on processing the characters is formed upon 
the practitioner’s response to the visual-spatial 
structure of Chinese characters or English letters that 
are relative to the practitioner’s body and hand 
movements, taking place in the course of the writing 
tasks (Kao, 1999). 
 
The Applications  
The positive effects of CCH practice at the 
fundamental behavioral level have included identified 
enhancements in one’s attention and concentration, 
physical relaxation, and emotional stabilization, 
among others.  Specifically, effective outcomes with 
CCH intervention have been obtained in a variety of 
disease and clinical applications as well as behavioral 
changes.  These include significant results of (1) 
patients of strokes in palm strength of the affected 
hand and increased response facilitation in fine motor 
coordination (Chiu, Kao, & Ho, 2002); (2) the 
awakening of a coma patient after stroke with 
significantly enhanced focusing, alertness, visual 
scan and span, and quickened visual and motor 
responses (Kao, Lam, & Kao, 2018); and (3) 
Alzheimer’s disease patients showing significant 
improvement in short-term memory tasks and verbal 
ability (Kao, 2010). 
 
In addition, other clinical areas of CCH treatment 
include (1) Chinese cancer (nasopharyngeal 
carcinoma) patients with CCH training who 
demonstrated gradually lowered systolic blood 
pressure and respiration rate at pre- and 
posttreatment measures as the intervention 
proceeded, as well as elevated level of concentration 
and reduced mood disturbance (Yang, Li, Hong, & 
Kao, 2010); (2) our CCH training of post-earthquake 
PTSD children, which led to significant decrease in 
hyperarousal symptoms and salivary cortisol levels 
among the child survivors (Zhu et al., 2014); and (3) 
that CCH training plus Wenlafaxine drugs, which 
yielded better effects in treating patients of anxiety 
disorder that were measured by the Hamilton Anxiety 
Scale (HAMA), Self-Rating Anxiety Scale (SAS), and 
Clinical Global Impression (CGI) Scale (Dong, Jia, 
Wang, Cui, & Zhang, 2006).  These results provide 
encouraging evidence on the strength of CCH 
intervention toward reducing certain neuropsychiatric 
symptoms and conditions (Chu, Huang, & Ouyang, 
2018; Wagner, 2018). 
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The above studies and findings have all been 
conducted using the traditional Chinese brush as the 
exclusive writing instrument.  It is interesting to 
explore whether a shift to a newer and different writing 
instrument would yield the same or similar research 
outcomes.  The purpose of the present study was to 
test this notion by resorting to the use of a finger for 
writing.  This idea is significant in view of the current 
surge of interest and development of touch-screen 
writing technologies in the cyber age of innovation.  
 
We designed this pilot study (1) to analyze finger 
writing as an efficacious writing tool, (2) to test its 
contributions to health enhancement, and (3) to 
examine its writing effectiveness on a new surface 
platform of a smartphone. 
 
Finger Writing: The New Instrument 
Research results have suggested that repetitive 
movements on a smooth touchscreen reshape 
sensory processing from the hand and the thumb.  It 
is proposed that cortical sensory processing in the 
brain is continuously shaped by the use of personal 
digital technology (Gindrat, Chytiris, Balerna, Rouiller, 
& Ghosh, 2015).  Recent results indicate that a 
combination of motor training with mirrored visual 
feedback (MVF) therapy can induce significant 
neuroplasticity changes through multisensory 
integration.  The findings of this finger movement 
therapy lend support to the application of finger 
calligraphy writing for inducing cortex plasticity in the 
course of treatment (Kumru et al., 2016).  We have 
made initial attempts to develop finger writing as a 
new mode for calligraphy therapy.  Pilot studies have 
included using finger writing with a tablet computer for 
calligraphy writing in treating an Alzheimer’s patient 
as well as a coma patient (Kao, Lam, & Kao, 2018).  
 
This initial experience prompted our interest in 
exploring finger writing in connection with a new 
smartphone platform with a touch-screen surface for 
handwriting.  The present study is the first test of the 
efficacy of handwriting in a handheld mobile 
smartphone and represents a new tactile-motor 
feedback-based finger writing system. 
 
The Gugin Music 
The Guqin (Chinese zither), also known as a seven-
stringed Qin, is the most ancient plucked instrument 
of China with a history of over 3,000 years.  It was a 
prerequisite subject for the ancient scholar, as well as 
an art for personal development and cultural 
cultivation in ancient China (Fung & Wang, 2011; 
Wang, 2006, p. 60).  
 
Along with calligraphy training as a therapeutic 
system, Guqin has also been promoted recently as a 

method of relaxation therapy (Lam, Kao, & Fung, 
2012; Yeh, 1991) and shown to be capable of 
inducing a state of psychological quiescence that 
improves symptoms of insomnia (Fung & Wang, 
2011).  Guqin music was adopted in this study as a 
complementary intervention along with the act of 
finger writing characters. 
 
The HRV Coherence 
The rhythm of a healthy heart—even under resting 
conditions—is actually irregular, with the time interval 
between consecutive heartbeats constantly 
changing, which is known as Inter-Bit-Interval (IBI) 
changes.  The naturally occurring beat-to-beat 
variation in heart rate is called heart rate variability 
(HRV).  Any generation of sustained positive 
emotions facilitates a body-wide shift to a specific, 
scientifically measurable state, which is termed 
psychophysiological coherence because it is 
characterized by increased order and harmony in 
both our psychological (mental and emotional) and 
physiological (bodily) processes.  
Psychophysiological coherence is a state of optimal 
function, which generates increased mental clarity 
and improved cognitive function.  Simply stated, as 
our body and brain work better, we feel better, and we 
perform better herein (McCraty, Atkinson, Tomasino, 
& Bradley, 2009). 
 
HRV and Behavior 
A review of literature suggests that heart rate 
oscillations can enhance emotion by entraining brain 
rhythms in ways that enhance regulatory brain 
networks.  Because blood flow timing helps determine 
brain network structure and function, slow oscillations 
in heart rate have the potential to strengthen brain 
network dynamics, especially in medial prefrontal 
regulatory regions that are particularly sensitive to 
physiological oscillations.  It supports that individuals 
with high HRV tend to have better emotional well-
being than those with low HRV (Mather & Thayer, 
2018).  In addition, HRV is impacted by stress (Kim, 
Cheon, Bai, Lee, & Koo, 2018) and associated with 
level of anxiety (Chalmers, Quintana, Abbott, & 
Kemp, 2014).  These studies provide a glimpse of the 
applications of HRV relative to emotion, stress and 
anxiety, and other disorders. 
 
Inter-Bit-Interval (IBI) and CCH 
We have investigated some psychophysiological 
changes on the part of the CCH practitioner.  Results 
showed a consecutive reduction in heart rate for the 
first 10 s during brush handwriting.  This indicates that 
a significant increase in IBI means that the HRV is 
measured in the time domain (Kao, Lam, Guo, & 
Shek, 1984; Kao, Lam, Robinson, & Yen, 1989).  
Based on these findings we believe that the state of 
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HRV coherence could be regulated as an index 
(Appelhans & Luecken, 2006) of the effects that are 
induced by the Guqin listening as well as by finger-
writing intervention in this study.  
 
We introduce the smartphone in this study as an 
advanced alternative practice with calligraphy finger 
writing and Guqin music listening, forming a new 
system of HRV regulation for cognitive neural 
interventions. 
 

Aims of the Study 
 
1. To investigate the complementary roles and 

effects of calligraphy training and Guqin listening 
in HRV regulation through using a smartphone as 
an active HRV biofeedback platform.  
 

2. To develop the HRV regulation function of finger 
writing using a smartphone.  It is expected that 
calligraphic finger writing can promote the effects 
of Guqin music listening with meditation toward a 
deeper and positive level of mind–body harmony 
(HRV coherence). 

 
Materials and Methods 

 
Participant 
The case study subject was a 56-year-old male with 
treated hypertension and no history of psychiatric 
disorders or decline in cognitive functions.  The trials 
were conducted in the home environment. 
Selection of Gugin Music and Writing Protocols 
In the first and third sessions, 5 min of Guqin music 
are selected from Li Xiangting's Guqin album "Heart". 
 
In the second session of 5 min of calligraphic finger 
writing, calligraphy graphic characters are selected 
from a newly developed “iPad calligraphy: fingering 
writing psychotherapy” design (Kao & Lam, 2011). 
 

Finger Writing Materials:  
The Graphic Characters 
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"Calligraphy–Guqin" HRV Biofeedback Design 
"Calligraphy–Guqin" HRV is a system is based on the 
“Biofeedback-based System of Calligraphy Therapy” 
(Lam & Kao, 2007) which was invented by our team 
and shown at the Innovation Expo 07 in Hong Kong 
in 2007; the Zephyr HxM Bluetooth chest heart rate 
monitoring device; the HTC EVO 3D Android 
smartphone; and the Heart-Love HRV Android app, 
an HRV Internet big database that is used to analyze 
and store the data collected from three 5-min 
sessions for HRV regulation. 
 
An HTC EVO 3D Android smartphone in Figure 1 is 
used for Guqin music playback and the ongoing finger 
writing of the participant. 
 
The Zephyr HxM Bluetooth chest heart rate 
monitoring device is set up for the participant, as 
illustrated in Figure 2. 
 
1. First session: 5 min of meditation with Guqin 

music listening.  See Figure 3. 
2. Second session: 5 min of calligraphic finger 

writing intervention.  See Figure 4. 
3. Third session: 5 min of meditation with Guqin 

music listening.  See Figure 5. 

 
Instant analysis of recorded HRV through Internet 
cloud big databases as a remote and mobile 
healthcare platform is shown in Figure 6. 
 
Improved process outcomes that regulate HRV 
coherence after intervention and the HRV are 
graphically displayed in Figure 7, while the HRV 
coherence for the control trial is graphically displayed 
in Figure 8.  
 
The Procedure 
The design of this 15-min protocol of meditation with 
Guqin music listening and calligraphic finger writing 
intervention for HRV regulation is tested with a single 
trial case study to evaluate the efficacy of both the 
new protocol and the finger writing as an instrument 
for CCH therapy.  
 
The HRV coherence app is installed, the Guqin music 
is recorded, and the graphic characters are all stored 
in the smartphone in advance of the display of Guqin 
music and the graphic characters in a predefined 
sequence.  The conventional equipment setup and 
procedures are followed.  Refer to separate 
descriptions under the respective figures. 
 
 

 
Figure 1. The HTC EVO 3D Android smartphone. 
 
 
Before wearing the Zephyr HxM Bluetooth chest heart 
rate monitoring device: (1) clip the Zephyr monitor to 
the chest strap, (2) put on the chest strap around the 
chest as shown in Figures 1 and 2, and (3) the Zephyr 
monitoring device will be turned on automatically.  
Note: In order to ensure a good connection, it might 
be necessary to sprinkle a small amount of water on 
the fabric sensors before wearing.  The monitoring 
device is then paired with the HTC EVO 3D Android 
smartphone.  The audio output of the smartphone is 
connected to a surround sound receiver for playback 
of the Guqin music and also for the tone for 
biofeedback of the Heart-Love's HRV coherence 
Android app. 
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Figure 2. The Zephyr Bluetooth chest heart rate monitoring 
device and setup illustration. 
 
 
The subject sits comfortably in an armchair, turns on 
the smartphone, the monitoring device, and the 
surround sound receiver.  For the first session (see 
Figure 3), initiate playback of the Guqin music and the 
HRV coherence app, pay attention, and enjoy the 
Guqin music; the higher tone for biofeedback will 
change as a higher HRV coherence is reached. 
 
 

 
Figure 3. The first session: 5 min of meditation with Guqin 
music listening. 
 
Save the HRV coherence result after 5 min of the first 
session of Guqin music listening.  Then, proceed to 
the second session (see Figure 4), display the first 
graphic character, initiate the HRV coherence app, 
and then start tracing the graphic character with the 
index finger on the touch screen; the higher tone for 
biofeedback will change as a higher HRV coherence 
is reached. 
 
 

 
Figure 4. The second session: 5 min of calligraphic finger 
writing on the touch screen of an HTC smartphone. 
 
 
After completing the first graphic character, display 
the second graphic character for tracing and so on for 
5 min of the second session.  Save the HRV 
coherence result after 5 min of the second session of 
CCH finger writing.  Then, proceed to the third 
session as the procedure of the first session (see 
Figure 5).  Save the HRV coherence result after 5 min 
of the third session of Guqin music listening.  The 
three sessions of intervention are then completed. 
 
 

 
Figure 5. The third session: 5 min of meditation with Guqin 
music listening. 
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Figure 6. HRV graphic data icons on smartphone showing instant analysis of Internet big databases as remote 
and mobile healthcare platform. 

 
 

Results & Discussion 
 
The results of the percentage of HRV coherence of 
the three sessions of the saved test trial and control 
trial in the cloud database are plotted with Microsoft 
Excel in Figures 7 and 8, respectively.   
 

The video version of the biofeedback trial of 
application of the calligraphic finger writing and Guqin 
music listening process can be viewed online from 
YouTube (https://youtu.be/eyr6ziNHHyw).

 

 
Figure 7. HRV results plotted for three different sessions of Guqin music listening and finger writing. 
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Results in Figure 7 demonstrated that after the 
calligraphic finger writing intervention, the first and 
third sessions of meditation with Guqin music 
listening elicited 55% and 68% of high HRV 
coherence respectively, while the second session of 
calligraphic finger writing elicited 31% of high HRV 
coherence.  This indicated a preliminary observation 
that calligraphic finger writing and Guqin music 
listening both improved one’s HRV regulation, and 

that this effect could mean a shortening of 
intervention duration as well as a potential application 
of both for treatment and rehabilitation with the use of 
a smartphone or a handheld tablet computer.  It is 
noted that previous research on Guqin music listening 
for insomnia treatment elicited also a marginal 
significance (p = .055) of HRV coherence after 
intervention (Fung, Han, & Lee, 2014; Fung, Kao, 
Lam, & Kao, 2019). 

 
 

 
Figure 8. HRV results plotted for three consecutive sessions of eyes-open sitting meditation. 

 
 
Results in Figure 8 showed that, as a control trial with 
three consecutive sessions of eyes-open sitting 
meditation, the first, second, and third eyes-open 
meditation sessions only elicited 16%, 17%, and 15% 
of high HRV coherence respectively with little 
differentiation.  This demonstrated that, in Figure 7, 
the high HRV coherence result in the third session of 
Guqin music listening is solely due to the intervention 
effect of calligraphic finger writing.  We believe that 
this practice contributed to increased HRV regulation 
from 55% to 68% of high HRV coherence through an 
increase in attention and concentration that are 
associated with the practice of calligraphic finger 
writing.  
 
The third session of meditation with Guqin music 
listening has confirmatory data not only on the 
positive effect of Guqin music listening in the literature 
alone but also suggestive of an additive value of 
accompanying calligraphic finger writing during the 
process of dual factor intervention.  This would 
suggest the likely value of combined treatment 

system for behavioral intervention.  A first 
implementation in this direction has seen a recent 
investigation of applying combined Gugin music and 
calligraphy in the successful treatment of symptoms 
of primary insomnia.  The results have shown this 
joint intervention being effective in promoting heart 
rate coherence as well as optimum brain functions 
(Fung, Kao, et al., 2019). 
 
In line with previous studies in which HRV is positively 
associated with stress decrease (Chalmers et al., 
2014; Kim et al., 2018), anxiety reduction (Dong et al., 
2006) as well as PTSD hyperarousal decrease (Zhu 
et al., 2014) reviewed in previous sections, we believe 
that the significant increase in high HRV coherence 
induced by calligraphic finger writing on the touch 
screen of the smartphone plus Guqin music listening 
can exert a curative and effective treatment for the 
emotional conditions of stress and anxiety.  
 
The HRV and Emotion theory and research support 
the utility of HRV as a noninvasive, objective index of 
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the brain’s ability to organize regulated emotional 
responses through the autonomic nervous system 
(ANS) and as a marker of individual differences in 
emotion regulatory capacity (Appelhans & Luecken, 
2006) and the reviewed findings suggest that heart 
rate oscillations can regulate emotion by entraining 
brain rhythms in medial prefrontal regulatory regions.  
It supports that individuals with high HRV tend to have 
better emotional well-being than those with low HRV 
(Mather & Thayer, 2018).  On the basis of such 
observations, we speculate that high HRV coherence 
induced by calligraphic finger writing on the touch 
screen of a smartphone plus Guqin music listening 
may also be able to regulate emotions.  
 
This preliminary case study has provided valuable 
findings toward further development of systematic 
application of finger writing together with the 
smartphone toward a curative and effective platform 
of behavioral treatment.  We conclude that Guqin 
music and calligraphic finger writing contributes to 
inducing the harmonious effect of "mind and body" 
coherence and emotional relaxation.  Further testing 
and validation of the present system are warranted for 
broader clinical applications in the areas of brain 
health and treatment of neuropsychiatric diseases.  
 

Conclusion 
 
This new, shortened 15-min protocol is designed in 
order to adapt to the busy style of modern life by using 
a smartphone to store and playback the graphic 
characters and Guqin music which can be completed 
either at home, school, or at work.  The whole 
treatment protocol is automated using the 
smartphone in guiding the practitioner to work 
through the intervention processes with a light 
handheld indoor or outdoor calligraphy and Guqin 
finger writing intervention platform which may be 
limited to effective treatment for the emotional 
conditions of stress and anxiety.  
 
Calligraphy treatment usually completes a 
psychotherapy intervention process with a 3-min 
sitting meditation—30 to 45 minutes of calligraphy 
handwriting intervention followed by 3 min of sitting 
meditation.  Because calligraphy is written with a 
brush as the main tool, it requires a place and a 
relatively quiet environment, together with a longer 
intervention program that takes about 45 to 60 
minutes including preparation work (Kao et al., 1984).  
To apply as a clinical trial in the future, a design of 
different graphic characters to target specific 
neuropsychiatric diseases (Chu, Huang, & Ouyang, 
2018) with 30 to 45 minutes intensive treatment is 
required for calligraphy and Guqin finger writing. 

For future development, cloud database is to connect 
to upload trials, and view Sessions, Goals and 
Achievement scores. Daily Coherence Ratio, 
Achievement Totals and Community Achievement 
Scores may be all visible to the clients and may also 
be visible to an assigned and authorized clinical 
therapist for coaching. 
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