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As the field of neurofeedback continues to evolve, it 
is imperative that we ground our progress in a 
comprehensive understanding of both its historical 
foundations and the latest scientific advancements. 
Neurofeedback transcends the mere application of 
electrodes to a client’s scalp for a training session; it 
represents a dynamic opportunity to integrate 
holistic health principles into brain-based care. This 
perspective aligns with emerging trends in 
healthcare that emphasize the interconnectedness 
of mind, body, and environment. 
 
At the 2023 International Society for Neurofeedback 
and Research (ISNR) conference, a recurring theme 
emerged among invited and keynote speakers: the 
relevance of functional medicine to our discipline. 
This observation resonates deeply with the vision I 
articulated during my candidacy for president—a 
commitment to advancing neurofeedback through a 
holistic and functional framework. Functional 
neurofeedback is an integrative, client-centered 
model of care designed to address disorders of the 
brain and central nervous system. It recognizes that 
each symptom or diagnosis may reflect a 
constellation of underlying factors unique to the 
individual, rejecting a one-size-fits-all approach 
(Hammond, 2011). 
 
At its core, functional neurofeedback leverages 
quantitative electroencephalography (qEEG) brain 
mapping for precise assessment and employs 
brainwave training to promote not only symptom 
resolution but also a broader state of well-being 
(Thatcher, 2012). This begins with a thorough intake 
process, including a comprehensive health history, 
to ensure a holistic understanding of the client’s 
needs. Such an approach moves beyond treating 
isolated disorders to fostering sustainable lifestyle 
improvements. 
 
A critical aspect of this model is the practitioner’s 
awareness of the bidirectional relationship between 
mental and physical health, particularly the roles of 

stress and anxiety. In the United States, recent 
estimates highlight the scale of these challenges. In 
2024, approximately 23.08% of adults experienced a 
mental illness in the past year (Reinert et al., 2024), 
21 million adults reported at least one major 
depressive episode (National Institute of Mental 
Health, 2024), and 20.17% of youths aged 12–17 
faced similar struggles (Substance Abuse and 
Mental Health Services Administration, 2024). 
Furthermore, 43% of adults reported heightened 
anxiety compared to the previous year, often 
attributing this to escalating stress, while 53% and 
40% identified stress and sleep, respectively, as 
primary lifestyle factors impacting mental health 
(American Psychiatric Association, 2024). 
 
Stress and anxiety, though closely related, differ in 
origin. Stress typically arises from external triggers—
such as interpersonal conflicts, workplace demands, 
or chronic illness—manifesting in symptoms like 
irritability, fatigue, gastrointestinal distress, and 
sleep disturbances (Selye, 1976). Anxiety, 
conversely, stems from internal triggers, such as 
intrusive thoughts or past experiences, activating the 
body’s fight-or-flight response (American 
Psychological Association, 2019). Neurofeedback 
practitioners are uniquely positioned to address 
these conditions, leveraging technology to mitigate 
stress, anxiety, depression, and sleep disorders, 
among other health concerns (Arns et al., 2009). 
 
To fully realize this potential, we must adopt a 
holistic, functional neurofeedback perspective in our 
clinical practice. This entails educating both our 
clients and our referral networks, including 
psychologists, physicians, psychiatrists, counselors, 
social workers, chiropractors, nurses, and other 
allied health professionals, about the mechanisms 
and benefits of neurofeedback. As a self-regulating 
organ, the brain governs both mind and body; by 
articulating this principle, we can position 
neurofeedback as a complementary intervention 
alongside other therapeutic modalities. In turn, we 
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should seek education from these professionals to 
foster mutual referral relationships, thereby 
promoting a comprehensive wellness model. 
 
Moreover, we must champion neurofeedback as a 
preventive strategy. The evidence is clear: stress 
and anxiety contribute to physical health decline, 
while neurofeedback and related neuroregulation 
interventions can significantly reduce, if not 
eliminate, these burdens (Marzbani et al., 2016). 
Research also underscores neurofeedback’s 
efficacy in alleviating depression and enhancing 
sleep quality (Cheon et al., 2016). Given this, there 
is no reason we should not market ourselves as 
practitioners of preventive health, dedicated to 
improving quality of life. 
 
As we look to the future, let us commit to advancing 
neurofeedback not merely as a reactive treatment 
but as a proactive tool for wellness. By embracing a 
functional and holistic approach, we can elevate our 
field, strengthen interdisciplinary collaboration, and 
empower our clients to lead healthier, more 
balanced lives. 
 
Rob Longo, LPC 
President, ISNR  
Email: NFBRob@outlook.com  
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Abstract 

Introduction. Depression is a common mental health condition characterized by disrupted neural activity in 
cortical and subcortical networks involved in emotion and memory. While alpha and theta oscillations have been 
linked to depression, their specific roles in symptom domains remain unclear. This study examines these 
relationships using quantitative EEG (qEEG) and low-resolution electromagnetic tomography analysis (LORETA). 
Methods. Fifty-eight adults with depression underwent resting-state, eyes-closed qEEG. Absolute power and 
coherence of alpha (8–12 Hz) and theta (4–8 Hz) bands were analyzed across 19 scalp electrodes and 
hippocampal and amygdala regions using LORETA. Depressive symptom severity was assessed using the Beck 
Depression Inventory-II (BDI-II). Statistical analyses evaluated associations between EEG parameters and 
symptom scores. Results. Alpha coherence between the left hippocampus and amygdala negatively correlated 
with somatic symptoms (r = −0.298, p = .027), explaining 26% of variance in total BDI-II scores. Increased theta 
coherence in the right frontotemporal network was associated with reductions in affective and somatic symptoms. 
Conclusions. The findings identify neural oscillatory patterns within hippocampal-amygdala and frontotemporal 
networks as potential biomarkers for depressive symptoms, providing insights into novel therapeutic targets. 
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Introduction 

 
Depression is a widespread mood disorder that 
affects over 350 million people globally, significantly 
contributing to the global disease burden. It is the 
leading cause of disability worldwide, with a lifetime 
prevalence of 4.4% in the general population 
(Friedrich, 2017; García-Batista et al., 2018). Major 
depressive disorder (MDD) is characterized by 
symptoms such as persistent low mood, anhedonia, 
appetite and sleep changes, fatigue, restlessness or 
slowed movement, feelings of guilt or worthlessness, 
difficulty concentrating, and suicidal thoughts. 
According to the DSM-5-TR (American Psychiatric 
Association, 2022), a diagnosis of MDD requires the 

presence of at least five of these symptoms for most 
of the day, nearly every day, for a minimum of 2 
weeks (Cui et al., 2024). Neuroimaging studies, 
including magnetic resonance imaging (MRI), 
functional MRI (fMRI), and electroencephalography 
(EEG), have demonstrated that individuals with 
depression exhibit both structural abnormalities and 
functional imbalances within brain networks. These 
networks are crucial for processes such as emotion 
regulation, involving regions like the amygdala, 
subgenual anterior cingulate, caudate, putamen, and 
pallidum (Siegle et al., 2007), as well as memory, 
encompassing the hippocampus (HPC), 
parahippocampal cortex, and other related areas 
(Dev et al., 2022; Yang et al., 2017). The amygdala 
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is integral to processing salient stimuli and serves as 
a central hub within the affective network. 
Neuroimaging findings indicate increased amygdala 
connectivity and activation in patients with MDD, 
alongside reduced overall and subregional  
resting-state connectivity (Damborská et al., 2020). 
These abnormalities in the affective network likely 
contribute to emotional dysregulation (Tang et al., 
2018). Another area that has emerged as a critical 
integrator of emotion and cognition is HPC. Studies 
have shown reductions in HPC volume across 
various mood disorders, particularly in MDD 
(Lorenzetti et al., 2009). HPC plays a crucial role in 
memory retention and controlling the production of 
cortisol, a hormone secreted in response to stress. 
When a person is depressed, his body releases 
excessive amounts of cortisol, leading to 
hippocampal atrophy and a reduction in 
neurogenesis. (Dev et al., 2022). Alongside 
structural alterations, abnormal HPC functioning has 
been linked to cognitive impairment and deficits in 
spatial memory among depressed patients (Gould et 
al., 2007). Recent functional studies have reported 
abnormal theta activity in the right anterior HPC and 
parahippocampal cortices in depressed individuals 
compared to healthy subjects (Cornwell et al., 2010). 
Amygdala and HPC are thought to be important for 
contextual modulation of fear, judgment of emotion, 
and emotional memory that are critical for 
remembering motivationally salient stimuli. The 
coupling between these two regions is 
predominantly unidirectional, during frequency 
oscillations; theta and alpha mediate their 
interregional communication (McGaugh, 2004; 
Zheng et al., 2017). Abnormal functional connectivity 
between these two areas, like patterns observed in 
humans with depression (Gould et al., 2007), has 
been also documented in a genetic rat model of 
major depression (Williams et al., 2014). These 
abnormalities, along with dysfunctions in other 
regions such as the ventromedial prefrontal cortex, 
insula, and caudate have been suggested to 
contribute to the dysregulation of emotional and 
motivational processes in MDD (Mayberg, 1997).  
 
In resting-state EEG recordings, patients with 
depression exhibit disrupted connectivity within and 
between key networks, including the frontotemporal, 
centroparietal, frontoparietal, and dorsal attention 
networks, when compared to healthy individuals  
(16, 10). Elevated beta power in the prefrontal 
cortex, along with asymmetries in the alpha and 
theta bands, has been also linked to depressive 
symptoms (Liu et al., 2024). Machine learning 
analyses have demonstrated that the right 
hemisphere exhibits higher accuracy and 

performance in detecting depression, and among 
the various brain wave frequencies, the alpha band 
has shown the greatest accuracy in the classification 
of depression (Dev et al., 2022). Frontal alpha 
asymmetry is a biomarker that measures the 
balance of alpha wave activity between the left and 
right hemispheres of the frontal cortex, linked to 
emotional dysregulation (Tseng et al., 2022). 
Coherency is another index used in EEG studies to 
assess functional connectivity between brain 
regions. It quantifies the phase consistency between 
two EEG signals over time and frequency. Higher 
coherency between two regions implies greater 
functional connectivity, suggesting that these 
regions are synchronously communicating 
(Trambaiolli & Biazoli, 2020). In an EEG study on 
119 subjects, including 75 healthy subjects and 44 
patients with MDD, coherency in the alpha2 band 
(10–12 Hz) presented significantly positive 
correlation with symptoms (Trambaiolli & Biazoli, 
2020). A machine learning analysis in another study 
also revealed that patients with MDD exhibited 
higher functional connectivity compared to controls, 
particularly in the alpha and beta bands. In the alpha 
band, connections were linking the frontopolar and 
DLPFC regions with temporal and parietooccipital 
areas, while beta band connections were mostly 
within prefrontal and temporal regions. These 
connectivity patterns distinguished MDD from bipolar 
disorder with 81% accuracy (Leuchter et al., 2012). 
A systematic review of 52 research articles 
highlighted the significant potential of EEG-based 
connectivity analysis and brain mapping techniques 
in identifying biomarkers of depression. The findings 
consistently identified the frontal cortex and  
parietal-occipital cortex as critical regions involved in 
depression detection. The review further 
emphasized the importance of future research that 
incorporated larger and more representative sample 
sizes, along with the application of advanced data 
analysis methodologies to improve accuracy. It also 
advocated for the development and use of more 
precise techniques to localize the brain regions most 
affected by depression (Dev et al., 2022). 
 
In this study, we tried to address some of these 
challenges. We examined the alpha and theta 
absolute power across 19 EEG channels and 
evaluated their coherence within commonly studied 
surface networks. To address the limitations of 
surface EEG, we employed the LORETA technique 
to estimate these indices—absolute power and 
coherence—in two critical deep brain regions: the 
HPC and amygdala. This dual-layered methodology 
enhances the precision of identifying brain areas 
implicated in depression. Additionally, our stringent 
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clinical protocols ensure a high level of sample purity 
and homogeneity. Participants were carefully 
selected using well-defined inclusion criteria, 
thoroughly evaluated by licensed psychologists, and 
independently verified by registered psychiatrists, 
addressing a frequent limitation in similar studies. 
Furthermore, by combining electrophysiological data 
with questionnaire-based behavioral assessments, 
we address the shortcomings of traditional 
behavioral diagnostic approaches, which are often 
prone to human bias and subjectivity. Analysis of 
this study was conducted on a cohort of 58 
depressed outpatients. 
 

Method  
 
Participants 
Our data were collected through convenience 
sampling from patients at Elumind Psychiatric Clinic 
in Vancouver, Canada. This approach resulted in a 
heterogeneous participant pool with variability in age 
and gender. To address this variability, we stratified 
the sample into three age groups: young adults  
(16–24 years), middle-aged adults (25–54 years), 
and older adults (55 years and above). Participants 
were also categorized into three groups: those using 
prescription medication (medicated), those not using 
prescription medication (nonmedicated), and those 
who consume alcohol or use marijuana (addicted 
group). This stratification allowed for a more 
nuanced understanding of the factors influencing the 
outcomes of the study. All participants presented to 
the clinic with depression as their primary complaint 
and had no history of other psychiatric disorders, 
intellectual disabilities, or neurological deficits. The 
final sample consisted of 22 males (mean age: 37.3 
± 14.07 years) and 36 females (mean age: 39.8  
± 16.90 years). Each participant provided written 
informed consent, completed the Beck Depression 
Inventory-II (BDI-II) questionnaire, and consented to 
undergo EEG recordings as part of the study 
following their therapeutic assessment. The 
research adhered to the ethical principles outlined in 
the Declaration of Helsinki (World Medical 
Association, 1996), including respect for individual 
autonomy, protection of privacy and confidentiality, 
maintenance of scientific integrity, and poststudy 
considerations, such as ensuring participants have 
access to any beneficial findings arising from the 
study. The sample size was determined based on 
previous studies (Bokhan et al., 2023; Yamada et 
al., 1995). 
 
Beck Depression Inventory (BDI) 
After welcoming the participant, informed consent 
was obtained, and any questions or concerns 

regarding data collection, EEG recording, or other 
procedures were addressed. Participants then sat in 
a quiet room and completed the Beck Depression 
Inventory (BDI) questionnaire according to the 
provided instructions. In terms of assessing severity 
of symptoms, the BDI-II is a widely used 21-item 
self-report tool designed for adolescents and adults 
(Wang & Gorenstein, 2013). It demonstrates strong 
criterion-based sensitivity and specificity for 
detecting depression, reinforcing its clinical utility as 
a diagnostic aid (Wang & Gorenstein, 2013). Since 
depression symptoms can respond differently to 
treatment, relying solely on a global score to 
evaluate treatment response is insufficient. 
Therefore, a bifactor model of the BDI-II was 
developed for statistical and clinical purposes, 
consisting of a general depression factor and three 
specific factors (cognitive, affective, and somatic), 
which provided the best fit for the data. This model 
indicated that BDI-II items could be summed to 
generate an overall score that accounts for most of 
the variance, while the specific factors contributed 
unique variance (García-Batista et al., 2018). 
 
EEG to Quantitative EEG (qEEG) Recording 
EEG recordings were conducted in a soundproof, 
dimly lit chamber with minimum sources of 
electromagnetic and cellular interference. 
Participants were seated in a comfortable armchair 
and instructed to relax and minimize movements to 
reduce artifacts. EEG data were recorded using a 
19-channel WinEEG system (version 202, Mitsar 
Inc., Russia) during a 5-min, eyes-closed session. 
The sampling rate was 256 Hz, with electrodes 
positioned according to the international 10–20 
system and impedance maintained below 5 kΩ 
across electrode sites. Low- and high-pass filters 
were set at 0.1 Hz and 45 Hz, respectively, with a 
55–65 Hz notch filter applied. EEG data were 
recorded in a monopolar montage with signals 
referenced to linked ears. Independent component 
analysis (ICA) was performed to isolate and remove 
artifacts related to eye movements, muscle activity, 
and cardiac noise. Two EEG experts then visually 
inspected and manually corrected the data. Finally, 
90 s of artifact-free EEG recordings were selected 
and imported into NeuroGuide software (version 
3.2.8) to measure qEEG. Fourier transform (FFT) 
was used for quantitative analysis, and various band 
measures were calculated, considering age and 
gender. 
 
Regions of Interest (ROIs) 
Our primary focus was on the absolute power of 
theta (4–8 Hz) and alpha (8–12 Hz) bands across 19 
electrodes: FP1, FP2, F3, F4, Fz, F7, F8, C3, C4, 
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Cz, Pz, P3, P4, T3, T4, T5, T6, O1, O2. Additionally, 
FFT coherence of theta and alpha bands was 
measured between electrode pairs in the following 
regions: bi-frontal (FP1–FP2, F3–F4, F7–F8), 
frontocentral (Fz–Cz), centroparietal (Cz–Pz), 
frontoparietal (F3–P3, F4–P4, Fz–Pz), and 
frontotemporal (F3–T3, F3–T5, F4–T4, F4–T6,  
F7–T3, F7–T5, F8–T4, F8–T6). To assess HPC and 
amygdala activity and connectivity, we calculated 
LORETA absolute power (LAP) and LORETA 
coherence (LC) in the alpha and theta bands for 
both hemispheres. Default settings of the 
NeuroGuide software were used, with an epoch 
duration of 4 s. Electrodes were treated as 
independent variables in the analysis. 
 
Statistics 
To examine the effects of age and gender on the 
BDI scores and its subscales, we performed a 
multivariate analysis of variance (MANOVA). 
Additionally, Pearson's correlation coefficient (r) and 
Spearman's rank correlation (ρ) were calculated to 
assess relationships between BDI scores (including 
subscales) and EEG data, as well as LORETA 
findings. The choice between these correlation 
methods was determined based on the normality of 
the data. Furthermore, to control potential 
confounding effects of age, drug consumption, and 
gender, partial correlations were conducted by 
statistically adjusting for these variables. We used 
JASP (Jeffreys's Amazing Statistical Program) that 
is a free, friendly, and open-source software for 
statistical analysis. 
 

Results 
 
Descriptive data of our participants’ BDI scores and 
its subscales in terms of age group and gender is 
shown in Table 1. Results revealed significant effect 
of age on cognitive, F(2, 50) = 3.61, P = .034,  
η2 = 0.126. The pairwise comparison showed that 
old group reported less scores of cognitive scales in 
comparison to the middle age and the young group 
(p = .005, p = .004). Medication as a cofactor, 
significantly affected BDI, F(2, 50) = 4.33, P = .018, 
η2 = 0.148; cognitive, F(2, 50) = 3.61, P = .034,  
η2 = 0.126; and somatic scores, F(2, 50) = 3.62,  
P = .034, η2 = 0.127. Pairwise analysis showed that 
in in all three above scales, addicted group reported 
higher scores than medicated group (for BDI,  
p = .001, cognitive, p = .001, and somatic, p = .014).  
 
A negative correlation was observed between 
LORETA alpha coherency of left HPC and left 
amygdala and somatic scores (Pearson’s  
r = −0.298, p = .027). EEG theta coherency of  
F4–T4 was also negatively correlated with BDI 
(Spearman’s ρ = −0.353, p = .014), affective 
(Spearman’s ρ = −0.329, p = .008) and somatic 
scores (Spearman’s ρ = −0.347, p = .010; Table 2). 
Further, linear regression showed that LORETA 
alpha coherency of left HPC and left amygdala could 
explain 26% of BDI scores variance meaningfully  
(R2 = 0.49, adjusted R2 = 0.26, P = .024; Figure 1).  

 

Table 1 

Descriptive Table of Participants, Including Sample Size, Age, Total BDI Score, and Scores for the Cognitive, 
Affective, and Somatic Components 

Group 
Male Female 

Young Middle age Old Young Middle age Old 

Sample size 6 14 2 10 17 9 

Age 22.5 ± 1.9 38.7 ± 5.3 72 ± 2.8 19.7 ± 2.8 39.8 ± 8.3 62.2 ± 5.5 

BDI score 27.8 ± 7.52 28.8 ± 12.65 18.5 ± 0.72 36.4 ± 9.57 30.2 ± 12.3 23.1 ± 7.88 

Cognitive score 9.5 ± 4.4 10.35 ± 4.41 6 ± 1.41 12.2 ± 3.93 11.17 ± 5.0 6.5 ± 3.43 

Affective score 8.6 ± 1.5 7028 ± 3.14 5.5 ± 7 9.1 ± 3.47 6.8 ± 3.3 5.7 ± 2.1 

Somatic score 9.6 ± 4.3 11.2 ± 6.1 7 ± 0.00 15.1 ± 4.01 12.2 ± 5.3 12.6 ± 4.7 
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Table 2. Partial Spearman's Rho Heatmap of Correlation Between BDI and Its Subscale Scores 
With EEG and LORETA Findings. 

 
 

Note. BDI = Beck Depression Inventory; LC.A. Amy.L.Hip.L = LORETA coherency of alpha 
between left amygdala and left hippocampus; qEEG.co.T.F4/T4 = qEEG coherency of theta in F4–
T4. 

 
 

Figure 1. Residuals vs. Dependent Plot LORETA Alpha Coherency of Left HPC/Amygdala and BDI 
Scores Among MDD Participants.  

 
Note. BDI = Beck Depression Inventory; MDD = major depressive disorder. 
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Discussion 
 
This study provided a comprehensive investigation 
into the neurophysiological underpinnings of 
depression, with a particular focus on alpha and 
theta brainwave activity. By integrating surface EEG 
and LORETA methodologies, the research explored 
cortical and subcortical networks and their 
relationships with depressive symptomatology, 
including cognitive, affective, and somatic 
components. 
 
Behavioral Findings 
The findings revealed that elderly participants 
reported lower scores on cognitive scales compared 
to middle-aged and young participants. This aligns 
with prior research suggesting a negative correlation 
between age and BDI scores, with older adults 
potentially underreporting depressive symptoms due 
to factors spanning neurobiological, psychological, 
and social domains. These factors may obscure  
self-ratings of depressed mood in the elderly 
(Lyness et al., 1995). However, this result contrasts 
with a study of 556 adults and older adults, which 
found that the elderly scored higher on the somatic 
and performance subscales, but not on cognitive 
and affective subscales, compared to adults 
(Trentini et al., 2005). This disparity may be 
attributed to differences in sampling methods 
between our study and theirs. Notably, the studies 
have differed in terms of participant nationality. 
Furthermore, our study exclusively included 
individuals seeking therapy, while their sample may 
have included individuals who were not actively 
seeking therapeutic interventions. Another finding 
was significant effect of addiction on BDI, cognitive, 
and somatic score. These findings are consistent 
with previous research on 108 drug abusers, which 
demonstrated positive correlations between BDI-II 
subscales (cognitive, affective, and somatic) and the 
severity of alcohol and drug use (Dum et al., 2008). 
Similarly, another study on 42 adolescent and young 
adult marijuana users reported increased depressive 
symptoms, diminished fun-seeking, and reduced 
reward responsiveness associated with marijuana 
use (Wright et al., 2016). It was said that frontolimbic 
white matter integrity deficits in adolescent users 
probably contributed to apathy, ultimately 
exacerbated depressive symptoms.  
 
Electrophysiological Findings 
The analysis of LORETA data revealed a significant 
negative correlation between alpha coherency in the 
left HPC and left amygdala and somatic scores. 
Furthermore, this coherency accounted for 26% of 
the variance in BDI scores, indicating a meaningful 

contribution to depressive symptomatology. 
Supporting these findings, a prominent study on 123 
individuals with MDD and 81 matched controls 
identified significant differences in local networks, 
particularly in subregions of the left amygdala and 
the hippocampal tail (Zhang et al., 2022). Patients 
with MDD demonstrated reduced characteristic path 
length and modularity in these regions compared to 
controls. The decreased characteristic path length 
may reflect increased global information 
transmission within the hippocampus-amygdala 
network. This enhanced interaction may underlie the 
emotional facilitation of memory formation and the 
persistence of a bias toward sad memories in MDD 
patients. Reduced modularity indicates that the 
hippocampus-amygdala network may be less 
distinctly organized into discrete functional 
communities, reflecting impaired functional 
segregation. Such a less modular structure could 
signify disruptions in feedback and feedforward 
communication between the HPC and amygdala, 
potentially contributing to dysregulated emotional 
memory processes in MDD. Our finding aligns with 
the broader explanation of these findings. It 
suggests that promoting regulated, synchronized 
communication between left HPC and left amygdala 
via increased alpha coherence—that probably adjust 
feedback and feedforward communication—might 
help reduce certain depressive symptoms, 
particularly somatic ones. Overall, these results 
underscore the role of neuroanatomical alterations 
and biased functional interactions within the 
hippocampus-amygdala network in the 
pathophysiology of depression.  
 
EEG data analysis revealed a negative correlation 
between theta coherency in the F4–T4 region and 
BDI scores, particularly in the affective and somatic 
components. As theta coherence between the right 
frontal and right temporal regions increased, 
depressive symptoms, as measured by these 
scales, decreased. It is hypothesized that lower 
brain frequencies, such as theta, reflect subcortical 
processing in regions like the entorhinal neurons of 
the medial temporal lobe, driven primarily by mass 
synchronized neural firing. They enable the 
synchronization of neural populations across  
large-scale networks, such as frontal and temporal 
regions, which play a pivotal role in memory 
performance and serve as a bridge between  
self-perception and affective states. (LaVarco et al., 
2022; Takahashi et al., 2007). These networks, 
predominantly mediated by right-lateralized 
structures, significantly influence self-awareness and 
mood (Devinsky, 2000; Platek et al., 2004). Theta 
activity also plays a crucial role in emotional 
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processing, particularly in response to salient and 
arousing stimuli. Studies have demonstrated that 
theta power is greater for emotional stimuli 
compared to neutral stimuli and is sensitive to 
affective content irrespective of valence. 
Furthermore, theta activity is modulated by personal 
distress, highlighting its role in empathy-related and 
emotional regulation processes (Romeo & Spironelli, 
2024). In the context of our study, the observed 
increase in theta wave synchronization between the 
right frontal and temporal cortices likely reflects 
enhanced functional connectivity within these neural 
networks. This increased synchronization may 
facilitate organized cognition and emotional 
regulation, thereby contributing to the alleviation of 
depressive symptoms. In confirmation of our finding, 
another longitudinal study investigated cognitive and 
emotional development in 81 healthy children and 
identified a significant role for frontotemporal 
functional connectivity, measured via EEG 
coherence, during an episodic memory encoding 
task. The findings highlighted the involvement of the 
right frontotemporal region (F4–T8) in supporting 
memory processes (Blankenship & Bell, 2015). 
Further support comes from a clinical trial involving 
30 adolescents with conduct disorder and 34 
controls (Dong et al., 2019). Resting-state fMRI data 
showed reduced frontotemporal connectivity in 
adolescents with conduct disorder, specifically in 
regions underlying cognitive and affective empathy. 
The study's authors proposed that frontotemporal 
communication facilitates the use of external social 
cues processed in temporal regions to infer 
emotional states in the medial prefrontal cortex. 
Reduced connectivity may impair the ability to 
access social cues, affecting cognitive empathy, 
leading to depressive symptoms. The improved 
connectivity may support processes such as 
emotional regulation, memory, and social 
understanding, contributing to the observed 
decreases in affective and somatic BDI scores. 
 

Conclusion 
 
Present findings highlight the critical role of 
synchronized neural activity in cortical and 
subcortical regions in regulating mood, providing a 
deeper insight into the mechanisms underlying 
depressive symptoms. Enhanced connectivity within 
key networks, such as the hippocampus-amygdala 
and frontotemporal regions, may represent a target 
for interventions aimed at alleviating specific 
depressive symptoms, particularly those related to 
somatic and affective dimensions. Overall, this study 
highlights the critical role of neurophysiological 
alterations in shaping the pathophysiology of 

depression and offers a foundation for future 
research exploring targeted brain areas. However, 
further studies, particularly those employing 
integrated EEG-MRI approaches, are necessary to 
investigate replication. Cofactors such as unwanted 
artifacts, the limited spatial resolution of LORETA, 
and the complex reciprocal connections between 
regions like the amygdala and HPC may confound 
the results, making it premature to draw clinical 
applications from these findings. 
 
Limitation and Implication for Future Research 
It is notable that our finding about the role of age 
deserves careful consideration as other important 
factors such as race, socioeconomic status, and 
cultural background that might affect reporting of 
symptoms were not assessed in our study. Our 
findings were also influenced by the limited sample 
size, particularly after stratifying participants into 
three groups, which increased susceptibility to 
variability and hindered result consolidation. Future 
studies should address this by leveraging large, 
stratified EEG databanks. Training machine learning 
algorithms on prevalidated EEG patterns with 
adequately sized datasets could equip health 
professionals with a versatile, portable, and  
cost-effective tool for reliably diagnosing depression. 
We strongly recommend adopting standardized 
artifact correction protocols, enforcing stringent 
inclusion and exclusion criteria, and incorporating 
the visual cortex in future analyses—an area we 
were unable to explore due to the data volume 
involved.  
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Abstract 

This study evaluated the effectiveness of heart rate variability biofeedback (HRVB) and mindfulness-based 
cognitive therapy (MBCT) in diagnosing and treating stress and anxiety. HRVB provides real-time data on the 
autonomic nervous system (ANS), highlighting the balance between its sympathetic and parasympathetic 
functions, while MBCT, combined with breathing exercises, targets the parasympathetic system, promoting 
positive thought reconstruction. A 22-year-old male with extreme anxiety and palpitations underwent a 12-week 
psychotherapeutic program involving HRVB and MBCT techniques. He practiced daily personalized breathing 
and mindfulness exercises, integrating them into daily activities. The results showed a shift from a stressed 
sympathetic ANS state to a relaxed parasympathetic one. He also demonstrated the ability to control his heart 
rate and improve thought patterns, leading to better emotional balance. This study highlights the combined 
potential of HRVB and MBCT in enhancing stress resilience, vitality, and autonomic balance, highlighting HRVB's 
pivotal role in tracking patient progress in clinical settings. 
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Introduction 

 
Heart rate variability biofeedback (HRVB) is a 
scientifically proven, noninvasive method and 
computer-based diagnostic program which monitors 
the autonomic nervous system (ANS) throughout the 
mind–body interaction, especially the balance 
between sympathetic (LF) and parasympathetic (HF) 
activity of the nervous system (Fournie et al., 2021; 
Khazan, 2013). Heart rate variability (HRV) is the 
variation of beat-to-beat intervals (bpm), also known 
as R-R intervals which evaluate a distance (ms) 
between each experienced heart rate (HR) beat 
(bpm), analyzing our overall psychophysiological 
conditions, vitality, cardiovascular health, and stress 
resistance (Malik et al., 1996). HRV is the natural 
rise and fall of HR in response to our breathing 
patterns, thoughts, emotions, the activity of 
concentration, conscious and subconscious fears, 
blood pressure, and hormones. Since a healthy HR 
should increase and decrease as we inhale and 

exhale, HRV reflects the general wellness of the 
organism, stress, autonomic balance, vitality, and 
homeostasis (Henriques et al., 2011). HRV 
measurements have become validated 
psychophysiological predictors of specific outcome 
situations in ecologically valid research and test 
paradigms with a parallel connection to the 
psychophysiological changes occurring in the 
participant. SDNN, the standard deviation of each 
normal R-R intervals of all cardiac cycles (IBIs), is 
the most important index for the HRV itself 
(Tabachnick, 2015). Monitoring SDNN and RMS-SD 
biomarkers in clinical settings can reveal 
participant’s general cardiovascular health, stress 
resistance, psychophysiological resiliency to the 
environment, immunity, biorhythm regulation, and 
overall homeostasis (Fournié et al., 2021; Gevirtz & 
Lehrer, 2003). SDNN, together with RMS-SD, can 
be maintained or increased by awareness of proper 
breathing practices or techniques, especially with 
the concentration on an extended exhale phase and 
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activation of the heart rate deceleration (HRD) in 
response to various environmental stimuli during test 
or performance (Carlstedt, 2018). The most ideal or 
desired HRV combination in any clinical test or 
performance (compared to the baseline or pretest 
and posttest measurements) requires lowered HR 
(HRD), increased SDNN, and RMS-SD with the 
activation of the high frequency (HF). The HF 
predominance reflects sudden changes in prolonged 
R-R interval, which activates the parasympathetic 
activation of the ANS with vagal nerve stimulation 
(Malik et al., 1996). The LF/HF ratio is also an 
important index that calculates the overall balance 
between the sympathetic and parasympathetic 
nervous system, especially in individualized HRV 
profiles to see the effectiveness of the breathing-
relaxation-based paradigms and treatment 
modalities (Lehrer et al., 2000). Among the many 
factors that impact HRV, the most crucial are 
cognitive functions and respiration connected to the 
conscious or unconscious activities of the mind, 
including stress, anxiety, and breathing patterns. 
HRV measurements reveal many psychosomatic 
disorders and stress-related reactions in connection 
to heart–brain functions (Goldberg, 2022). Higher 
HRV reflects overall good psychophysiological 
health and vitality, adequate flexibility to stress, good 
aerobic fitness, functional homeostasis, and balance 
between the sympathetic and parasympathetic 
nervous systems (Fournié, 2021). On the other 
hand, lowered HRV may be associated with aging, 
decreased autonomic activity, lower hormonal tonus, 
depression, panic attacks, anxiety, and fatigue that 
have a negative impact on ANS, typically causing 
exhaustion of the parasympathetic tonus and the 
vagus nerve (Gevirtz, 2013).  
 
Healthy and high resting HRV generates refined 
breathing patterns as self-regulatory strength to 
reduce negative emotions and enhance self-
awareness and mindfulness about negative thoughts 
(Segerstrom & Nes, 2007). HRVB enables 
individuals to learn to regulate their breathing and 
relaxation techniques to create a base for daily 
routines initiating mindfulness meditations and self-
healing exercises (Lehrer & Gevirtz, 2014). Several 
studies suggested that HRVB with mindfulness-
based interventions may be an effective treatment 
for generalized anxiety disorder, posttraumatic 
stress disorder (PTSD), and other 
psychophysiological disorders (i.e., Kemp et al., 
2012; Prinsloo et al., 2013; Wells et al., 2012; 
Zucker et al., 2009). During the HRVB trainings, the 
individuals learn to breathe at the optimal respiratory 
frequency, which needs to be set and later optimized 
during the training to maximize the increase of their 

HRV for the best stress resistance (Moore et al., 
2011; Prinsloo et al., 2013). HRVB displays beat-to-
beat changes in HR to teach the clients to maximize 
the HR increase during inhalation and decrease HR 
during exhalation. This process which is practiced 
daily by the clients is naturally imprinted into the 
ANS and regulated by the vagus nerve and the 
mechanism called respiratory sinus arrhythmia 
(RSA; Gevirtz, 2013). The therapeutic goal is to 
increase the HRV by increasing the HRV amplitude 
(the length in HRs between the highest point of the 
inhale and lowest point of the exhale) to strengthen 
the stress resistance, homeostasis, and baroreflex 
mechanism in patients (Gevirtz, 2000, 2007, 2011; 
Gevirtz & Lehrer, 2003; Giardino et al., 2000; La 
Rovere et al., 1998; Lehrer, 2007).  
 
The research has shown that combining HRVB with 
mindfulness-related psychotherapies, including 
prolonged exposure therapy (PET), acceptance and 
commitment therapy (ACT), mindfulness-based 
interaction (MBI), or mindfulness-based stress 
reduction (MBSR), is necessary to improve the 
efficacy of the treatments for stress and  
anxiety-related disorders, including PTSD and panic 
attacks (Dalenberg, 2014; Edwards, 2011; Gevirtz, 
2015; Kim et al., 2021). Combining ACT, known for 
components of mindfulness-based therapy, with 
HRVB showed high compatibility as a powerful tool 
for treating anxiety and stress-related disorders 
including trauma (Gevirtz, 2015, 2020). MBI and 
HRVB were successfully combined in studies by 
Azam et al. (2016) and Krygier et al. (2013) to 
improve the patients’ regulation of the autonomic 
and central nervous systems through the stress 
reduction program. In another study, the efficacy of 
the combination of HRVB and MBI showed a 
decrease in cortisol levels in participants (Bouchard 
et al., 2012; O’Leary et al., 2015; Sanada et al., 
2016). The positive intervention of an 8-week MBSR 
program with HRV measurements was presented in 
the treatment of people with schizophrenia as an 
effective nursing intervention to reduce stress 
responses and improve HRV and psychological well-
being (Kim et al., 2021). In applying stress-reducing 
treatments, a 5-week mindfulness meditation (MM) 
intervention and HRVB showed effective results for 
76 participants in terms of reduced stress, anxiety, 
and depressive symptoms and improved sleep 
quality (van der Zwan et al., 2015). Integrating a 12-
week compassion focus psychotherapy (CFP) 
program improved resting HRV in participants by 
focusing on self-compassion, writing skills, and 
emotional awareness (Steffen et al. 2021). 
Mindfulness-based cognitive therapy (MBCT) is a 
contemporary psychotherapy initially designed for 

http://www.neuroregulation.org/


Kramar  NeuroRegulation  

 

 

100 | www.neuroregulation.org Vol. 12(2):98–111  2025 doi:10.15540/nr.12.2.98 
 

the treatment of depression, but it has also been 
applied to the treatment of generalized anxiety and 
stress-related disorders (Evans et al., 2008; Kenny 
& Williams, 2007; Teasdale et al., 2000; van 
Aalderen et al., 2012). MBCT teaches patients to 
pay close attention to their internal experience, 
including concentration on the breath in the present 
moment, thoughts-related evaluating processes, 
body sensations, feelings, and emotions (Evans et 
al., 2008). MBCT is intended to improve inner 
awareness and acceptance of intrusive thoughts and 
feelings (Teasdale et al., 2000). MBCT educates 
participants to detach from habitual and repetitive 
negative thinking patterns and worrying thoughts 
which might lead to depression (Teasdale et al., 
2000). MBCT programs train participants to be in the 
present moment with empathy for all people equally 
in a nonjudgmental manner (Baer, 2003; Kabat-Zinn, 
1990). Some studies explored the relationship 
between MBCT and HRV combination, suggesting 
that mindfulness exercises may enhance the 
effectiveness of self-regulatory processes, including 
breathing to increase self-awareness about thoughts 
(Peressutti et al., 2012), and control over the HR to 
enhance HRV (Delizonna et al., 2009; Ditto et al., 
2006). Considering meditative practices as part of 
MBCT, Peressutti et al. (2010) showed evidence 
that positive HRV changes correlated with years of 
experience and breathing practices of the 
meditators, whereas Ditto et al. (2006) found that 
scan meditation (a skill used in MBCT) had a 
positive effect on RSA breathing by increasing vagal 
activity of the parasympathetic control of the ANS 
among meditative participants. 
 
The purpose of this study was to examine the effect 
of the relationship between MBCT with breathing 
exercises and the HRV changes seen in the patient 
who suffered from high anxiety, HR palpitations, and 
panic attacks. A 12-week MBCT program tailored to 
the patient after his first (baseline) HRV 
measurements generated a new HRV imprint where 
an additional four HRV measurements were 
analyzed and compared. This case study shows 
how poor HRV with symptoms of chronic stress, 
fatigue, and high anxiety can be modified within a 
few weeks and eventually completely changed by 

doing the MBCT breathing exercises and 
mindfulness techniques without any psychiatric 
medication.   
 

Methodology  
 
Participant 
The patient was a 22-year-old college student 
suffering from high anxiety, anger issues, chronic 
panic attacks, and HR palpitations. His triggers 
included a turbulent relationship with his father, part-
time work environment pressure, low self-esteem, 
and low self-confidence. The patient was single and 
financially unstable. He was a light smoker.  
 
All procedures performed in studies involving human 
participants were in accordance with the ethical 
standards laid down in the 1964 Declaration of 
Helsinki and its later amendments. Informed consent 
was obtained from the participant included in the 
study. 
 
MBCT Intervention  
The 12-week MBCT program was designed to 
integrate aspects of controlled breathing exercises 
and cognitive work. The patient came to the clinic 
once a week and learned a 20-min breathing 
exercise in which he alternated two different 
breathing patterns. The first breathing pattern 
(3x2x6x2) he performed for 2 min in which he 
inhaled by nose for 3 s, then held for 2 s, then 
exhaled by mouth for 6 s, and then held the breath 
for 2 s after the exhale. The second breathing 
pattern (3x3x3) he learned involved inhaling for 3 s 
through the nose, then exhaling through the nose for 
3 s, and then holding the breath after the exhale for 
3 s. The patient alternated these two breathing 
patterns every 2 min for an overall 10 min. For the 
last 10 min, he performed only the meditative pattern 
(3x3x3) in which he inhaled for 3 s through the nose, 
exhaled through the nose for 3 s, and then held his 
breath after the exhale for 3 s. The patient continued 
the 20-min breathing exercise at home every 
morning before he went to work for the 12-week 
treatment period. The 20-min breathing exercise and 
its impact on HRV are presented in Table 1.  
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Table 1 

A 20-Min Breathing Exercise 

Time (min) Breathing Pattern Duration (min) Purpose for HRV 

1–2 3x2x6x2 2 Increased HRV 

3–4 3x3x3 2 Relaxed HRV 

4–6 3x2x6x2 2 Increased HRV 

6–8 3x3x3 2 Relaxed HRV 

8–10 3x2x6x2 2 Increased HRV 

10–20 3x3x3 10 Relaxed HRV 

 
 
3x2x6x2 Breathing Pattern 
The purpose of the 3x2x6x2 breathing pattern was 
to increase the HRV by stretching the HR pulses 
during the highest point of the inhale phase when 
the HR goes up and the lowest point of the exhale 
phase when the HR goes down. Holding the breath 
for 2 s after inhaling increases HR, whereas holding 
the breath after exhaling lowers the HR.  
 
This breathing exercise looks in reality through the 
HRV using a Polar RS800 watch (Figure 1). The 
underlining segment is a 1-min 3x2x6x2 breathing 
pattern. With this breathing pattern, we are 
stretching our HRV; in other words, we are 
increasing our stress resistance by extending the 
bpm within the highest point of the inhale phase and 
the lowest point of the exhale phase. We can see 
that the average HR was 64 bpm, the highest HR 
was 85, and the lowest HR was 54 bpm. The 
difference made was 31 bpm. This HR elasticity of 
the nervous system generated an SDNN of  
130.1 ms or the TP was 16.900 ms, from which 89% 
of this energy was utilized in the LF 15.002 Hz, 
indicating more sympathetic activation of the 
nervous system. Our cells have memory, which 
means that if we practice breathing 3x2x6x2 
regularly on a daily basis, we are imprinting 
(generating) HR coherence into the nervous system 
as HRV plasticity into the neurocardiovascular 
system. In critical daily situations, if we activate this 
breathing, the cells recognize the purpose of this 
HRV imprint, and they will react immediately to 
reduce the stress.   
 
3x3x3 Breathing Pattern  
The 3x3x3 is a meditative pattern in which we 
concentrated on the coherence, stability, and 
endurance of the breathing in which the inhale and 
exhale phases are coherent and the same regarding 
the amplitude and frequency in the HRV graph.  
 

HRV monitored by Polar RS800 watch shows the 
highlighted section of 3x3x3 breathing pattern 
(Figure 2). The purpose of this breathing pattern is 
to imprint into our cells and neurocardiovascular 
system the optimal HRV zone functioning in which 
we feel comfortably relaxed. In particular, the 
second part of this 1-min breathing pattern was very 
coherent. We can see that the highest point of the 
inhale was 79 bpm, the average was 69 bpm, and 
the lowest was 59 bpm, presenting lower variability 
and energy level as the SDNN was 54 ms. The TP 
was 2.319 ms, from which the HF indicating net 
parasympathetic stimulation was 67%. It is shown 
that for the activation of the parasympathetic 
nervous system, we do not need to generate a high 
variability. On the contrary, we need coherent and 
shorter breaths to the diaphragm region of the 
abdomen with a short maybe 2- to 3-s hold after the 
exhale phase to deepen the HR. Therefore, 
practicing this 3x3x3 breathing pattern daily can 
benefit people with high anxiety, sleeping problems, 
or difficulties switching off and relaxing.  
 
The Cognitive Work  
Applying MBCT with HRVB helped the patient 
increase his awareness of his intrusive thoughts and 
the ability to change or reevaluate them according to 
his willpower and intention. Throughout the 
applications of the MBCT, the patient learned to use 
positive self-talk and affirmations when exhaling to 
lower his HR in critical situations and thus slow down 
the current of the intrusive thoughts to be able to 
change them. The 6-s exhale phase, which he 
trained in during the morning exercises, allowed him 
to alter the negative images by applying mindfulness 
in critical situations and using positive self-talk. 
MBCT also integrated meditative techniques to 
enhance his moment-to-moment awareness, 
nonjudgmental acceptance, and unconditional 
empathy to increase his self-esteem in activating the 
parasympathetic nervous system. 
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Figure 1. Examples of Alternating Breathing Pattern for 1 Min of 3x2x6x2. 

 
Note. Examples of the alternating breathing pattern for 1 min of 3x2x6x2 followed by 1 min of 3x3x3 
monitored by Polar RS800 watch. The highlighted section is the 3x2x6x2 breathing with HRV data in the 
small table. 

 

 
Figure 2. Examples of Alternating Breathing Pattern 1 Minute of 3x3x3.

 
Note. Examples of alternating breathing pattern for 1 min of 3x2x6x2 followed by 1 min of 3x3x3 
monitored by Polar RS800 watch. The highlighted section is the 3x3x3 breathing pattern with HRV data 
in the small table. 
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HRV Measurements  
Biocom 6000 Bluetooth ECG Recorder was used in 
this study, and the HRV measurements were taken 
in a clinical setting. Biocom Technologies is the 
global leader in developing, manufacturing and 
marketing HRV products (Biocom Technologies, 
2023). In addition, Biocom develops biomedical 
software and hardware products designed to monitor 
physiology for research and educational purposes.  
 

HRV is analyzed by (a) time domain analysis which 
includes mean HR (bpm), mean R-R (ms), SDNN 
(ms), RMS-SD (ms), pNN50 (%); and (b) frequency 
domain analysis which includes the power spectrum 
of overall ANS including total power, VLF, LF-
sympathetic activation, HF-parasympathetic 
activation, and LF/HF ratio (Malik et al., 1996). A  
5-min HRV test was performed in a sitting position at 
the beginning of each psychotherapy session. 

 
Figure 3. 

 
Note. The placement of the Biocom 6000 Bluetooth ECG recorder on the participant to measure HRV 
using Biocom Technologies software.  

 
 

Results 
 
In the 12-week MBCT program tailored to the 
patient, 4 weeks: Week-1 baseline, Week-4, Week-
8, and Week-12 final were thoroughly analyzed by 
HRV time domain analysis (Table 2) and HRV 
frequency domain analysis (Table 3). In addition, the 

changes and new HRV imprints of the 4 weeks were 
compared in graphs (Figures 4, 5) and the original 
Biocom Technologies Autonomic Assessments 
(Figures 6, 7, 8, 9), which displayed the actual 5-min 
HRV measurements taken at the beginning of each 
four therapeutic sessions.  

 
 

Table 2 

Time Domain Analysis 

HRV Measurements 
Mean 

HR (bpm) 
Mean 

RR (ms) 

SDNN 

(ms) 

RMS-SD 

(ms) 

pNN50 

% 

Week 1 - Baseline 113.9 526.7 38.2 9.5 0.0 

Week 4 91.6 655.1 39.3 14.5 0.4 

Week 8 78.3 766.7 54.7 37.6 16.6 

Week 12 - Final 71.1 844.5 55.3 43.4 24.2 

Note. The progress in patient’s stress resistance is seen as the mean HR (bpm) is lowering and SDNN (HRV) and RMS-SD 
(parasympathetic level) indexes are increasing over the 12 weeks.  
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Table 3 

Frequency Domain Analysis  

HRV Measurement 
TP 

(ms2/Hz) 

VLP 

(ms2/Hz) 

LF 

(ms2/Hz) 

HF 

(ms2/Hz) 
LF/HF 

LF 
Norm % 

HF 
Norm % 

Week 1 - Baseline 473.9 355.8 95.0 23.2 4.1 80.4 19.6 

Week 4 436.4 255.9 135.2 45.4 3.0 74.9 25.1 

Week 8 776.6 246.6 145.5 384.7 0.4 27.4 72.6 

Week 12 - Final 973.7 123.1 225.9 624.6 0.4 26.6 73.4 

Note. The progress in the patient’s stress resistance is seen as the TP (total power-index for energy level). It has increased 
over the 12 weeks, together with the enhanced level of the HF-parasympathetic vagal activation of the ANS. 
 
 

Figure 4. Time Domain HRV. 

 
Note. HRV improvement is measured in SDNN and RMS-SD index levels. The RMS-SD index 
indicates the parasympathetic branch, considered the most relevant and accurate measure of 
ANS activity over the short term.  

 
 

Figure 5. Frequency Domain HRV. 

Note. Improvement in HF (parasympathetic nervous system) vagal activity to learn relaxation techniques 
applying the breathing exercises and meditation techniques. HF index is also known as a “respiratory” band 
because it corresponds to the HR variations caused by respiration (this phenomenon is known as 
respiratory sinus arrhythmia [RSA]). 
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The original Biocom Technologies 5-min HRV 
assessments were taken before the first (baseline), 
fourth, eighth, and twelfth (final) psychotherapeutic 
sessions (Figures 6, 7, 8, 9). The most significant 
indicator of stress is the HR waveform graph which 
displays the activity of the HR variation impacted by 
conscious or unconscious breathing patterns with 
mental processes which created specific HRV 
waveforms. This process generates HR coherence 
or incoherence, interpreting the stress or relaxation 
responses for further HRV data analysis. Over the 

12-week timeframe, the results displayed how the 
HR waveforms were changed and became more 
coherent, consistent, and synchronized, reflecting 
equal amplitudes of the inhale and exhale phases 
which generated balance in the ANS and 
homeostasis. The learned and trained 
psychotherapeutic progress culminated in Week 12 
during the final HRV measurement outcome (see 
Figure 9).  
 

 
 

Figure 6. Week 1. HRV Baseline - Biocom Technologies Autonomic Assessment Showing High Stress Level of the 
Patient.  
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Figure 7. Week 4. HRV-Biocom Technologies Autonomic Assessment Showing Moderated Stress Level of the 
Patient. 
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Figure 8. Week 8. HRV - Biocom Technologies Autonomic Assessment Showing Improvement in Relaxation 
Ability of the Patient. 
 

 
 

Figure 9. Week 12. HRV Final - Biocom Technologies Autonomic Assessment Showing Good Relaxation 
Respond of the Patient.  
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Discussion  
 
The objective of this study was to show how the 
combination of the HRVB and MBCT might be 
applied in modern psychotherapeutic settings for 
effective diagnoses and treatment of the patient. It is 
evident that HRVB has become a well-sought 
noninvasive diagnostic tool for objectively 
diagnosing and monitoring the patients regarding 
anxiety and stress-related disorders. It is because 
only HRVB can provide the data of the ANS, which 
is essential information for a further therapeutic 
outline of the treatment. For psychotherapists, it is 
important to objectively see the stress level in 
patients and which branch of the ANS (sympathetic 
or parasympathetic) dominates to tailor the proper 
treatment and generate the balance of the ANS. In 
the therapeutic setting, the HRVB has become a 
very good learning and teaching tool when the 
patient is able to visually learn on the computer 
screen how anxiety and stress can be managed in 
terms of HR monitoring during the breathing 
exercises or when using positive mental affirmations 
and meditative practices. Similarly, HRVB should 
become a motivational and transparent diagnostic 
tool for the patient and the therapist to monitor the 
progress of the treatment, which can be seen just in 
a few weeks in the newly moderated HRV imprints of 
the patient. In other words, seeing on the screen the 
HRV outcomes, the patient cannot lie to the 
therapist if he does or does not do the breathing 
exercises daily, and neither can the therapist lie 
about the progress or failure of the treatment.  
 
In this study, the HRVB was measured by computer-
based Biocom Technologies Autonomic 
Assessments which provide comprehensive HRV 
examinations including time domain analysis, 
frequency domain analysis, heart rate graph waves, 
power spectrum analysis, scatter-heart rate graph, 
comparable levels of LF and HF activities, 
autonomic tonus and balance comparison, and 
written test summary (Biocom Technologies, 2023). 
The following sections offer narrative descriptions of 
the four HRV measurements thoroughly analyzed in 
the study. These descriptions are mental 
representations of the feelings and emotions 
experienced by the participant when the HRV 
measurements were taken. The 5-min HRV 
measurements were taken at the beginning of each 
session.  
 
Week 1: Baseline HRV Measurement (Figure 6) 
The patient came to the clinic for the first time and 
took the first baseline HRV assessment for an initial 
diagnosis. We can see that he felt very high anxiety 

and stress where the HR palpitations escalated over 
135 bpm, activating the sympathetic nervous system 
with symptoms of chronic stress, fatigue, and 
insomnia. The average HR was 114 bpm, with a low 
SDNN of 38.2 ms in total autonomic dystonia.  
 
We analyzed the situation, and he began to open up 
and disclosed his stressors, including bad 
relationships with his father and his boss at work. 
The patient also confessed to having feelings of 
anger towards everyone around him, especially 
towards his boss because he felt disrespected by 
him at work. He blamed others to excuse his 
failures. After we analyzed the situation, we 
introduced the breathing exercises 3x2x6x2 and 
3x3x3 (see Table 1). He started to do breathing 
exercises daily along with MBCT and some 
mindfulness techniques to reevaluate his stances 
towards certain life situations and people positively. 
He was quite dedicated, and the positive results 
were soon achieved.   
 
Week 4: HRV Measurement (5 Min; Figure 7) 
In this HRV measurement, we can see that after  
4 weeks of training, the HRV imprint became more 
coherent, lowering the patient’s HR to 92 bpm 
(average) and generating a more balanced 
autonomic assessment. However, the nerve and the 
cognitive system still triggered minor palpitations 
stimulating the sympathetic nervous system. 
However, the HR palpitations were shorter in time 
and frequency but still reached 115 bpm, which is 
relatively high compared to his baseline. We can 
also see that the HR palpitations dropped quickly, 
which was a good sign for a faster recovery in terms 
of a new imprint of the HRV to the patient’s ANS. 
The patient learned that the images of unresolved 
problems, such as faces or body images of his 
father or boss, from his subconsciousness were 
causing these HR spikes. It is because the ANS 
recognized the images as a mental threat trying to 
activate the sympathetic nervous system to fight 
them by increasing the HR. By applying the MBCT, 
the patient learned how to neutralize the intrusive 
images and reevaluate them differently in a more 
peaceful way using the new positive inner stances 
towards them more empathetically to accept them as 
learning and training opportunities for his stress 
resistance.  
 
Week 8: HRV Measurement (5 Min; Figure 8) 
In this HRV measurement, the patient reached the 
parasympathetic HF vagal activity for the first time.  
We can see that the HRV became more coherent, 
and HR spikes are more consistent in frequency and 
amplitude. This new HRV imprint guaranteed 
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comfortable and optimal HRV zone functioning, 
positively impacting overall homeostasis. The 
average HR was lowered to 78 bpm which increased 
the SDNN (54.7 ms) and RMS-SD (37.6 ms), 
respectively, showing increased stress resistance 
and vitality.  
 
The patient was dedicated to breathing exercises, 
and we can see excellent phases of HRV coherence 
in deep HF parasympathetic relaxation. As the HR 
lowered, the current of the thoughts also slowed, 
allowing him to reconstruct the thoughts more 
comfortably and empathetically using the MBCT 
techniques. Therefore, if the patient knew how to 
activate HF and relaxation in the ambulatory or 
clinical environment, he could maintain the new HRV 
imprint anywhere and anytime, using his skills and 
willpower. In other words, the ANS and homeostasis 
will only activate what is trained, learned, and 
imprinted on the ANS.   
 
Week 12: Final HRV Measurement (5 Min; Figure 
9) 
In this measurement, the patient performed the 
3x3x3 meditative breathing pattern. The goal was to 
calm the mind and completely switch off in a more 
meditative-empathetic mode. This was his best HRV 
outcome, and it was not easy to do it at all. The 
average HR was lowered to 71 bpm with increased 
RMS-SD (43.4 ms) in deep HF parasympathetic 
vagal meditative response. The most important was 
that the patient was able to maintain the 3x3x3 
breathing meditative HRV shape for 5 min without 
any conscious or unconscious disturbances, seen in 
the HRV graph as desynchronized or incoherent HR 
spikes. During the 12 weeks, the patient also 
developed specific MBCT skills and coping 
mechanism techniques which he wisely applied in 
daily stress-related situations. Applying the MBCT, 
the patient also completely reevaluated some 
stances to his current situation, especially in the 
relationships with his father, which used to cause 
him stress, hate, and anger previously seen as HR 
spikes in the HRV graphs. As we can see, with 
dedicated training, the optimal HRV zone functioning 
can eventually be imprinted into the ANS system by 
practicing daily breathing exercises with positive 
affirmations, visualization skills, and self-talk.  
 
It became evident that it took a few weeks for the 
patient to understand and familiarize himself with the 
mechanism of breathing exercises in connection to 
his inner work in terms of using positive self-talk. 
The patient disclosed having problems seeing and 
detecting negative and fearful thoughts at the 
beginning of the treatment sessions. However, as he 

practiced more, he felt better and became more self-
confident and in control. He reported that in critical 
stress-related situations or worries about the future, 
he immediately applied the 3x2x6x2 breathing 
pattern, which helped him regulate the stress as he 
slowly exhaled through the mouth. Especially during 
the extended exhale phase, he learned to repeat the 
affirmations and positive self-talks. He implemented 
the same techniques during moments of anger or 
flashbacks connected to past-related memories that 
were unexpectedly playing out through his mind. In 
this approach, we need to consider that the patient 
visually learned on the HRV computer how these 
intrusive images were detrimental to ANS, causing 
HRV incoherence and HR stress-related spikes.  
 
Since his HRV was monitored weekly and he could 
see the HR incoherence, it helped him believe in this 
treatment technique with high self-confidence and 
determination. This therapeutic mechanism can be 
applied effectively based on self-hypnotism when, 
during the exhale phase, the time during the HR 
pulses (bpm) is spreading, and the ANS system is 
calming down. This therapeutic process confirmed a 
new self-healing paradigm on increasing 
mindfulness and self-awareness of thoughts 
connected to the deep subconscious level by 
embedding new positive images and schemas with 
high self-confidence. 
 

Conclusion 
 
This study advocates using HRVB as a scientific 
apparatus to measure stress with MBCT as a holistic 
modality. Combining both approaches has shown to 
be an effective diagnostic and therapeutic method 
for treating patients with stress-related disorders. 
The patient in the study made progress by following 
the exact procedures as seen on the HRV monitors. 
This progress developed the patient’s motivation 
and self-confidence needed to believe in this 
treatment.  
 
During the 12-week MBCT program, the patient 
could completely transform his stressful and 
unhealthy HRV pattern into a healthy one by 
activating the HF parasympathetic nervous system 
using willpower. Therefore, for psychotherapists, it is 
important to objectively assess the stress levels in 
the patient, especially by monitoring the patient’s 
prevalent reactions and tendencies in either the 
sympathetic or parasympathetic nervous system.  
 
By applying HRVB, the patients learn about their 
mind–body interactions, breathing, and thought 
processes. They quickly realize the detrimental 
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effect of negative and intrusive thoughts on their 
mental health. The real-time monitoring of HRV on 
the screens during the sessions enables 
psychotherapists to diagnose more quickly and 
efficiently. It also makes the treatment more 
transparent and interesting for the patients.  
 
This study strengthens the idea that HRVB is an 
effective teaching and learning tool for 
psychotherapists and patients to increase the quality 
of the treatment and motivation factors for the 
patients in clinical settings.  
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Abstract 

This article presents a roadmap of ways to improve the effectiveness of EEG neurofeedback training (NFT) based 
on a literature review and our own research on internal and external factors affecting NFT outcomes. Here we 
provide a justification for the expediency of using individually determined EEG indices as a feedback signal, 
based on an analysis of the alpha peak frequency and the level of neuronal activation. As personalization of the 
NFT for self-regulation means receiving information from a unique neurophysiological parameter inherent only to 
this individual, the basic internal socioeconomic, psychological, and physiological factors play an important role in 
training efficiency. Also, external factors such as the delay and modality of feedback presentation, valence of 
reinforcement, electrode localization, visual condition, body position, duration, and number of NFT sessions, 
forehead muscle tension and EMG artifact contamination will be discussed. A rationale for each step of this 
roadmap will be given from the point of view of how this or that factor can influence the personalization and 
consequently, the effectiveness of self-regulation training with NFT. The article provides a forward-looking 
opportunity to optimize NFT, providing a sketch setting out the necessary steps. 
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Introduction 

 
Neurofeedback training (NFT) is a brain-computer 
technology for awareness and learning to control 
one's own quantifiable neurophysiological 
parameters that are signs of cognitive and 
psychomotor functions and affective processes. This 
means that when the participant’s brainwaves are 
functioning effectively and efficiently, the brain is 
stimulated in the form of feedback as a reward 
(Birbaumer, 2024; Kamiya, 1969; Ros et al., 2020). 
Despite the fact that the principle of any kind of 
biofeedback technology, based on the use of 
feedback signals from one’s own 
psychophysiological parameters, assuming high 
personalization in learning to control these functions, 

the effectiveness of this technology for self-
regulation training still remains a subject of debate 
(Alkoby et al., 2018; Arns et al., 2013; Ros et al., 
2020; Schönenberg et al., 2017; Sokhadze et al., 
2008). However, the impact of several internal and 
external factors, which are often not taken into 
account when organizing protocols and analyzing 
NFT results on the effectiveness of NFT, has not yet 
been definitively determined. It is assumed that 
internal factors involve the initial psychological 
(Fontanari, 2017; Fyfe et al., 2015; Kadosh & 
Staunton, 2019) and physiological (Bazanova, 
Nikolenko, et al., 2017; Kerson et al., 2020) state of 
the subject, including the genetically determined 
individual electroencephalographic (EEG) frequency 
pattern (Bazanova, 2012; Hanslmayr et al., 2005). 
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The external factors include some technical issues 
such as delay (Smetanin et al., 2020) and modality 
(Dessy et al., 2020; Steel et al., 2016; Wächter et 
al., 2009) of feedback presentation, duration (Yeh et 
al., 2021), frequency (Weber et al., 2020), number 
(Domingos et al., 2021), and ergonomics 
(Mouchnino et al., 2017; Pirini et al., 2011) of NFT 
sessions. 
 
The purpose of this article is to provide a roadmap of 
scientific and technical possibilities for improving the 
efficiency of NFT. 
 
Here we will not consider types of NFT that use 
brain hemodynamic indices based on 
hemoencephalography measurements (Dias et al., 
2012), slow cortical potentials (Castermans et al., 
2014), the low-energy neurobiological control 
system (Zandi Mehran et al., 2015), functional 
magnetic resonance imaging (fMRI; Fede et al., 
2020), and near-infrared spectroscopy (Kohl et al., 
2020) as feedback. These types of feedback are 
unsuitable for self-control training because of their 
long feedback presentation latency—not less than 
1–3 s. In connection with the above, the EEG-NFT is 
more promising, since in comparison with the NFT 
types listed above, the main advantage of the  
EEG-NFT is high temporal resolution. This 
advantage makes it possible to estimate the 
magnitude of rapid changes in neuronal activity 
under current conditions, making EEG-NFT the most 
suitable technology for obtaining immediate 
feedback from fast-flowing cognitive and 
psychomotor functions and affective processes 
(Smetanin et al., 2020). 
 
Meanwhile, there are still restrictions on the EEG-
NFT use too. In particular, the so-called "z-score" is 
an NFT based on comparing the given patient’s 
EEG power in the standard traditionally adjusted 
frequency ranges with a normative EEG database 
(Collura, 2010), which assumes that the EEG indices 
in the standard fixed bands corresponds to a 
Gaussian distribution. However, psychometric 
evidence for this assumption has not been provided 
(Jobert et al., 2013). Moreover, the presence of 
asymmetry and kurtosis of the EEG power histogram 
in standard bands indicates a deviation of the 
distribution from normality (Thatcher et al., 2003; 
Wood et al., 2024). These deviations may be the 
result of inaccuracies or errors in the registration, 
processing and subsequent analysis of EEG signals 
(Gutmann et al., 2018). In other words, the most 
likely reasons that distinguish the distribution of EEG 
spectral power indicators from normal may be due to 
the following factors: (a) lack of an individual 

approach to determining the boundaries of 
frequency bands (Bazanova & Vernon, 2014; 
Klimesch et al., 1998); (b) contamination of EEG by 
electromyographic (EMG) low-amplitude  
low-frequency artifacts (Goncharova et al., 2003; 
Gutmann et al., 2018; Halliday et al., 1998); and (c) 
ergonomic conditions such as body position 
(Slobounov et al., 2009), biological rhythmicity 
(Bazanova et al., 2018; Gertz & Lavie, 1983), 
duration (Vernon et al., 2004) and sequence of EEG 
recording with open and closed eyes (Hardt & 
Kamiya, 1976). All these factors reduce the 
accuracy of EEG analysis and consequently the 
NFT efficiency, jeopardize the reproducibility of the 
research results, lead to unpredictable effects of 
treatment and possibly even to a deterioration of the 
patient's condition, thereby discrediting the 
biofeedback technology (Bazanova & Aftanas, 2010; 
Ros et al., 2020). 
 
It is important to note that we will not discuss here 
how the effectiveness of NFT is evaluated, nor will 
we conduct a meta-analysis comparing the level of 
effectiveness of NFT for the following reasons: (a) 
published meta-analyses evaluating the efficacy of 
EEG-NFT have demonstrated a wide variety of 
paradigms; (b) most meta-analysis data have 
limitations reported by the researchers, such as the 
use of different types of NFT, making it difficult to 
determine the most effective approach; and (c) the 
most common problem is the lack of standardized 
protocols, treatment procedures and duration, 
making complicated the comparison of results 
across studies (Askovic et al., 2023). Only one  
meta-analysis of double-blind randomized controlled 
trials demonstrated comparable results of NFT that 
use alpha EEG power as feedback (Xiang et al., 
2018). Moreover, these meta-analyses did not take 
into account external and internal factors influencing 
the EEG-NFT efficiency. This highlights the need to 
establish scientific and technical challenges and 
opportunities for enhancing EEG-NFT efficiency and 
developing a roadmap for creating the optimal NFT 
protocols, which becomes more challenging when 
NFT is considered as a form of individualized 
medicine. 
 

Methods 
 
The algorithm for searching information in the 
databases PsyINFO, PubMed, Google Scholar, and 
eLibrary was carried out according to the 
requirements of PRIZMA (Brown et al., 2019; Moher 
et al., 2015). In accordance with the set goals of the 
search, abstracts, methodological 
recommendations, and textbooks were not taken 
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into account. English was chosen as the search 
language. Experimental articles from 1968 to April 
2024 were analyzed. The search queries have been 
adapted to various databases using Boolean 
operators AND and OR. The following keywords 
were used in the literature search: “Neurofeedback” 
AND “Efficiency” OR “Effectiveness” OR “Efficacy,” 
“EEG,” “Personality,” “Cognitive Functions,” 
“Awareness,” “Emotional State,” “Individual Alpha 
Peak Frequency,” “Alpha Power Suppression,” 
“Forehead Muscles EMG,” “Biological Rhythmicity,” 
“Feedback Delay,” “Feedback Modality,” 
“Reinforcement Valency,” “Session’s Duration,” 
“Sessions Number,” “Open Eyes,” “Closed Eyes,” 
“Electrodes Localization,” “Body Position.” 
 
The articles selection was carried out by three 
reviewers (Alexandr Zakharov, Ekaterina Nikolenko, 
& Olga Bazanova), who independently reviewed 
various databases, eliminating duplicates and 
checking that the articles met the selection criteria. 
 

Results 
 
The literature analysis has shown that there is a 
large number of experimental studies of EEG-NFT 
efficiency performed both in healthy subjects and in 
various pathologies (n = 775 literature sources 
according to the query in PubMed). At the same 
time, the number of studies devoted to the influence 
of internal and external factors on NFT efficiency is 
significantly lower. The studies considering the 
above-mentioned main factors are presented in 
Table 1. 
 
Impact of Internal Factors on the NFT Efficiency 
Personalization of the NFT for training in self-
regulation means receiving information from a 
unique neurophysiological parameter inherent only 
to this individual (Birbaumer, 2024). In this regard, 
the basic socioeconomic, psychological, and 
physiological factors as a learning predisposition 
state play an important role in self-regulation training 
efficiency (Gorev & Semenova, 2003; Rahman et al., 
2023; Ros et al., 2020). Meanwhile, much NFT 
research has not been predicated upon the 
assumption that a baseline recorded at session 
outset is reliable. 
 
Socioeconomic Status 
Rahman and coauthors showed that lower family 
income and poor parental communication predicted 
lower academic achievement (Rahman et al., 2023; 
Schibli et al., 2017). Schibli explained that poor 
environments, social isolation, or deprivation 
associated with low socioeconomic status can cause 

stress reactions and anxiety, which in turn affect 
cognitive development and academic achievement 
(Schibli et al., 2017). Particular, children with low 
socioeconomic status, when learning new things, 
pay attention to information indiscriminately and are 
late in filtering out information that is not relevant to 
the task (D’Angiulli et al., 2008). On the other hand, 
for children with high socioeconomic status, adaptive 
parenting styles, supportive role models, and  
self-regulation learning skills have been suggested 
as potential factors contributing to emotional stability 
and better academic outcomes (Flouri et al., 2014). 
 
Thus, socioeconomic factors, influencing the  
self-regulation training efficiency, contribute to such 
psychological factors as personality features, 
attention, emotional stability, and motivation to learn. 
 
Psychological Factors  
The effects of individual psychological features of 
the subject on the efficacy of application of the 
neurofeedback technique have attracted the 
attention of researchers (Ancoli & Green, 1977; 
Kadosh & Staunton, 2019; Schlatter et al., 2022; 
Yamaguchi, 1981). Optimal cognitive functioning is 
an important prerequisite for effective learning. 
However, in the learning process, as well as from 
the point of view of intrapersonal factors, Ancoli and 
Green (1977) mentioned that such features of the 
personality as authoritarianism, trustfulness, and 
introspectivity exert a significant influence on the 
efficacy of NFT; at the same time, effects of the 
levels of extraversion and empathy were not found 
(Ancoli & Green, 1977). H. Yamaguchi examined the 
dependence of the efficacy of alpha NFT sessions 
on the external versus internal locus control of the 
subject. Externals could significantly increase alpha 
power, while internals could not show such 
enhancement of alpha during the NFT (Yamaguchi, 
1981). Better understanding of the relationships 
between the Big Five personality traits and emotion 
regulation are a prerequisite for feasible and 
effective NFT from designer's point of view (Travis et 
al., 1974). For example, biofeedback coping 
interventions have a greater effectiveness in 
individuals presenting higher score of openness to 
experience (Schlatter et al., 2022). It was found that 
most successful at the NFT were the subjects with 
low scores on Extraversion and moderately high 
scores on neuroticism (Chernyshev et al., 2013).  
 
Cognitive abilities encompass those processes 
involved in controlling, organizing, and integrating 
information (Diamond & Ling, 2016). Participants 
with better overall cognitive function are better able 
to use biofeedback to promote learning (Kettlety et 
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al., 2024). Such factors as attention and language 
skills explain performance variability (Kettlety et al., 
2024). For this reason, cognitive abilities are crucial 
in NFT efficiency because they allow planning, 
reasoning, making decisions, and control and 
regulate emotions (Nguyen et al., 2019). In 
particular, inhibition represents the ability to control 
one’s behavior, thoughts, and emotions (Diamond & 
Ling, 2016) through an adaptive internal feedback 
afferentation loop (Bernstein, 1945; Sudakov, 1997) 
and consequently, this ability, as reflected by EEG 
alpha power, could increase biofeedback training 
efficiency (Doppelmayr et al., 1998; Doppelmayr et 
al., 2002). Diamond (2013) proposed that cognitive 
flexibility and/or creativity designates the ability to 
change one’s approach to a problem in order to 
adjust to new demands from the changing 
environment such as biofeedback technology 
(Boynton, 2001; Diamond, 2013; Pinho et al., 2014). 
Pinho showed that more creative individuals have 
greater functional connectivity, which may reflect a 
more efficient exchange of information in associative 
networks and thus increase the effectiveness of NFT 
(Pinho et al., 2014). Because cognitive functions and 
ability to control emotions change across the 
lifespan (Katsantonis, 2024), they could associate 
with different NFT efficiency: in childhood and 
adolescence academic achievement could predict 
more effective self-regulation (Katsantonis, 2024). In 
adulthood cognitive functions, self-control and 
learning ability are related to mental and physical 
health, marital harmony, public safety, etc. (Smith et 
al., 2019). In old adulthood cognitive and self-control 
abilities and strongly contribute to daily functioning 
and maintaining autonomy (Jefferson et al., 2011). 
 
Sometimes, it is difficult to provide evidence of the 
NFT effectiveness without subjects in the 
experimental and control groups being in the same 
conditions: baseline sociopsychological and 
physiological states, modality of feedback, number 
of training sessions, and awareness of the goals of 
NFT, in addition to the fact of true feedback. 
Meanwhile, awareness of NFT goals and ways to 
promote self-regulation learning are rarely 
addressed in research on NFT effectiveness 
(Bazanova et al., 2013; Kvamme et al., 2022; 
Matsunaga & Genda, 2005; Min et al., 2023). 
 
Awareness is a construct of considerable 
importance in many demanding tasks (Endsley, 
2013). Situation awareness is formally defined as 
“the perception of the elements in the environment, 
the comprehension of their meaning, and the 
projection of their status in the near future” (Endsley, 
1988). Situation awareness is related to cognitive 

events rather than passive monitoring of the course 
of treatment (Festa et al., 2024; Fontanari, 2017). As 
such, increasing awareness is important for the 
development and testing of NFT system designs and 
self-regulation training programs. 
 
It was shown that instructional recommendations 
(Bazanova et al., 2013; Kvamme et al., 2022) and 
mindfulness practice (Crivelli et al., 2019; Min et al., 
2023) could increase awareness of the NFT. 
Matsunaga and Genda considered using human 
physiological information as input because it reflects 
human feelings better (Matsunaga & Genda, 2005). 
The results showed that psychological techniques 
such as mindfulness (breathing, relaxation, 
imagination, etc.) without feedback cues are less 
effective for teaching self-regulation than NFT 
(Bazanova et al., 2013; Chikhi et al., 2023). 
Importantly, short breaks between NFT sessions, in 
which the neurofeedback awareness questionnaire 
can be embedded, may help to realize the goal of 
awareness, and could improve the NFT efficiency 
(Vernon, 2005). Thus, utilizing informative guidelines 
to increase awareness and psychophysiological 
techniques to enhance NFT performance may be 
reliable tools for conducting double-blind 
neurofeedback studies. 
 
The influence of the baseline emotional state on the 
effectiveness of NFT is poorly understood. However, 
it can be hypothesized that if a person is tired, 
stressed, anxious, or experiencing other negative 
emotions, it can greatly affect their ability to 
concentrate, make decisions, and control their 
thoughts and actions (Labrague et al., 2017). 
Conversely, positive emotional states can increase 
the effectiveness of NFT by helping a person to 
better concentrate, make decisions, and control their 
actions. Just a few researchers have demonstrated 
that neurofeedback was more effective for patients 
with more severe than for milder emotional 
disturbance (Choi et al., 2023; Hardt & Kamiya, 
1978; Konareva, 2005). So, in a group with a 
relatively high level of anxiety, it was found that as a 
result of NFT the alpha power increased in persons 
with moderate values of anxiety but was suppressed 
in individuals with the highest anxiety levels (Hardt & 
Kamiya, 1978). Later, similar results were obtained 
showing that biofeedback therapy was more 
effective for patients with high than low levels of job 
stress (Konareva, 2005; Wang et al., 2018). 
 
The above studies have identified several 
psychological factors that need to be controlled 
and/or isolated in order to successfully register EEG 
characteristics reflecting the baseline condition and 
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to predict the effectiveness of NFT. At the same 
time, it was shown that the impact of psychological 
factors manifested within the very first NFT stages 
(Ancoli & Green, 1977). This NFT period determines 
to a significant extent the efficacy of the entire 
training cycle, but this effect has not been 
systematically examined. 
 
Physiological Factors 
Several works used multiple physiological signals 
such as electrocardiogram (ECG; Pourmohammadi 
& Maleki, 2020), galvanic skin response (GSR; 
Azzalini et al., 2019), skin temperature (Arza et al., 
2019), arterial blood pressure (ABP; Arza et al., 
2019; Shuda et al., 2020), and plasma cortisol level 
(DeGood & Redgate, 1982; Paul et al., 2020; 
Quaedflieg et al., 2016) to detect the stress impact 
on cognitive efficiency. This allows us to assume 
that the above physiological parameters can affect 
the NFT effectiveness. Moreover, the study of 
Quaedflieg et al. (2016) demonstrates the influence 
of plasma cortisol level on frontal alpha asymmetry 
change after NFT. Overall, these studies argued that 
employing only a single marker cannot 
comprehensively assess the person’s stress 
response. As far as EMG and EEG variables, it was 
shown that such signs of stress as increasing the 
scalp EMG amplitude (Cacioppo, 2004; 
Pourmohammadi & Maleki, 2020) and decreasing 
the EEG alpha power (Bazanova & Vernon, 2014; 
Lopes da Silva, 2013) can serve as indicators of 
psychoemotional tension. 
 
EMG Factors Influencing NFT Efficiency 
The ability to control forehead muscle tone 
contributes to self-regulation capacity of mood and 
could be used in practice of EMG biofeedback 
training (Blumenstein & Orbach, 2014). At the same 
time, scalp EMG of low frequency and low amplitude 
could be a factor that might mask the stress-related 
EEG features and/or generate EEG features that 
could be misinterpreted as being stress-specific 
(Enders & Nigg, 2016; Halliday et al., 1998). These 
include the widespread increase of EEG in beta and 
gamma ranges that result from scalp EMG 
generated by the facial expressions that often 
accompany stress (Enders & Nigg, 2016; Halliday et 
al., 1998). So, one of NFT’s disadvantages to date is 
the lack of consideration of EEG contamination by 
low-frequency EMG components (Castermans et al., 
2014; Halliday et al., 1998). EMG artifacts, shown to 
be a problem during EEG NFT (Enders & Nigg, 
2016; Shackman et al., 2009), have a larger 
influence on the data as they do not diminish when 
averaging many trials and epochs, and, 
consequently, when constructing NFT designs 

incorrectly. Therefore, the probability of EMG 
artifacts must be considered when selecting 
channels for NFT: the maximum probability of EMG 
artifacts is observed in frontal, temporal, and 
occipital regions (Nekrasova et al., 2022).  
 
To overcome these EMG artifacts that are signs of 
psychoemotional stress, researchers and clinicians 
have developed NFT to enhance alpha production 
while simultaneously controlling frontal muscle 
tension (Markovska-Simoska et al., 2008; Petrenko 
et al., 2019; Wang et al., 2018). For example, NFT 
aimed at simultaneously reducing theta/beta ratio 
and forehead EMG was more effective in reducing 
impulsivity and reaction time in ADHD children than 
NFT without controlling frontal muscle tension (Arns 
et al., 2014; Bazanova et al., 2018; Strothmann, 
2024). Thus, to improve the effectiveness of  
EEG-NFT, it is necessary to take into account the 
EMG of the scalp muscles.  
 
Resting EEG Features  
In classical EEG studies, resting EEG refers to both 
amplitude (power) and frequency parameters of the 
EEG, as well as their changes in standard functional 
tests, such as the Berger test (Bazanova & Vernon, 
2014; D. A. Kaiser, 2001; Livanov, 1984; Lopes da 
Silva, 2013).  
 
Baseline brain activity measures such as EEG 
amplitude or power spectral density before training 
were mainly investigated to predict psychophysical 
performance (Linkenkaer-Hansen et al., 2004) and 
particular the NFT success (Alkoby et al., 2018; Su 
et al., 2021; Weber et al., 2020). For instance, 
learning beta/theta control can be predicted by 
resting beta power prior to training (Nan et al., 
2015), learning of the sensorimotor or alpha rhythm 
can be predicted by the amplitude/power of the initial 
sensorimotor rhythm (Reichert et al., 2015) or alpha 
power (Wan et al., 2014). Because lower alpha band 
power is associated with greater mental effort during 
problem solving (Golonka et al., 2019), this lower 
alpha band power of the resting EEG may predict a 
poorer outcome of NFT. Despite these findings, EEG 
amplitude itself is a highly fluctuating parameter 
influenced by excitation level, conduction, ECG and 
EMG artifacts (Bazanova & Vernon, 2014; Lopes da 
Silva, 2013). Therefore, amplitude values may be 
poorly predictive of the outcome of NFTs. 
 
Until now, the boundaries of EEG frequency ranges 
have been determined by general agreement, 
without theoretical justification, and without taking 
into account the functional features of EEG waves 
(D. A. Kaiser, 2001; Klimesch et al., 1997). For 
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example, there is a substantial body of evidence 
supporting the existence of functionally independent 
frequency subbands in the broader alpha range 
(Barry & De Blasio, 2017; Klimesch et al., 1997). 
Accordingly, determining the alpha power in a 
particular standard frequency band is likely to 
reduce the sensitivity of the experiment and increase 
the probability of typical error (Bazanova & Aftanas, 
2010; Bazanova et al., 2018; Doppelmayr et al., 
1998; D. A. Kaiser, 2001). 
 
The results of the literature analysis presented in 
Table 1 indicate the rare use of individual spectral 
frequency characteristics as a feedback cue in  
EEG-NFT. At the same time, out of 19 works 
studying EEG-NFT, using amplitude in fixed ranges 
calculated on the basis of individual alpha peak 
frequency (iAPF) as a biofeedback, only six studies 
are devoted to the study of NFT conducted on EEG 
magnitude within individually established boundaries 
of frequency bands (Bazanova & Aftanas, 2010; 
Bazanova et al., 2018; Escolano et al., 2014; 
Gutmann et al., 2018; Parsons & Faubert, 2021; 
Petrenko et al., 2019). At the same time, a 
comparison of the NFT effectiveness conducted to 
reduce the theta/beta ratio in children with ADHD 
according to individually established EEG ranges 
and standard ones (4–8 Hz theta and beta 13–18 
Hz) showed a significantly higher probability of 
reducing impulsivity, reaction time in the test and 
hyperactivity in children who underwent training 
according to individually established ranges 
(Bazanova et al., 2018). In addition, several studies 
have demonstrated the expediency of determining 
the iAPF as a predictive criterion for the 
effectiveness of NFT (Bazanova et al., 2018; 
Hanslmayr et al., 2005; Petrenko et al., 2019), and 
also to determine the strategy of neurotherapy 
(Pérez-Elvira et al., 2021; Voetterl et al., 2023). For 
example, the ability to train in a single NFT session 
is higher in people with iAPF > 10 Hz, and the 
effectiveness of NFT, as assessed by the magnitude 
of changes in trained performance, is higher in 
people with low iAPF < 10 Hz (Bazanova et al., 
2013; Petrenko et al., 2019). 
 
Thus, one of the most important EEG alpha rhythm 
parameters, individual alpha peak frequency, which 
determines the positive or negative type of 
emotional reactivity (Tumyalis & Aftanas, 2014), 
success of cognitive (Doppelmayr et al., 2002; 
Klimesch et al., 1997; Rathee et al., 2020) and 
psychomotor task performance (Bazanova et al., 
2013), can predict the effectiveness of NFT.  
 

Baseline Intensity of Neuronal Activation 
In most subjects, EEG alpha wave amplitude is 
higher when the eyes are closed and decreases 
when eyes are open. This decrease in EEG alpha 
power in the eyes-open (EO) condition, relative to 
the eyes-closed (EC) condition is used as one of the 
outcome measures of neuronal activation (Barry et 
al., 2011) and for the artifact correction (Kirschfeld, 
2005; van der Meer et al., 2016). It was shown that 
magnitude of neuronal activation depends on the 
phase of menstrual cycle in women (Bazanova, 
Nikolenko, et al., 2017) and the time of day 
(Compton et al., 2019). Less alpha attenuation with 
eyes open has been associated with such disorders 
as inattention (Barry & De Blasio, 2017; Bazanova, 
2012), schizophrenia (Koukkou et al., 2000), and as 
well as with developmental and age-related factors, 
including both younger and older age (Barry & De 
Blasio, 2017). Thus, because this baseline EEG 
parameter could predict cognitive efficiency 
(VaezMousavi et al., 2007), we propose that it could 
be used as a target for NFT and in prediction of NFT 
efficiency (Bazanova, 2012). Although decreased 
overall alpha power likely reflects the neuronal 
activation, the alpha band is subdivided (Babiloni et 
al., 2004) because lower (Babiloni et al., 2004; 
Klimesch et al., 1997) and high alpha subbands 
(Jensen et al., 2002; Klimesch et al., 1997, 1998) 
have been associated with somewhat different 
cognitive processes. Lower-frequency (i.e., lower 
than iAPF) alpha rhythms tend to reflect the more 
diffuse cortical loops regulating global attentional 
processes, such as alertness (Babiloni et al., 2014). 
Higher-frequency (i.e., higher than iAPF) alpha 
rhythms have been associated with more selective 
neural systems, including those involved in 
anticipating and processing specific sensory input 
and cognitive control (Bazanova & Vernon, 2014; 
Klimesch et al., 1998). Thus, we might take into 
account the preexisting neurocognitive vulnerability 
by studying EEG measures within these alpha 
subbands.  
 
Since the EC/EO effect is different for each subject 
in terms of the frequency band, we determined an 
upper and lower frequency threshold (i.e., those 
frequencies in which the EC/EO effect is most 
pronounced), and for the topological distribution we 
determined a channel selection (i.e., in which 
channels the EC/EO effect is most pronounced; van 
der Meer et al., 2016). Examination of the average 
power in posterior channels (Pz, PO3, POz, PO4, 
Oz) allows us to determine the frequency range 
associated with neuronal activation and therefore 
where the EEG-NFT effect will be most pronounced.  
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So, it is advisable to register EEG before the NFT 
both with open and closed eyes to determine the 
endophenotypic marker of iAPF and the level of 
neuronal activation, which are of important 
prognostic meaning for the NFT effectiveness 
(Bazanova & Vernon, 2014). 
 
Biological Rhythmicity 
As we know, biological rhythmicity has never been 
taken into account, and even the time of day is 
rarely reported in researching NFT efficiency. The 
majority of EEG-NFT studies have involved  
short-term (generally less than an hour) 
experimental procedures. In light of findings 
demonstrating independent rhythmicity in different 
physiological systems, such as gastric motility, renal 
excretion, as well as performance and physiological 
indices of arousal, a multioscillatory ultradian system 
has been proposed (Kripke, 1974; Lavie & Kripke, 
1981). In this line, Gertz and Lavie (1983) 
demonstrated that efficacy of NFT may depend on 
the baseline condition, related mainly to the ultradian 
rhythmicity of about 200 min/cycle seen in EEG 
indices, particularly iAPF, and in subjectively 
assessed arousal (Gertz & Lavie, 1983). 
 
The study of Pérez-Medina-Carballo et al. (2024) 
clarifies too the changes in EEG parameters that 
occur in women after menopause across circadian 
phases. The absent and dampened circadian 
variation of upper alpha power (12–15 Hz) in older 
subjects is consistent with an impaired output of the 
circadian pacemaker regulating spindle activity (Dijk 
& Duffy, 2020).  
 
Another type of biological rhythm that affects general 
well-being and cognitive performance that is rarely 
considered when evaluating the effectiveness of 
NFT is the menstrual cycle of women. We and other 
authors (Bazanova, Nikolenko, et al., 2017; Becker 
et al., 1982; Brötzner et al., 2014) have 
demonstrated that both iAPF and the intensity of 
neuronal activation change significantly depending 
on the level of sex steroids (Bazanova, Nikolenko, et 
al., 2017). Moreover, it has been shown that the 
highest learnability for self-regulation is observed 
during the phase with the highest progesterone 
levels.  
 
Thus, the analysis of EEG-NFT efficacy and the 
design of an NFT experiment including women as 
subjects should take into account the biological 
rhythms of women's hormonal state. 
 

External Factors 
The fundamental components of the biofeedback 
system include two groups of external factors that 
influence the effectiveness of NFT: (a) the 
acquisition and presentation of feedback signals 
(feedback signal presentation delay, feedback signal 
modality and reinforcement) and (b) the design 
elements of the NFT procedure (duration and 
number of NFT sessions, ergonomic factors of the 
procedure). 
 
Acquisition and Presenting Signals for Feedback  
This group of factors include signal detection, digital 
conversion (facilitating signal processing by a digital 
computer), signal processing utilizing software, 
signal display, and signal storage.  
 
The signal processing step of digital conversion is of 
paramount importance as the rate at which the 
signal is converted from its analog form to its digital 
counterpart determines the quality of the signal 
representation for the remainder of the process 
(Montgomery, 2001). Essentially, the frequency at 
which a signal is measured will dictate how that 
signal can be processed by the computer.  
 
Electrode Localization for Determining NFT 
Target Area 
Unlike fMRI-NFT, where the choice of the target 
area of NFT is a problem, EEG-NFT does not need 
a special localization of the electrode as a target of 
self-regulation, because the signal obtained at this 
electrode always reflects generalized neuronal 
activity (Acharya & Acharya, 2019; Ebrahimzadeh et 
al., 2022; Klug & Gramann, 2021; Tenke et al., 
2013). Accordingly, neurofeedback protocols that 
utilize the EEG signal for feedback may not limit 
training effects to specific brain regions (Gruzelier, 
2014; Güntensperger et al., 2020). Moreover, it is 
known that changes in the amplitude of the 
dominant EEG frequency amplitude induced by NFT 
at one site are accompanied by similar changes in 
other brain regions (Bazanova, 2011; Gruzelier, 
2014). Most likely, the effects of NFT occur at a 
more global level and therefore the NFT procedure 
affects several functionally different brain regions 
simultaneously (Güntensperger et al., 2020). Beside 
it, the probability of the highest amplitude and the 
least contamination by artifacts of EMG and ECG is 
higher in the parietal region than in the frontal and 
temporal regions (Jobert et al., 2013; Tenke et al., 
2013). This means that the effectiveness of 
feedback presentation in NFT will be higher from 
signals from the parietal region, where iAPF is most 
stable and reproducible (Bazanova, 2011).  
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Thus, the fast and brain-wide processes of voluntary 
self-regulation that occur during NFT suggest that 
the effectiveness of NFT does not depend on the 
electrode location. 
 
The Delay of the Feedback Signal Provided 
The timing of feedback is critical to the effectiveness 
of training in general, and it appears to the 
effectiveness of NFT in particular. The delay of the 
feedback cue depends on the proper setting of NFT 
latency, that is the time interval from the occurrence 
of a neural activity till the delivery of the feedback of 
that activity to the subject. If the experimenter uses 
the EEG power in a given range as a feedback 
signal, then the delay from such feedback will be 
greater than if the feedback on the envelope 
amplitude was used as feedback (Smetanin et al., 
2020). The reason for the greater delay in the 
feedback from the EEG power is the need to 
conduct fast Fourier transform (Tarasov, 2007). 
 
NFТ latency specifies the reinforcement schedule 
(Sherlin et al., 2011) and as such it affects the 
outcome of NFT (Matsunaga & Genda, 2005; 
Schoenfeld, 1970). This issue has been addressed 
rarely in previous studies is the effect of the 
reference signal delay and modality in a biofeedback 
system (Matsunaga & Genda, 2005; Table 1). We 
have hypothesized that the shorter the delay, the 
faster the healthy subject will be able to recognize 
their condition and change it accordingly to feedback 
cue. To this end, real-time algorithms are needed 
that would shorten the delay while maintaining an 
acceptable speed-accuracy trade-off. Ossadtchi and 
colleagues showed that using the operating at zero 
latency, the weighted least-squares complex-valued 
filter approach yielded 75% accuracy when detecting 
alpha-power episodes, as defined by the amplitude 
crossing of the 95th-percentile threshold (Smetanin 
et al., 2020). Although, there is no work that 
specifies the optimal feedback delay for improving 
deliberation performance, this research 
demonstrates the effectiveness of a short delay in 
presenting feedback because brief delays of 
feedback are beneficial sometimes encourage 
anticipation of the upcoming feedback (Smetanin et 
al., 2020). 
 
This latency time depends not only on the technical 
capabilities of the feedback signal processing, but 
also on the initial subject’s psychoemotional state 
before learning. Thus, the results of the study by 
Paul et al. (2020) showed that stress, through an 
increase in the level of cortisol, affects the neural 
mechanisms of processing feedback. Instead of 
accelerating the reaction to control the emotional 

state under stress, the authors noted a decrease in 
cognitive control under stress. Depending on 
feedback timing, the neural structures involved in 
learning differ, in dependence on the dopamine 
system that could being more important for learning 
from immediate than delayed feedback (Paul et al., 
2020). Similar, the results from a study of children 
attention-deficit/hyperactivity disorder (ADHD) by 
Mullaney et al. (2014) showed that delaying 
feedback up to 8 s after stimulus presentation in 
verbal memory tasks improved learning performance 
to a greater extent than delaying results for a short 
period of time after the response. For instance, 
Baghdadi et al. (2020) showed that shorter feedback 
signal delay is more effective in NFT only for healthy 
patients. The authors demonstrated that for children 
with ADHD, a long feedback delay is more effective 
than an immediate feedback cue, which is consistent 
with longer reaction times in children with ADHD. In 
this case, feedback of 1200 ms in children with 
ADHD demonstrated a greater effect relative to 
feedback with a 200 ms signal delay (Baghdadi et 
al., 2020). Considering a coupling between the 
reward and attention circuits (Ibanez et al., 2012), 
attention is crucial for efficient neurofeedback 
learning (Kadosh & Staunton, 2019). It’s a reason 
explaining the impairment of reward processing has 
been reported in children with ADHD (Ibanez et al., 
2012). The second reason why the longer delay of 
feedback could be more efficient than immediate is 
slowing reaction time connected with slowing iAPF in 
ADHD in comparison with healthy subjects 
(Bazanova et al., 2018; Samaha & Postle, 2015). 
Samaha and Postle (2015) demonstrated that 
subjects with lower iAPF have slower temporal 
resolution of visual stimuli than those one with 
higher iAPF. Insufficient research on the influence of 
the delay of signal presentation does not allow us to 
say which time values should be optimal for effective 
NFT. However, at this point we can say that the 
choice of delay time is influenced by baseline 
physiological condition. 
 
Overall, these data indicate the importance of 
selecting the delay of reference signal in NFT 
systems according to the individual baseline 
characteristics of each participant, such as iAPF. 
 
Level of Thresholds 
The factors that determine the NFT effectiveness 
also include a technical approach to determining the 
reward threshold (the appearance of a feedback 
signal). Threshold magnitude is an important aspect 
of NFT, as it should be set at a level that allows for 
an adequate amount of feedback information to 
allow the learner to identify their state, feelings, and 
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thoughts that trigger the required activity (Ros et al., 
2020). 
 
If the threshold is set too low, the individual may 
have little motivation and/or need to do anything to 
elicit positive feedback. Conversely, if the threshold 
is set too high, not enough information will be 
provided for feedback and the participant is likely to 
be frustrated (Katkin & Murray, 1968; Prfwett & 
Adams, 1976; Vernon, 2005). NFT research data 
does not always justify the choice of a particular 
reinforcement threshold, and in some cases such 
information is not reported (Angelakis et al., 2007; 
Escolano et al., 2014; Konareva, 2005; Wacker, 
1996). Based on data from Arnold's neurofeedback 
collaborative group (2024) and Bazanova et al. 
(2013) the use of a “variability” threshold protocol 
involving a gradual increase in the difficulty of a 
training task is always effective regardless of the 
baseline alpha peak frequency level. Meanwhile, 
lowing the threshold across the NFT training could 
help enhance the motivation for subjects with low 
iAPF (Bazanova et al., 2013; A. Kaiser et al., 2024).  
 
Thus, the choice of threshold level for NFT should 
depend on the initial psychological status 
(motivation) and the dominant EEG frequency. 
 
The Modality of the Feedback Signal Provided 
It is important to take into account the sensory 
modality of the presented stimulus when organizing 
the NFT (Gong et al., 2021). Despite the availability 
of several feedback modalities, there is still a lack of 
systematic studies that compare their effects across 
protocols and individual baseline condition. In 
general, learners’ characteristics and practical 
considerations affect the choice of feedback 
modality (Gong et al., 2021). Studying the alpha 
NFT efficiency (Bucho et al., 2019) demonstrated 
minimal differences between the “visual” and 
“auditory” groups, indicating that auditory 
reinforcement signals may be just as effective as 
visual signals commonly used in neurofeedback: 
both audio and visual reinforcement signals led to 
significant increases in upper alpha brain wave 
activity (Bucho et al., 2019). Following NFT, effects 
were observed not only in the target frequency of 
upper alpha, but also in the lower-alpha and theta 
bands, as well as in posterior brain regions. From 
the other hand, the use of auditory feedback cue 
could be more applicable for training protocols 
conducted in mobile settings, enabled by the 
growing prevalence of wireless EEG system (Bucho 
et al., 2019). Meanwhile, the visual analyzer has the 
most accurate temporal resolution and therefore the 

time delay of the stimulus should be minimal (Habes 
et al., 2016).  
 
Multimodality feedback approaches have been 
gaining attention in several application domains. 
Dual-modality feedback is far superior to either 
single-modality feedback approach in terms of 
preventing the object from breaking or dropping 
(Kober et al., 2015; Li & Brown, 2023). Kober et al. 
(2015) used multimodal feedback signals to 
enhance the effectiveness of NFT, particularly in 
stroke rehabilitation. They showed that using two 
types of modalities, visual and auditory, is more 
effective than only one type of feedback. To reduce 
possible sensory conflicts, the overlap of sensory 
information should be taken into account, which can 
be observed with simultaneous vestibular stimulation 
and auditory feedback in rehabilitation with feedback 
of balance disorders (Probst & Wist, 1990). 
However, these findings may only apply to a specific 
sport performance NFT scheme and has not been 
extensively confirmed (Vernon et al., 2004).  
 
According to some researchers, the interaction of 
visual and auditory feedback may be influenced by 
mutual interference (Lal et al., 1998; Vernon et al., 
2004). Without proper integration, these feedback 
modes can potentially confuse participants and 
diminish their effectiveness. Proponents of utilizing 
both types of feedback argue that the combination 
can prevent individuals from overlooking one source 
of feedback and instead rely on the other to prompt 
them to persevere in their training (Lal et al., 1998; 
Vernon et al., 2004). According to this example, it is 
believed that the visual function of the human body 
is typically engaged in physical movement, 
suggesting that auditory feedback may be more 
effective NFT for psychomotor training (Vernon et 
al., 2004).  
 
Factors of NFT Design and Procedure 
Duration and Number of NFT Sessions. How often 
and long should training take place? There are no 
specific rules yet defined for the duration of NFT 
sessions for optimal results. The duration of NFT 
sessions depends on the goals and protocol of the 
study. NFT with a shorter duration (10–30 min) 
reduces stress, induces relaxation, and increases 
cognitive skills (Ghaziri et al., 2013). Longer NFT 
sessions allow the brain to better learn and adapt to 
new brain patterns, leading to longer-lasting effects 
(Vernon, 2005). Most meta-analyses report positive 
effects when sessions last at least 300 min (Lal et 
al., 1998). Meanwhile, the results presented in 
research of Reis et al. (2016) suggest that an 
intensive and short NF protocol enables elders to 
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learn alpha and theta self-modulation and already 
presents moderate improvements in cognition and 
basal EEG (Reis et al., 2016). 
 
Ergonomic Factors 
The Factor of Body Position or Level of Support 
Afferentation During the NFT. An analysis of the 
NFT literature has demonstrated that both the 
neurofeedback procedure itself and EEG 
registration, with rare exceptions (Bazanova, 
Kholodina, et al., 2017; Enz et al., 2022), is 
performed in a reclining position, when the activation 
of the support afferentation is reduced. We believe 
that the activation of support afferentation, in 
addition to the evolutionary and biomechanical effect 
on sensorimotor integration, has a purely 
technological advantage. The results of EEG 
analysis obtained during registration in the supine 
position are not suitable for comparison with 
subsequent recordings made while performing 
cognitive and/or psychomotor tasks usually 
performed in the sitting position (Jobert et al., 2013). 
In other words, for self-regulation training with the 
help of neurofeedback, the skills of which can be 
used in everyday life, it is recommended to register 
EEG at rest in conditions that will then be used 
during NFT  (i.e., subjects should be in an upright 
sitting position; Jobert et al., 2013). There are 
several reasons why weight transfer to the feet is 
necessary when sitting during EEG recording:  
(a) with a decrease in body weight transfer to the 
feet, there is a weakening of the support 
afferentation (Kozlovskaya et al., 1988; Kozlovskaya 
et al., 2007), which reduces sensorimotor integration 
and increases the perceptual load on other sensory 
modalities (Mouchnino et al., 2017); (b) the correct 
load on the feet on the appropriate footrest makes 
patients more stable (Mouchnino et al., 2017);  
(c) weight transfer to the plantar sole (e.g., in a 
standing position) increases the EEG power in the 
upper alpha frequency range (SMR; Bazanova, 
Kholodina, et al., 2017; Kozlovskaya et al., 2007; 
Kozlovskaya et al., 1988) and reduces neuronal 
activation (Swerdloff & Hargrove, 2023); and  
(d) when conducting EEG testing, it is important to 
remember that weight transfer to the plantares leads 
to reduction of EMG of the forehead muscles 
(Bazanova, Nikolenko, et al., 2017; Slobounov et al., 
2009), which means that it reduces psychoemotional 
stress (Mouchnino et al., 2017; Pirini et al., 2011; 
Slobounov et al., 2009), which also minimizes EMG 
artifacts (Urigüen & Garcia-Zapirain, 2015). Gravity 
stimulates the arterial baroreceptors, and the 
brainstem modulates the autonomic nervous system 
(Mouchnino et al., 2017), thereby affecting brain 
waves (Chang et al., 2011). 

Thus, the posture during which EEG recording and 
the NFT procedure are performed affects the NFT 
effectiveness. 

Discussion 
 
The analysis of the literature devoted to the study of 
the scientific and technical challenges and 
opportunities for enhancing the EEG-NFT efficiency 
allows us to identify the strengths and weaknesses 
of different approaches. It is logical to assume that 
when using individually set of psychological and 
physiological internal factors, NFT adapts more 
precisely to the characteristics of a particular 
person's brain activity and allows for more effective 
results. Our review and a recent analysis of the 
literature on NFT outcomes (Himmelmeier & 
Werheid, 2024) showed that individual alpha peak 
frequency is one of the most important internal 
factors influencing other internal and even external 
factors of NFT efficiency. Using standard protocols 
with the fixed EEG frequency ranges lead to less 
accurate correction of brain activity and, as a result, 
less significant training results. The question arises, 
“why does a large pool of randomized placebo-
controlled alpha-EEG-NFT studies conducted in 
standard frequency bands demonstrate the clinical 
effectiveness of this type of NFT in about 70% of 
cases?” (Ros et al., 2020). We believe that this may 
be due to a number of reasons. Firstly, for some 
healthy subjects, the standard alpha ranges (8–12 
Hz or 7–13 Hz) may coincide with individually 
determined frequency ranges, and for some they 
may be higher or lower than individually set ones. As 
shown in some research (Arns et al., 2014; 
Markovska-Simoska et al., 2008; Petrenko et al., 
2019), the part of the subjects whose iAPF is less 
than 10 Hz, the range of 8–12 Hz will represent an 
individual alpha-2 range and for them alpha power 
training in the NFT will be more effective than for 
subjects with an iAPF greater than 10 Hz (Petrenko 
et al., 2019). Moreover, alpha training in standard 
bands for subjects with a high iAPF frequency may 
be accompanied by undesirable phenomena such 
as headache (Bazanova & Aftanas, 2010), since a 
shift in the EEG spectrum to the left or an increase 
in the power ratio in the low-frequency alpha-1 to 
alpha-2 range is associated with an increase in pain 
perception (Mckenzie et al., 1974; Pan et al., 2023). 
Another reason why alpha NFT training can be 
successful in standard ranges is that it was 
conducted for people with a low iAPF due to either 
childhood or old age (Edgar et al., 2022; Mierau et 
al., 2016; Orekhova et al., 2006), or for women in 
the cycle phases with initially low progesterone 
levels (Bazanova, Nikolenko, et al., 2017). 
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Finally, NFT is usually conducted for the purpose of 
adjuvant care and cognitive rehabilitation for people 
with anxiety, conversion, affective disorders, 
Alzheimer's disease, Parkinson's disease, 
depression, schizophrenia, autism spectrum 
disorders, stroke, posttraumatic stress disorder, etc. 
(Markiewcz, 2017; Renton et al., 2017; 
Steingrimsson et al., 2020; Tazaki, 2024). Since 
psychiatric disorders are generally associated with 
decreased iAPF (Harris et al., 2006; Stoffers et al., 
2007), using the standard alpha range (8–12 Hz) as 
an NFT target may serve as a “personal upper alpha 
range” training for them. Upper alpha NFT training is 
evidenced used to train self-regulation (Hanslmayr 
et al., 2005). 
 
Based on the presented results, it can be concluded 
that the effectiveness of EEG-NFT will be influenced 
by internal factors that could affect the baseline iAPF 
level: (a) age (Clark et al., 2024; Duffy et al., 1984), 
(b) menstrual cycle phase (Bazanova, Nikolenko, et 
al., 2017; Becker et al., 1982); (c) sleep quality 
(Zhao et al., 2021); and (d) substances use of 
tobacco (Banoczi, 2005), alcohol, coffee, tea, or 
energy drinks (Barry et al., 2011). 
 
NFT efficiency can also be influenced by the 
external factors that influence iAPF discussed 
above. First of all, these are such factors of 
feedback signal acquisition and processing as:  
(a) electrode localization; although neurofeedback 
protocols may not limit the training effect to specific 
brain regions (Gruzelier, 2014; Güntensperger et al., 
2020), from a technical point of view, the probability 
of highest amplitude and least contamination by 
artefacts is higher in the parietal region than in the 
frontal and temporal regions (Ebrahimzadeh et al., 
2022), which means that the effectiveness of 
feedback presentation for NFT will be higher in the 
parietal region, where iAPF is the most stable and 
reproducible (Bazanova, 2011); (b) the choice of 
latent time in feedback presentation should depend 
on the baseline condition, namely reaction time 
(Baghdadi et al., 2020) and finally on the baseline 
iAPF (Samaha & Postle, 2015); and (c) the choice of 
valency of feedback reinforcement in NFT depends 
prevailing susceptibility to negative or positive stimuli 
in high and low iAPF subjects (Tumyalis & Aftanas, 
2014). Secondly, factors of NFT sessions duration 
and number also depend on the baseline iAPF:  
(a) the iAPF may change as a result of a long 
session due to decreased vigilance over time 
(Birbaumer, 2024; Livanov, 1984); and (b) NFT 

session number that are needed for positive 
outcome also depends on baseline iAPF: less 
sessions number for high-iAPF subjects than  
low-IAPF subjects (Bazanova et al., 2013; Petrenko 
et al., 2019). The use of individually set frequency 
bands in brain activity control training using EEG is 
usually a more effective strategy, since it allows to 
more accurately adapt training to individual human 
needs.  
 
Thus, iAPF and the individually specified frequency 
ranges used in NFT were the main factors that 
determined our choice of studies to include in the 
discussion in Table 1, even though they are not 
randomized control trials (RCT).  
 
Meanwhile, we found only 19 studies on NFT that 
take into account an individually determined EEG 
frequency ranges as a training target (Table 1). 
Among them only two works showed higher NFT 
efficiency provided in individually adjusted EEG 
rangers compared to outcomes of NFT in standard 
frequency ranges (Bazanova & Aftanas, 2010; 
Bazanova et al., 2018). Perhaps, because all of the 
studies listed in the table were conducted using as a 
target the individualized EEG ranges, positive NFT 
results were obtained. However, other RCT works 
not included in this table also have positive 
outcomes. It seems that not only iAPF but also other 
factors are relevant for increasing the NFT 
efficiency.  
 
One such factor determining the 
psychophysiological state of the subjects is the 
actual hormonal background. Most of the analyzed 
works did not take into account the menstrual cycle 
phase of the women included in the study (marked 
in red in the table). This factor influencing the 
effectiveness of NFT (Bazanova, Nikolenko, et al., 
2017) requires further study. 
 
The studies discussed here rarely take into account 
one of the intrinsic factors, EMG of the tone of the 
forehead and temples muscles, which is a marker of 
psychoemotional tension (Cacioppo, 2004). 
Consideration for decreased forehead EMG in NFT 
training reducing the individually determined 
theta/beta ratio (TBR) showed greater reductions in 
impulsivity and reaction time in ADHD children 6 
months after the end of training than in children with 
similar NFT training without accounting for EMG 
(Bazanova et al., 2018). Similar results were 
received by Arns and colleagues (Arns et al., 2014). 
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Table 1 

The Research Considering the Main Internal and External Factors Determining the Opportunities of Increasing the 
EEG NFT Effectiveness 
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Alexeeva et al., 
2012  

Alpha/EMG            Audio  

Arns et al., 
2012  

TBR SMR-
power 

    ?     ?  Visual   

Bazanova & 
Aftanas, 2010 

Alpha/EMG, 
TBR 

   
Male 
subjects 

       Audio  

Bazanova et 
al., 2018 

TBR/EMG    Children        Visual   

Petrenko et al., 
2019  

Alpha/EMG            Audio  

Cowley et al., 
2016  

TBR SMR-
power 

    ?     ?  Visual   

Escolano et al., 
2012  

Alpha-2 power          ? ? Visual   

Grosselin et al., 
2021  

Alpha-power     1 s     ?  Audio  

Güntensperger 
et al., 2019  

Alpha/delta 
ratio 

    ?      ? Visual  

A. Kaiser et al., 
2024 

TBR, SMR-
magnitude 

   Children ?     ?  Visual   

Markovska-
Simoska et al., 
2008 

Alpha/EMG             Audio  

Nan et al., 
2012  

Relative 
amplitude in 
individual 
alpha band 

    ?     ?  Visual   

Naas et al., 
2019  

Alpha-power     ?     ? ? Visual  

Parsons & 
Faubert, 2021  

iAPF   ? ?      ?  Visual  

Quaedflieg et 
al., 2016  

iAPF 
asimmetry 

         ? ? Visual  

Reis et al., 
2016 

Alpha-power, 
theta-power 

   
> 55 
years 

     ?  Visual   

Strothmann, 
2024 

TBR     ?       Visual  

Veilahti et al., 
2021  

TBR, SMR-
power 

    ? 
Positive 
and 
negative  

?   ?  Visual  

Wan et al., 
2014 

Alpha-
magnitude 

    ?     ?  Visual  

Note. Green color means that this factor was taken into account, red means that it was not; question mark (?) means that the 
paper does not indicate whether the factor was taken into account or not; iAPF - individual alpha peak frequency; TBR - theta/ 
beta ratio; SMR - sensorimotor rhythm; RCT - randomized control trails; EMG - electromyography.  

 
 
The research on the influence of support 
afferentation on psychophysiological functions and 
their neurobiological markers, in particular on EEG 
and EMG, has been insufficient to date. In this 

connection the majority of EEG and NFT works are 
carried out without taking into account this important 
ergonomic factor. In most of the studies we 
analyzed, EEG registration and NFT was either 
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performed in a semireclined position or was not 
indicated at all. 
 
Another rarely considered factor that can affect the 
efficiency of NFT is the latency of the feedback 
signal. This may be due to technical difficulties in 
implementing NFT and lack of evidence of the need 
to use a particular feedback latency interval. 
 
For the moment, caution is required when 
interpreting the table’s results given a number of 
limitations in addition to the issues raised with 
regard to the nature of the trials. The level of 
methodological rigor specifically related to RCT was 
generally unclear (Hammond & Kirk, 2008; Pigott et 
al., 2021). The level of blinding was insufficient in 
many studies (Pigott et al., 2021). A complementary 
checklist for neurofeedback trials, including 
guidelines of preexperiment, control groups and 
measures, feedback specifications, and outcome 
measures that are important to improve the level of 
evidence of NFT efficiency (Ros et al., 2020). 
Because not all factors that have an impact on NFT 
efficiency were taken into account in this table, we 
agree with the opinion of that academic community 
that calls for more empirical research to fill these 
knowledge gaps (Ros et al., 2020; Vernon, 2005). 
 
Further research, characterized by greater 
methodological rigor, is therefore needed to 
determine the effectiveness of NFT and the 
superiority, if any, of this type of training over the 
single administration of either. 
 

Conclusion 
 
This roadmap provides a comprehensive review of 
the internal and external factors that influence the 
efficiency of EEG-NFT including the socioeconomic, 
psychological, and physiological aspects, as well as 
technical considerations related to the feedback 
signal's acquisition, processing, and presentation. 
Internal factors such as socioeconomic status can 
significantly impact learning efficiency during NFT, 
with lower socioeconomic backgrounds potentially 
leading to reduced cognitive function due to stress 
and anxiety. Psychological traits like personality and 
cognitive abilities also play a role, with certain traits 
being more conducive to effective learning during 
NFT. Physiological factors, including muscle tension 
and resting EEG features, are crucial as well. For 
instance, EEG alpha power can predict NFT 
success, but it is also susceptible to artifacts from 
muscle tension, which must be managed for 
accurate feedback. 
 

External factors discussed include the delay and 
modality of feedback signals, the duration and 
number of NFT sessions, and the ergonomic setup 
during training. The document emphasizes that the 
optimal delay of feedback signals is influenced by 
individual baseline characteristics, such as reaction 
time, the iAPF. The choice of feedback modality, 
whether visual or auditory, and the reinforcement 
strategy, whether positive or negative, also 
significantly affect NFT outcomes. 
 
The review highlights the importance of considering 
individual differences in baseline EEG 
characteristics, such as iAPF, to enhance NFT 
effectiveness. Establishing NFT protocols based on 
the use of individual EEG frequency characteristics 
would contribute to increasing the credibility of the 
research results and increasing the efficiency of their 
practical application. However, here we also note 
the challenges in standardizing NFT protocols, given 
the variability in individual responses and the 
complexity of factors involved. The review concludes 
by calling for more rigorous research to better 
understand and optimize the factors that influence 
NFT efficiency. 
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Abstract 

This critical review examines the study by Amin et al. (2020), which proposes a decision tree (DT) model for 
predicting consumer behavior using electroencephalogram (EEG)-based neuromarketing. The study leverages 
EEG signals to analyze consumer responses to marketing stimuli, employing advanced data preprocessing, 
feature extraction, and classification techniques. The DT model demonstrates superior performance in accuracy, 
sensitivity, and specificity compared to existing methods, achieving a prediction accuracy of 95%. While the study 
highlights the potential of EEG-based neuromarketing and the interpretability of the DT model, limitations such as 
sample size constraints, generalizability concerns, and trade-offs between accuracy and interpretability are noted. 
The review underscores the model's relevance for developing consumer-centric marketing strategies while calling 
for further research to address its limitations and expand its applicability across diverse populations. 
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Introduction 

 
Neuromarketing, a groundbreaking fusion of 
neuroscience and marketing, leverages 
neuropsychological tools such as 
electroencephalography (EEG), functional magnetic 
resonance imaging (fMRI), eye tracking, or other 
biometrics to understand consumers' cognitive and 
affective responses to marketing stimuli (Sixth 
Factor, n.d.). The study focuses on data mining and 
machine-learning technologies to identify brain 
activities and investigate discoveries or 
abnormalities as consumers interact with marketing 
catalysts (Amin et al., 2020). EEG, used to detect 
electrical charges in brain waves, has been a 
fundamental tool in the paper by Amin et al. (2020), 
Consumer Behavior Analysis using EEG Signals for 
Neuromarketing Application, for capturing consumer 
responses and building on previous research in the 
field. In the study, Amin et al. (2020) propose a 
prediction model, the decision tree (DT) model, by 
harnessing EEG findings. The model is 
comprehensively evaluated by comparing it to 

existing prediction methods and pushing the 
boundaries to provide insights into consumer 
decision-making processes and thus allow 
advertisers to create effective marketing models. 
The following critical review of Amin et al.’s (2020) 
research work provides a thorough view of the 
methods and results of the paper, with a focus on 
the study findings, strengths, weaknesses, and 
relevance to further the discussion of market 
research methods.  
 

Methods  
 
Research Design  
The study uses a data-driven approach, using EEG 
signals to explore and predict consumer conduct. 
Amin et al. (2020) opted for a research design 
involving four key steps: data collection, 
preprocessing, feature extraction, and classification. 
Time-frequency distribution features were derived 
from the EEG signals on which different 
classification algorithms were applied, ensuring all 

http://www.isnr.org/
http://www.neuroregulation.org/
https://doi.org/10.15540/nr.12.2.132
mailto:gksaraya@gmail.com


Kapoor Saraya  NeuroRegulation  

 

 

133 | www.neuroregulation.org Vol. 12(2):132–137  2025 doi:10.15540/nr.12.2.132 
 

aspects of the research were thoroughly considered 
and measured.  
 
Sample and Data Collection Methods  
Yadava et al. (2017) previously conducted a study 
utilizing the hidden Markov model (HMM), building 
on a predictive model framework to understand 
consumer choices through likes and dislikes. They 
carried out this work by studying brain waves from 
EEG signals as consumers responded to marketing 
stimuli. The HMM achieved a 70% prediction 
accuracy, facilitating the DT model to build on the 
algorithm's precision, resulting in a high prediction 
accuracy of 95%. 
 
The study uses publicly available data from Yadava 
et al.’s (2017) work. Data was collected from 25 
subjects who were exposed to 42 images in 14 
categories. Each participant labeled the image 
shown to them as like or dislike. Corresponding EEG 
signals to 1,050 responses were recorded and 
examined. 
 
Data Preprocessing, Feature Extraction, and 
Classification 
EEG signals contain noise, which can obscure the 
underlying patterns of the brain's activity. To address 
this, noise reduction methods are used in EEG 
analysis to smooth signal variations. In the paper, a 
notable noise reduction approach known as running 
average was employed in the preprocessing stage, 
which smooths data by averaging data points over a 
moving window to reduce noise (Amin et al., 2020). 
The running average method effectively deals with 
time-frequency datasets, ameliorating short-term 
fluctuations and highlighting overall trends. 
 
For feature extraction, the wavelet transform method 
(WTM), a renowned signal processing technique for 
analyzing time-frequency representations of EEG 
signals, was utilized. Amin et al. (2020) specifically 
used the discrete wavelet transform (DWT) method, 
a WTM subpart known to reliably break down EEG 
signals into smaller parts in a fast and nonredundant 
manner, allowing for a detailed analysis of different 
frequencies. DWT is crucial for accurate 
classification as it uses low-pass (g) and high-pass 
(h) filters to analyze different frequencies (Amin et 
al., 2020). This offers a comprehensive view of brain 
activity and establishes trust in the research 
methods through vigorous processing methods. 
 
Following feature extraction, the power was 
calculated from five-level DWT-decomposed EEG 
signals for each electrode. The total number of 
instances (i.e., single data trials) was 1,045, 

determined by multiplying the number of electrodes 
by five (since each underwent a five-level 
decomposition; Amin et al., 2020). To enhance 
model performance, the authors considered 
ensemble methods like gradient boosting, which 
improves accuracy by combining multiple weaker 
models into a stronger one. However, while gradient 
boosting improves accuracy, it is not the best choice 
for interpretability (Amin et al., 2020). Alternatively, 
additive models (predictive models that improve 
performance by sequentially adding corrections) and 
full interaction models like CART (classification and 
regression trees) are often studied separately (Luna 
et al., 2019). This is because gradient boosting 
prioritizes accuracy, while CART focuses on 
interpretability. 
 
For classification, Amin et al. (2020) split the 
extracted features into a training set to build the 
model and a testing set to evaluate it. After creating 
the model, data was fed to predict consumer 
preferences (Amin et al., 2020). To test the 
proposed models’ performance, the predicted 
outcomes were compared to the actual results. The 
rest of the review focuses on conveying the study 
findings and analyzing the advantages, drawbacks, 
and applicability. 
 

Results 
 
The proposed model's performance was evaluated 
using four key metrics: area under the curve (AUC), 
accuracy, sensitivity, and specificity (Amin et al., 
2020). The authors compared their model with five 
existing techniques for consumer behavior 
prediction: k-nearest neighbors (KNN), discriminant 
analysis (DA), naive Bayes (NB), support vector 
machines (SVM), and random forests (RF). Amin et 
al.’s (2020) findings suggest that the DT algorithm is 
superior in accuracy and sensitivity testing across all 
brain areas, providing a more reliable method for 
predicting consumer decision-making. The findings 
of this comparison are discussed below. 
 
Area Under Curve 
An AUC-ROC (area under the receiver operating 
characteristics) curve, also known as ROC, 
evaluates classifier performance, validating the tree 
model's effectiveness and visually representing 
multiclass classifier performance (Amin et al., 2020). 
Among other evaluation techniques, ROC is the 
most noteworthy, further building on the study's 
validity. The proposed model’s ROC curve 
outperformed SVM and other classification 
algorithms across all brain areas, with a high 
measure of 99% in the cerebral cortex and a low 
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measure of 96% in the occipital and parietal lobes. 
The highest measure noted in other existing models 
was 95% (for SVM), yet lower than any other 
measurement for DT (Amin et al., 2020). 
 
Accuracy 
Accuracy is a key measure for assessing 
classification models. It represents the proportion of 
correct predictions among all predictions made 
(Amin et al., 2020). A higher accuracy indicates the 
model's effectiveness in determining whether a 
consumer will like or dislike a product. The DT model 
achieved a high accuracy of 95% in the prefrontal 
region of the cerebral cortex, with a low accuracy of 
90% in the occipital region. Notably, the proposed 
model's lowest accuracy was still higher than the 
highest accuracy of any other existing technique 
(Amin et al., 2020). 
 
Sensitivity 
Sensitivity measures the percentage of correctly 
predicted positive cases. Higher sensitivity indicates 
the model's ability to identify accurately when a 
consumer will like the product. DT's sensitivity is 
exceptionally high, ranging from 89% (in the 

occipital, parietal, and temporal lobes) to 94% (in the 
cerebral cortex), indicating its ability to predict 
positive consumer preferences correctly. The 
proposed model’s lowest sensitivity was still higher 
than the highest sensitivity of any other existing 
technique (Amin et al., 2020).  
 
Specificity 
Specificity measures the percentage of correctly 
predicted negative cases. Higher specificity 
indicates the model's ability to determine accurately 
when a consumer will dislike the product. While DT 
performs well in specificity (90%, 95%), it is 
marginally outperformed by DA and SVM in some 
brain areas. For example, DA achieves 98% 
specificity in the temporal lobe, compared to DT's 
93% (Amin et al., 2020). 
 
The DT model demonstrates the best overall 
performance, with high accuracy, AUC, sensitivity, 
and specificity across all brain areas. Its 
interpretability further enhances its practical utility for 
neuromarketing applications. The table below (Table 
1) lists the performance of models in comparison to 
each other under different metrics and brain areas.  

 
 

Table 1 

Combined Results Table: Performance of Classification Algorithms in Predicting Consumer Preferences 

Metric Brain Area KNN DA NB DT SVM RF 

Accuracy Frontal Lobe 77% 60% 76% 93% 87% 54% 

 Occipital Lobe 75% 56% 63% 90% 85% 52% 

 Parietal Lobe 75% 56% 66% 90% 82% 52% 

 Temporal Lobe 76% 56% 71% 91% 85% 54% 

 Cerebral Cortex 78% 60% 81% 95% 87% 60% 

AUC (area under the curve) Frontal Lobe 83% 59% 86% 98% 95% 56% 

 Occipital Lobe 82% 56% 72% 96% 93% 54% 

 Parietal Lobe 81% 55% 75% 96% 91% 51% 

 Temporal Lobe 83% 54% 79% 97% 92% 55% 

 Cerebral Cortex 85% 66% 91% 99% 95% 62% 

Sensitivity Frontal Lobe 74% 20% 67% 93% 79% 40% 

 Occipital Lobe 69% 5% 73% 89% 77% 38% 

 Parietal Lobe 68% 4% 73% 89% 72% 37% 

 Temporal Lobe 70% 3% 61% 89% 75% 38% 

 Cerebral Cortex 71% 31% 81% 94% 77% 46% 
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Table 1 

Combined Results Table: Performance of Classification Algorithms in Predicting Consumer Preferences 

Metric Brain Area KNN DA NB DT SVM RF 

Specificity Frontal Lobe 79% 91% 83% 93% 94% 65% 

 Occipital Lobe 80% 96% 55% 90% 92% 63% 

 Parietal Lobe 81% 97% 61% 91% 90% 63% 

 Temporal Lobe 81% 98% 79% 93% 92% 67% 

 Cerebral Cortex 84% 83% 81% 95% 95% 71% 

Note. KNN = k-nearest neighbors; DA = discriminant analysis; NB = naive Bayes; DT = decision tree; SVM = support vector 
machine; RF = random forest. Data adapted from Amin et al. (2020). 

 
 
Compared to the HMM proposed by Yadava et al. 
(2017), which had a prediction rate of 70%, the DT 
model significantly outperformed, achieving a 95% 
prediction rate using the same neurological testing 
tool (EEG; Table 2).  
 
 

Table 2 

Comparison With Previous Works 

Author 
Analysis 
Method 

Prediction 
Rate 

Imaging 
Tool 

Yadava et al.  HMM 70% EEG 

Amin et al. DT 95% EEG 

Note. HMM = hidden Markov model; DT = decision tree; 
EEG = electroencephalogram. Data adapted from Amin et 
al. (2020). 

 
 
The authors conclude that their proposed method is 
superior to other existing techniques in terms of 
accuracy, sensitivity, and specificity, allowing 
advertisers to gain insights into consumer behavior 
and tailor their marketing strategies accordingly 
(Amin et al., 2020). 
 

Analysis 
 
This section highlights the study’s advantages and 
limitations and the significance of the DT model in 
neuromarketing and consumer analysis. 
 
Strengths 
Needless to say, a key advantage of the study by 
Amin et al. (2020) is that the DT model outperforms 
the existing techniques by high margins, proving it to 

be an impactful and superior prediction model. Aside 
from the precise results of the study, several 
elements are presented that enhance the 
trustworthiness and robustness of its findings to 
improve the reliability and applicability of the results. 
For example, the use of technology such as data 
mining and machine learning helps further 
innovations in fields like neuropsychology. This 
practice involving notable data technologies assures 
consumers of ethical and credible research outputs. 
 
Amin et al. (2020) often referenced well-acclaimed 
research to increase the potency of the study 
results. For example, Blankertz et al. (2006) and 
Heekeren et al. (2004) are cited to explain the 
relation between brain activities and the EEG 
systems, thus increasing the academic trust of the 
paper in review. 
 
Using a thorough research design and reliable data 
processing methods (running average for noise 
reduction, WTM, and DWT), the study demonstrates 
the authors' commitment to achieving excellence in 
the study results. Rigorous examinations were 
carried out by Amin et al. (2020) by employing 
multiple evaluation metrics (AUC, accuracy, 
sensitivity, and specificity) and comparing the 
proposed DT model to five other existing techniques. 
This high standard of evaluation illustrates the 
robustness of the study findings. 
 
Finally, the root-to-leaf path (logic rule) of the 
proposed DT algorithm makes it highly interpretable, 
while the study by Yadava et al. (2017) does not 
provide any logic rule (Amin et al., 2020). This 
enables a business to understand consumer 
cognition and its surrounding elements, making DT a 
more practical and desired prediction model. 
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Weaknesses 
Despite the study’s multiple advantages, a few 
limitations have also been observed. DT establishes 
superiority in the accuracy and sensitivity metrics 
compared to other existing techniques. However, 
according to the study results, DT lacks specificity 
(DA and SVM measure higher values), which may 
make it difficult to determine when a consumer will 
dislike a product. 
 
A limitation of the study is the generalizability of the 
DT model stemming from the sample size of 25 
participants. While the model proves to have high 
performance, it may have been overfitted to the 
specific dataset, meaning its high accuracy might 
not hold across different demographics, cultural 
backgrounds, or real-world consumer scenarios. 
Additionally, small-sample studies have reduced 
statistical power, thereby increasing the likelihood of 
spurious correlations and making it harder to detect 
true patterns in consumer decision-making. This also 
limits the ability to examine individual differences in 
EEG responses, which are known to vary based on 
age, gender, and cognitive traits (Yadava et al., 
2017). To improve reliability, future studies should 
consider using larger and more representative 
samples to validate the DT model's predictive 
performance across different populations. 
 
Moreover, the dataset studied by Amin et al. (2020) 
was derived from publicly available data from 
Yadava et al.’s (2017) paper. This suggests that the 
data was not firsthand, raising concerns about the 
authors’ direct involvement with the subject and 
whether the dataset fully represents diverse 
consumer behaviors.  
 
Lastly, methods such as gradient boosting and 
CART, as mentioned in the paper by Amin et al. 
(2020), are accurate in their measurement. 
However, a trade-off between correctness and clarity 
creates a potential limitation in the study due to the 
challenging interpretation for the reader. 
 
Relevance of the DT Model 
The DT model can potentially revolutionize how 
market strategies are developed and implemented 
today. This mutual benefit to consumers and 
producers can lead to a more consumer-centric and 
accurate approach to developing marketing 
strategies (Amin et al., 2020). The study’s findings 
have significant implications in neuromarketing 
because the DT is a highly interpretable and 
applicable model. Further research in this field would 
help advertisers understand the reasons for 
consumer preferences and develop more targeted 

and personalized strategies by employing different 
neurological tools such as eye-tracking or fMRI. 
 
On the other hand, while the use of data mining and 
machine learning algorithms are broadly used today 
in most sectors of society, ethical concerns follow 
regarding participant privacy and consumer 
manipulation. It is crucial to keep customer 
autonomy at the forefront when employing influential 
technology in machine learning.  
 

Conclusion 
 
The paper by Amin et al. (2020) presents a robust 
and interpretable model, the DT model, used to 
predict consumer decision-making to develop 
marketing strategies by harnessing EEG signals. 
The data presented in the paper indicates that the 
DT model performs better than other existing 
predictive models. The DT model proves superior 
accuracy, sensitivity, and specificity, providing 
valuable insights to marketing and analysis teams. 
The study presents several advantages and a few 
limitations in the overall application of the research. 
Amin et al. (2020) achieve high trust by using 
reliable techniques and robust comparisons in their 
work. Overall, the authors open avenues to better 
neuromarketing studies and offer valuable 
contributions to consumer behavior prediction and 
experience.  
 
Author Declarations 
The author declares no conflicts of interest. This 
research did not receive any specific grant from 
funding agencies. Gayatri Kapoor Saraya 
conceptualized the study, extracted and organized 
the data, and wrote the manuscript. 
 

References 
 
Amin, C. R., Hasin, M. F., Leon, T. S., Aurko, A. B., Tamanna, T., 

Rahman, M. A., & Parvez, M. Z. (2020, December). 
Consumer behaviour analysis using EEG signals for 
neuromarketing application. In 2020 IEEE symposium series 
on computational intelligence (SSCI) (pp. 2061–2066). IEEE. 
https://doi.org/10.1109/SSCI47803.2020.9308358 

Blankertz, B., Dornhege, G., Krauledat, M., Muller, K.-R., 
Kunzmann, V., Losch, F., & Curio, G. (2006). The Berlin 
brain-computer interface: EEG-based communication without 
subject training. IEEE Transactions on Neural Systems and 
Rehabilitation Engineering, 14(2), 147–152. https://doi.org 
/10.1109/TNSRE.2006.875557 

Heekeren, H. R., Marrett, S., Bandettini, P. A., & Ungerleider, L. 
G. (2004). A general mechanism for perceptual decision-
making in the human brain. Nature, 431(7010), 859–862. 
https://doi.org/10.1038/nature02966  

Luna, J. M., Gennatas, E. D., Ungar, L. H., Eaton, E., 
Diffenderfer, E. S., Jensen, S. T., Simone, C. B., Friedman, J. 
H., Solberg, T. D., & Valdes, G. (2019). Building more 
accurate decision trees with the additive tree. Proceedings of 

http://www.neuroregulation.org/
https://doi.org/10.1109/SSCI47803.2020.9308358
https://doi.org/10.1109/TNSRE.2006.875557
https://doi.org/10.1109/TNSRE.2006.875557
https://doi.org/10.1038/nature02966


Kapoor Saraya  NeuroRegulation  

 

 

137 | www.neuroregulation.org Vol. 12(2):132–137  2025 doi:10.15540/nr.12.2.132 
 

the National Academy of Sciences, 116(40), 19887–19893. 
https://doi.org/10.1073/pnas.1816748116  

Sixth Factor. (n.d.). Neuro marketing sensonomics. Retrieved 
March 6, 2025, from https://sixthfactor.com/neuro-marketing-
sensonomics/  

Yadava, M., Kumar, P., Saini, R., Roy, P. P., & Dogra, D. P. 
(2017). Analysis of EEG signals and its application to 
neuromarketing. Multimedia Tools and Applications, 76(18), 
19087–19111. https://doi.org/10.1007/s11042-017-4580-6  

 
 
Received: March 10, 2025 
Accepted: March 27, 2025 
Published: June 27, 2025 

 

http://www.neuroregulation.org/
https://doi.org/10.1073/pnas.1816748116
https://sixthfactor.com/neuro-marketing-sensonomics/
https://sixthfactor.com/neuro-marketing-sensonomics/
https://doi.org/10.1007/s11042-017-4580-6


NeuroRegulation http://www.isnr.org 
    

 

138 | www.neuroregulation.org Vol. 12(2):138–153  2025 doi:10.15540/nr.12.2.138 

  

Clarifying the Code: Historical Foundations, Current 
Practices, and Ethical Billing in Neurofeedback and QEEG  
Leslie H. Sherlin1,2,3,4 5* and Robert Longo6 
1Sherlin Consulting Group, Scottsdale, Arizona, USA 
2Ottawa University, Surprise, Arizona, USA 
3Grand Canyon University, Phoenix, Arizona, USA 
4Sonoran University of Health Sciences, Tempe, Arizona, USA 
5Nova Tech EEG, Inc., Mesa, Arizona, USA 
6Retired, Private Practice, Wilmington, North Carolina, USA 
 

Abstract 

This article addresses the complexities of ethical billing and coding practices for neurofeedback and quantitative 
EEG (qEEG) services. It explores the historical development of Current Procedural Terminology (CPT) codes 
related to neurofeedback, examines current best practices in billing, and identifies potential legal and ethical 
pitfalls, including recent fraud cases. Special attention is given to Medicare’s policies, the nuances of incident to 
billing, and the role of technicians in service delivery. The paper underscores the importance of documentation, 
scope-of-practice considerations, and transparency with payers and patients. Additionally, the advocacy efforts of 
professional organizations such as the International Society for Neuroregulation & Research (ISNR) and the 
Association for Applied Psychophysiology and Biofeedback (AAPB) are reviewed, particularly their ongoing 
initiative to update and refine CPT codes to better reflect clinical practice. Through a comprehensive synthesis of 
guidance from the AMA, CMS, professional ethics codes, and payer policies, the article serves as both a practical 
guide and a call to uphold ethical standards in the neuroregulation field.  
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Introduction 

 
Neurofeedback (EEG biofeedback) and quantitative 
EEG (qEEG) have evolved from experimental 
techniques to increasingly utilized clinical 
interventions for various neurological and 
psychological conditions (Hammond, 2011). As their 
use has grown, so too has the complexity 
surrounding proper billing and coding for these 
services. Practitioners must navigate a landscape of 
Current Procedural Terminology (CPT) codes, 
Medicare and insurance policies, and ethical 
guidelines to ensure that billing is accurate, 
compliant, and ethical. Missteps in coding—whether 
inadvertent or intentional—carry serious legal and 
professional consequences, as evidenced by recent 
fraud cases (U.S. Attorney’s Office, 2025). This 

article aims to clarify “the code” by examining the 
historical foundations of CPT codes relevant to 
neurofeedback and qEEG, current best practices in 
ethical billing, Medicare’s coverage stance, incident 
to billing rules, and the ethical implications of 
improper billing. We also discuss the role of 
professional organizations like the International 
Society for Neuroregulation & Research (ISNR) in 
advocating for better codes and provide 
recommendations for practitioners to uphold integrity 
in billing. The goal is to equip clinicians, billing 
specialists, and stakeholders with a comprehensive 
understanding of how to code and bill for 
neurofeedback and qEEG services correctly, thus 
protecting their practices and advancing the field 
responsibly. 
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Historical Foundations of Neurofeedback  
and QEEG CPT Codes  

  
Understanding the present coding framework 
requires a look back at how these CPT codes were 
developed and refined. CPT codes are maintained 
by the American Medical Association (AMA) and are 
used to uniformly describe medical procedures for 
billing purposes. Neurofeedback, being a form of 
biofeedback, has long been associated with 
biofeedback-related CPT codes (Hammond, 2011). 
Key milestones in the historical development of 
relevant CPT codes include: 

• Early Biofeedback Coding: Prior to the late 
1990s, biofeedback was represented by 
multiple modality-specific codes (e.g., 
separate codes for EMG biofeedback, 
thermal biofeedback, EEG biofeedback, 
etc.), which made billing cumbersome. In the 
mid-1990s, the AMA recognized the need 
for a more unified coding system for 
biofeedback techniques. 

• Introduction of CPT 90901 (1998): In 1998, 
CPT code 90901 for “biofeedback training 
by any modality,” was established by the 
AMA to consolidate multiple biofeedback 
codes into a single, modality-agnostic code. 
This pivotal change meant that whether a 
practitioner was providing thermal 
biofeedback for migraines or EEG 
biofeedback (neurofeedback) for ADHD, 
they could use 90901 to bill for the training 
session. The creation of 90901 explicitly 
included EEG biofeedback as one of the 
modalities covered under “any modality,” 
simplifying claims submission. It reflected 
the AMA CPT Editorial Panel’s effort to 
streamline biofeedback billing and 
acknowledged that the fundamental service, 
teaching a patient to self-regulate using 
biological feedback, was conceptually 
similar across modalities. 

• Psychophysiological Therapy Codes (90875 
and 90876): Even before 90901’s 
introduction, CPT had codes 90875 and 
90876 to describe “individual 
psychophysiological therapy incorporating 
biofeedback training with psychotherapy.” 
These codes, residing in the 
psychiatry/psychology section of CPT, were 
historically defined by session length (90875 
for a ~20- to 30-min session; 90876 for ~45 
to 50 min), the primary difference being 
duration. These codes acknowledge that 
some clinicians (e.g., psychologists) deliver 
biofeedback not as a stand-alone procedure, 

but in the context of psychotherapy. For 
example, using relaxation and EEG 
feedback during a counseling session for 
anxiety. Importantly, the AMA clarified that 
90875 and 90876 inherently include the 
biofeedback component; thus, one should 
not bill a separate 90901 in addition to 
90875 or 90876 for the same session (AMA, 
1997). In a 1997 AMA CPT Assistant Q&A, 
the AMA explicitly stated it is “not 
appropriate to report code 90901 separately, 
when performing individual 
psychophysiological therapy (codes 90875 
and 90876)” (AMA, 1997). This guidance, 
which remains applicable, was aimed at 
preventing double-billing of the biofeedback 
portion. 

 
Role of AMA and the CPT Editorial Process 
The AMA’s CPT Editorial Panel and its advisors 
(including representatives from specialties and 
professional societies) have played a central role in 
code revisions. For neurofeedback and qEEG, 
professional advocacy has been crucial in 
influencing AMA decisions. For instance, the 
biofeedback community (through organizations like 
the Association for Applied Psychophysiology and 
Biofeedback [AAPB] and ISNR) has periodically 
submitted proposals to the AMA to update or clarify 
codes. The AMA’s process ensures that any new 
code or revision is justified by clinical practice and 
utilization data. Over the years, the AMA also 
updated code descriptors. For example, recent CPT 
codebook editions standardized the time descriptors 
for 90875 (now listed as 30 min) and 90876 (45 min) 
to remove ambiguity and align with typical session 
durations. 
 
CPT Codes for qEEG and brain mapping, which 
involves computerized analysis of EEG data (often 
to create brain maps or to guide neurofeedback 
protocols), did not receive a dedicated CPT code in 
the 1990s. Clinicians who performed qEEG 
assessments historically resorted to using general 
EEG or biofeedback codes. One code often 
associated with qEEG is 95957, defined as “digital 
analysis of electroencephalogram (EEG; e.g., for 
epileptic spike analysis).” Although 95957 was 
developed for neurologists analyzing EEG for 
epilepsy, some practitioners began using it to bill 
qEEG brain mapping, reasoning that qEEG entails 
digital EEG analysis (Successful Practitioner, 2021). 
This practice, however, introduced ambiguity. QEEG 
for psychological conditions was not the original 
intent of 95957. Recognizing the need for more 
appropriate coding, in the 2010s the AMA introduced 
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code 96020, described as “neurofunctional brain 
mapping” procedures. By 2019, CPT 96020 was 
being referenced in neurofeedback circles as a code 
for functional brain mapping (qEEG; Successful 
Practitioner, 2021). In practice, 96020 may be used 
when conducting a qEEG in conjunction with 
functional tests, though its usage is limited and 
subject to payer acceptance. 
 
Ongoing Evolution 
The coding framework continues to evolve. No 
specific CPT code exists solely for “neurofeedback,” 
providers must use the general biofeedback codes 
(90901, 90875, or 90876) as appropriate. This lack 
of specificity has led to continued efforts for 
refinement. As of the mid-2020s, professional 
organizations are advocating at the AMA for updated 
codes that better distinguish neurofeedback and 
related services. For example, ISNR and AAPB have 
launched a CPT Code Initiative to modernize codes 
for neurofeedback and biofeedback (ISNR & AAPB, 
2023). This initiative argues that current codes are 
outdated and that more precise codes would 
improve access and reimbursement by clearly 
communicating the services provided. The AMA’s 
historical role in creating and revising codes like 
90901, 90875, and 90876 will likewise be crucial in 
any forthcoming code changes spurred by these 
advocacy efforts. 
 

Current CPT Codes and Best Practices  
for Ethical Billing 

 
In contemporary practice, clinicians providing 
neurofeedback or qEEG services typically utilize a 
handful of CPT codes. Ethical billing requires not 
only choosing the correct code but also using it 
properly in a manner consistent with its definition 
and avoiding practices that could be seen as 
upcoding or misrepresentation. Below are the 
primary CPT codes used and best practices for their 
ethical use: 

• CPT 90901 – Biofeedback by Any Modality: 
This code is used for stand-alone 
biofeedback training where no 
psychotherapy is being concurrently 
provided. In the context of neurofeedback, if 
a practitioner (whether a psychologist, 
physician, or other qualified provider) 
conducts a session consisting solely of 
neurofeedback training (e.g., the patient is 
connected to EEG sensors and guided 
through brainwave training protocols), 90901 
is the appropriate code. Best practices for 
using 90901 include: 

o Ensuring the session is indeed 
focused on biofeedback. If 
substantial psychotherapy or 
counseling is provided in the same 
visit, a different code might apply 
(see 90875 and 90876 below). 

o Documenting the modality and 
duration of the session. Even 
though 90901 is an untimed code 
per CPT guidelines (it can be 
reported once per day regardless of 
session length), it is wise to record 
how much time was spent to justify 
the service volume in case of audits. 

o Avoiding “unbundling” or adding 
other codes that represent 
components of the biofeedback 
session. For example, it would be 
unethical and incorrect to bill 90901 
(biofeedback) plus an EEG 
recording code (such as 95816) for 
the same neurofeedback session, 
since neurofeedback inherently 
includes the EEG monitoring 
component. According to CMS 
therapy billing guidance, “Separate 
billing for concurrently applied 
modalities and/or procedures during 
biofeedback training is not 
appropriate” (CMS, 2015). In 
practice, that means if during a 30-
min block you are doing 
neurofeedback, you should not also 
bill a therapeutic exercise or any 
other intervention for that same 
time—only the biofeedback code 
should be billed for that interval 
(CMS, 2015). This avoids double-
counting time and conforms to CPT 
coding rules that one cannot bill two 
codes for the same service time. 

• CPT 90875 and 90876 – Biofeedback with 
Psychotherapy: Codes 90875 (typically a 
30-min session) and 90876 (45 min) are 
used when biofeedback is integrated with 
psychotherapy in a single session. These 
codes are often utilized by psychologists or 
other mental health professionals who use 
biofeedback as an adjunct to therapy, for 
instance, conducting EEG biofeedback for 
self-regulation as part of treating anxiety 
during a counseling session. Ethical use of 
90875 and 90876 entails: 

o Only using these codes if you are 
licensed to provide psychotherapy in 
your state (e.g., psychologist, 
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licensed professional counselor, 
etc.) and you indeed provided 
psychotherapy alongside the 
biofeedback during the session. If 
the encounter was purely technical 
neurofeedback without any 
therapeutic discussion or 
psychological intervention, then 
90875 or 90876 would not be 
appropriate; 90901 would be the 
correct code. The CPT code 
descriptors explicitly require that 
psychotherapy is a component of 
these services. 

o Choosing 90875 versus 90876 
based on session length. It is 
important not to upcode. If your 
session was only ~25 min, you 
should bill 90875 (the shorter 
session code), not 90876. 
Documentation should reflect start 
and end times or total minutes to 
support the code selection. 

o Not billing 90901 in addition to 
90875 or 90876 for the same 
session. As noted earlier, the AMA 
has made it clear that the 
biofeedback component is already 
included in 90875 and 90876 (AMA, 
1997). Billing both codes for the 
same time would be redundant and 
viewed as improper unbundling. In 
summary, when performing 
psychotherapy with neurofeedback, 
a single code (90875 or 90876, 
depending on length) should cover 
the entire session. 

• QEEG and EEG Analysis Codes: qEEG, 
which often precedes or supplements 
neurofeedback, involves recording EEG and 
quantitatively analyzing it (e.g., generating 
brain maps or comparing the data to 
normative databases). There is no unique 
CPT code labeled explicitly “qEEG.” Instead, 
practitioners typically use a combination of 
codes: often an EEG acquisition code (for 
the recording itself) plus an EEG analysis 
code. One common approach is to use a 
standard EEG recording code (e.g., 95816 
for a routine EEG) along with 95957 for the 
digital analysis. By definition, 95957 
represents the digital analysis of at least 20 
min of EEG data (it was originally intended 
for analysis of epileptiform activity). Some 
insurers have reimbursed 95957 when used 
for qEEG, while others might challenge it as 

not medically necessary for certain 
behavioral health diagnoses. Another code, 
96020, as mentioned earlier, has been 
referenced for “neurofunctional brain 
mapping.” Best practice for qEEG billing is 
first to verify each payer’s policy: many 
payers consider qEEG investigational for 
most psychiatric indications (more on this 
under Medicare and medical necessity). If 
you do proceed to bill, use the code that 
most closely fits what you actually did, and 
never bill a qEEG as if it were a full 
neuropsychological test or some other 
unrelated service. In a recent fraud case, a 
provider improperly billed psychological 
testing codes (96112, 96130, etc.) in 
conjunction with neurofeedback services, 
presumably to get reimbursement for qEEG 
or cognitive assessments that were not 
actually separate tests. This was flagged as 
fraudulent because those CPT codes could 
not logically be billed together in the way 
they did (Office of Inspector General, 2025). 
The lesson is to avoid “creative” coding that 
isn’t clearly supported by CPT definitions or 
by what actually occurred. If no existing 
code truly fits a service (for instance, if 
qEEG brain mapping for ADHD is not 
covered by insurance), the ethical path is 
either not to bill the insurer for it (opting for 
private pay) or to use an unlisted code with 
full disclosure; not to shoehorn it into 
payable codes through misrepresentation. 

• Other Related Codes: In certain scenarios, 
other CPT codes might come into play for 
biofeedback services. For example, 90911 
(biofeedback for pelvic floor training for 
incontinence) and the newer 90912 and 
90913 (time-based codes for pelvic floor 
biofeedback) are designated exclusively for 
pelvic muscle rehabilitation. These codes 
are not to be used for neurofeedback under 
any circumstances, as they pertain to a 
completely different physiological system 
and clinical application. Although they fall 
under the broader category of biofeedback, 
their use is strictly limited to treatment of 
pelvic floor dysfunction and should not be 
repurposed or reinterpreted to describe 
neurofeedback or any central nervous 
system intervention. Another set of codes 
sometimes discussed are the Health and 
Behavior Assessment/Intervention (HBAI) 
series (96150–96155), which allow billing for 
behavioral services related to physical 
health conditions (e.g., pain, adherence to 
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treatment) without requiring a psychiatric 
diagnosis. While some neurofeedback 
providers may consider these when 
addressing chronic pain or related 
symptoms, these codes also are not 
appropriate for use with neurofeedback 
unless the intervention is explicitly targeting 
a physical health issue and is clearly within 
the provider’s scope of practice. These 
codes should never be used to circumvent 
coverage limitations on psychotherapy or 
neurofeedback-specific biofeedback codes. 
In all cases, coding must accurately reflect 
the nature of the service delivered and 
remain within legal and ethical billing 
parameters. 

• In all cases, accurate documentation is a 
cornerstone of ethical billing. Practitioners 
should record what intervention was done, 
for how long, and by whom. This information 
justifies the CPT code used and serves as 
evidence of proper billing. For example, 
therapy notes for a 90876 session should 
clearly reflect that psychotherapy was 
provided alongside biofeedback and that the 
session lasted around 45 min. For a 90901 
session, the notes might focus on the 
neurofeedback training protocol used and 
the patient’s response. Proper 
documentation not only supports billing but 
also encourages clinicians to stay within the 
boundaries of the code (knowing that an 
auditor might later read the note has a way 
of keeping one honest about what was done 
and billed). Finally, when in doubt about how 
to code a unique scenario, practitioners 
should consult authoritative sources (e.g., 
AMA CPT Assistant articles, insurer billing 
guidelines, or professional coding 
specialists). Adhering to the official 
definitions and guidelines is part of ethical 
practice. It demonstrates honesty and 
transparency in an often-confusing 
reimbursement environment. 

 

Current Medicare Policies and  
Neurofeedback Coverage 

 
Medicare’s coverage of biofeedback and 
neurofeedback services has historically been limited, 
and it remains a critical area for practitioners to 
understand to avoid denied claims or inadvertent 
fraud. Medicare, through National Coverage 
Determinations (NCDs) and Local Coverage 
Determinations (LCDs) by Medicare Administrative 
Contractors (MACs), defines what it considers 

medically reasonable and necessary. For 
biofeedback, Medicare’s policies draw a distinction 
between certain approved uses (primarily for specific 
medical conditions) and noncovered uses (including 
most psychological applications of neurofeedback). 
 
Noncoverage for Psychiatric Applications  
Medicare does not broadly cover neurofeedback 
(EEG biofeedback) for the treatment of 
psychological or psychiatric conditions such as 
ADHD, anxiety, depression, etc. In fact, the 
Medicare NCD for biofeedback (NCD 30.1) dates 
back decades and was written with traditional 
biofeedback (like EMG biofeedback for muscle 
retraining or thermal biofeedback for vascular 
headaches) in mind. It does not explicitly endorse 
neurofeedback for mental health. A long-standing 
Medicare policy statement is that “biofeedback is not 
covered by Medicare for treatment of psychosomatic 
conditions” (CMS, 2011; “Psychosomatic” in this 
context includes stress-related disorders, anxiety, 
and other psychological conditions). Moreover, an 
official Medicare contractor billing guideline explicitly 
notes: “Biofeedback for the treatment of psychiatric 
disorders (90875 and 90876) is not covered under 
Medicare” (CMS, 2011). This means that if a 
provider submits a claim to Medicare for CPT 90875 
or 90876 for, say, a diagnosis of generalized anxiety 
disorder or ADHD, Medicare will deny that claim as 
not medically necessary. Similarly, CPT 90901, 
when billed for a primarily psychiatric indication, is 
typically deemed noncovered. For example, a 
regional Medicare Advantage policy states “CPT 
codes 90875, 90876, and 90901 will be considered 
not medically necessary and not covered” for the 
psychiatric or psychological indications addressed 
by the policy (Providence Health Plan, 2022). 
 
What does Medicare cover in this realm? Medicare 
has a narrow scope of coverage for biofeedback, 
mainly limited to certain medical conditions. For 
instance, there is an NCD approving biofeedback 
(pelvic floor muscle biofeedback) for urinary 
incontinence, because sufficient evidence supported 
its efficacy for that condition. Thus, CPT 90911 
(pelvic floor biofeedback) is covered for urge or 
stress incontinence when specific criteria are met. 
For other issues like chronic pain or hypertension, 
older guidance documents offered little support, and 
there’s no explicit national Medicare coverage for 
those conditions either. Neurofeedback, being 
essentially EEG biofeedback, was not included as a 
covered treatment for psychological conditions in 
any Medicare coverage decisions. In summary, for 
Medicare Part B (outpatient services), one should 
assume that neurofeedback for mental health 
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indications is noncovered. Patients must either pay 
out-of-pocket or the provider must find an alternate 
justification (e.g., perhaps billing 90901 for an off-
label use with an Advance Beneficiary Notice (ABN) 
on file, if appropriate). Providers must not attempt to 
camouflage neurofeedback as something else for 
Medicare billing; doing so could be considered 
fraudulent. An illustrative (and cautionary) example: 
In the 2025 case of U.S. v. Luthor et al., a Medicare 
fraud indictment in Minnesota, one allegation was 
that the defendants billed Medicare for CPT 90901 
(biofeedback) while actually providing 
neurofeedback to treat mental health conditions, 
despite Medicare’s position that 90901 biofeedback 
is intended for physiological conditions like 
incontinence or hypertension, not for psychological 
therapy. The claims were deemed false because the 
service (neurofeedback for mental health) didn’t 
align with the code’s covered purpose. This case 
underscores the importance of respecting 
Medicare’s coverage rules. Even if neurofeedback 
has clear clinical benefit for a patient, if Medicare 
doesn’t cover it for that indication, billing Medicare 
anyway (under a code for which the service is not 
covered) is considered a false claim (U.S. Attorney’s 
Office, 2025). 
 
Recent Changes and Developments  
While Medicare’s fundamental stance on 
neurofeedback coverage has not dramatically 
changed (it remains largely noncovered for 
psychiatric indications), there have been some 
recent developments worth noting. One has been in 
the context of telehealth and the COVID-19 Public 
Health Emergency. In 2020–2023, the Centers for 
Medicare & Medicaid Services (CMS) added many 
services to the list of those eligible for telehealth 
reimbursement. Interestingly, CPT codes 90875 and 
90901 were among the codes temporarily added to 
Medicare’s telehealth services list, allowing 
providers to perform psychophysiological therapy or 
biofeedback training via telehealth and bill Medicare 
as if the services were provided in person (APA, 
2023). This telehealth inclusion was extended 
through at least the end of 2024 by legislation and 
CMS rulemaking (APA, 2023). However, providers 
must be cautious. Just because Medicare would 
process 90875 or 90901 when delivered via 
telehealth does not mean Medicare has started 
covering neurofeedback for new diagnoses. It simply 
means if you were providing, say, pelvic floor 
biofeedback (90901 for incontinence) or other 
biofeedback for a covered indication, you could do it 
via telehealth during the waiver period. It would be a 
misinterpretation to assume “Medicare now covers 
neurofeedback for ADHD because 90901 is on the 

telehealth list”; that is not the case. The telehealth 
list change is about the delivery method, not the 
coverage criteria. 
 
Another development involves local Medicare 
contractors potentially reconsidering their 
biofeedback policies. There have been instances of 
LCDs being retired or revised in recent years. For 
example, one MAC had an LCD (e.g., L34898) that 
explicitly detailed noncovered diagnoses for 
biofeedback; if such an LCD is retired, it doesn’t 
automatically mean coverage now exists. This might 
simply mean the contractor is deferring to general 
Medicare noncoverage unless new evidence 
emerges. As of 2025, there is no indication that 
Medicare has positively begun covering 
neurofeedback for conditions like ADHD or anxiety. 
The field is watching ongoing research (some large 
trials are underway for neurofeedback in PTSD, etc.) 
and, should that evidence base reach a tipping 
point, professional societies like the APA or ISNR 
might lobby Medicare for a national coverage 
change. Until then, practitioners must assume 
neurofeedback is a cash-pay service for Medicare 
beneficiaries or attempt to bill it as incident to 
physician services in very limited scenarios (with 
great care, as discussed below). 
 
For completeness, note that Medicare Advantage 
plans (offered by private insurers but generally 
mirroring Medicare’s coverage decisions) also tend 
to follow Medicare policy in this area. Many have 
explicit medical policies declaring neurofeedback 
investigational or not covered for psychiatric 
indications (Providence Health Plan, 2022). Some 
commercial non-Medicare insurers, however, do 
cover neurofeedback for certain conditions like 
ADHD on a case-by-case basis, but those decisions 
do not apply to Medicare beneficiaries. Therefore, 
for any patient population that includes Medicare 
recipients, practitioners should be extremely diligent: 
verify each patient’s eligibility and coverage, obtain 
ABNs where required for noncovered services, and 
never bill a code to Medicare that mischaracterizes 
the service (e.g., billing 90834 psychotherapy for a 
session that was really neurofeedback training, 
which would be improper). 
 
In summary, current Medicare policy disallows 
coverage of neurofeedback for mental health, and 
the recent telehealth allowances do not equate to a 
coverage expansion. Ethical practice demands that 
providers inform Medicare patients upfront if a 
service is noncovered and not attempt to “game” the 
system. Later in this paper, we discuss a case study 
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exemplifying the severe penalties that can result 
from flouting these rules. 
 

Incident to Billing and Technician Involvement 
 
Delivering neurofeedback often involves a team-
based approach. Thus, a licensed clinician may 
design and supervise the treatment protocol, while 
trained technicians or assistants carry out the day-
to-day training sessions. This model raises important 
billing questions. How can services provided by a 
technician be billed? Can they be billed under the 
supervising provider’s credentials? The concept of 
incident to billing in Medicare (and analogous rules 
for some private insurers) is central here, as are 
state scope-of-practice regulations that dictate what 
tasks unlicensed individuals can perform. 
 
Understanding Incident to  
In Medicare parlance, an incident to service is one 
that is furnished incident to a physician’s (or certain 
nonphysician practitioner’s) professional services in 
the course of diagnosis or treatment. Classic 
examples include a nurse or medical assistant 
providing a service in a physician’s office under the 
physician’s supervision, with the physician then 
billing for it. If all Medicare requirements are met, the 
service can be billed under the physician’s NPI as if 
the physician personally rendered it, allowing 
reimbursement at 100% of the physician fee 
schedule. In the neurofeedback context, this could 
theoretically apply if, for instance, a psychiatrist or 
neurologist initiates a plan of care for neurofeedback 
and has a technician administer the sessions under 
direct supervision (meaning the physician is 
physically present in the office suite and immediately 
available). Under those conditions, the physician 
might bill 90901 for those sessions as incident to his 
or her service. However, it is crucial to note several 
caveats: 

• Medicare’s incident to rules only allow this 
billing provision in an office setting (not in 
hospital or facility settings) and require that 
the physician has seen the patient first and 
established the treatment plan. The services 
must be an integral, commonly rendered 
part of the physician’s practice, and the 
physician must remain actively involved in 
the patient’s care. If any piece is missing 
(e.g., the patient is new without a physician 
initial visit or the supervision is off-site), then 
billing incident to is not allowed. 

• Provider Type Eligibility: Physicians 
(MD/DO) and a few others (certain licensed 
NPPs like PAs and NPs, and in some cases 
clinical psychologists for their own services) 

are eligible to use incident to. However, not 
all Medicare-recognized provider types have 
this privilege in the same way. For example, 
clinical psychologists treating Medicare 
patients cannot bill medical services that are 
outside their license, and Medicare generally 
expects a clinical psychologist to personally 
provide the psychotherapy services they bill. 
The concept of incident to is a gray area for 
psychologists. Medicare does not clearly 
allow psychologists to bill incident to 
themselves for services performed by, say, 
an unlicensed technician. In practice, most 
psychological services must be performed 
by the clinician or by a trainee where the 
clinician is supervising but the trainee isn’t 
separately billing. So, a psychologist in 
private practice likely cannot hire an 
unlicensed neurofeedback technician and 
bill Medicare incident to the psychologist. 
That would be viewed as the technician 
providing psychotherapy without a license, 
which is illegal in many states and not 
billable to Medicare. On the other hand, a 
physician (e.g., a psychiatrist) might be able 
to incorporate a neurofeedback technician 
under incident to rules. Thus, scope-of-
practice laws and Medicare rules intersect. If 
your professional license does not allow 
delegation of a particular task, incident to 
billing cannot circumvent that. Always check 
state law; many states consider the 
application of biofeedback and 
neurofeedback to be the practice of 
psychology or medicine, meaning the 
individual hooking a patient up to 
neurofeedback equipment and altering 
treatment parameters should either be 
licensed or be supervised in a manner 
consistent with professional regulations 
(such as under a formal psychological 
associate and assistant arrangement). 

 
Private Insurance and Delegation  
Outside of Medicare, some private insurers may pay 
for services delivered by auxiliary personnel if billed 
under a qualified provider, but policies vary widely. 
Some insurers require that the person actually 
providing a biofeedback service be individually 
credentialed with them (e.g., some insurers will 
credential masters-level therapists for biofeedback, 
while others will only reimburse services provided by 
physicians or licensed psychologists). Other insurers 
allow a supervised billing model similar to incident 
to. It is essential to clarify the policy with each payer. 
As a rule of thumb, billing should never misrepresent 
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who performed the service. Even when using 
incident to, transparency in the record is needed. 
The ISNR and Biofeedback Certification 
International Alliance (BCIA) ethical guidelines 
emphasize this, stating that practitioners must 
“clearly specify which services the practitioner 
provided directly and which were provided under 
supervision” when billing third parties (BCIA, 2017). 
For instance, if a technician conducts a 
neurofeedback session under Dr. Smith’s 
supervision, the progress note should reflect that 
“Jane Doe, Neurofeedback Technician, conducted 
the session per Dr. Smith’s plan, with Dr. Smith on 
site.” The insurance claim might still be submitted 
under Dr. Smith’s name (if incident to criteria are 
met), but there is no deception in the documentation. 
This clarity is not only ethical but also provides a 
defense that you weren’t trying to fool the insurer 
about who did what. 
 
Risks of Improper Incident to Usage  
Improper use of incident to can result in serious 
repercussions. In the Minnesota case of U.S. v. 
Luthor, part of the scheme involved unqualified 
individuals (in that case, friends of the clinic owners 
who had no medical licenses) administering 
neurofeedback and other services, with billing 
submitted as though performed by qualified 
providers. The indictment described how the couple 
“enlisted the help of Luthor’s girlfriends” to assist in 
providing services, and then billed insurers falsely 
(U.S. Attorney’s Office, 2025). This highlights that 
simply having someone present in the office does 
not justify billing as if a clinician provided the service. 
Additionally, each payer may have specific rules; for 
example, some states require licensure for anyone 
performing any kind of behavioral health service, 
which would preclude even having a technician 
perform neurofeedback unless that technician is on 
a path to licensure or otherwise exempt. It is also 
important to note that incident to does not apply at 
all in institutional settings (for instance, if you are 
working within a hospital outpatient department or 
facility, you cannot bill incident to—you’d have to 
credential the person through the facility or bill under 
the facility’s rules). 
 
Guidance for Practitioners: If you utilize technicians 
or assistants for neurofeedback services, consider 
the following guidelines: 

1. Verify that your state license permits 
delegation. Some psychology licensing 
boards allow unlicensed individuals to 
provide certain services under supervision 
(often requiring the supervisor to take legal 
responsibility for the supervisee’s work). 

Other states do not allow this at all, 
considering it unlicensed practice. Your 
ability to use support staff for neurofeedback 
may be determined by these regulations 
alone. 

2. If delegation is permitted, ensure rigorous 
training and supervision of the technician. 
From an ethical standpoint, the patient 
should receive the same quality of care as if 
the licensed provider were directly 
administering the treatment. The supervising 
provider should be the one formulating the 
treatment plan, directly training the 
technician, and reviewing progress regularly. 
(This is also a requirement under Medicare’s 
incident to rules—the physician’s 
involvement must be ongoing and active.) 

3. When billing, follow the payer’s rules to the 
letter. For Medicare, only bill incident to if all 
criteria are met (appropriate setting, 
established plan of care by the physician, 
direct supervision, etc.) and be sure to use 
the supervising provider’s NPI on the claim 
(and keep documentation of their presence 
and active role). For private insurers, if they 
explicitly credential “technician-assisted 
biofeedback,” follow their billing instructions 
(some might require a specific modifier or a 
supervision attestation). If an insurer does 
not allow incident to and expects the identity 
of the actual rendering provider, do not list 
the licensed provider as rendering if they 
were not actually present, that could be 
construed as fraud if discovered. Instead, 
either get the technician independently 
credentialed with that insurer (if possible) or 
don’t bill that insurer for those services 
(have the patient pay privately). 

4. Inform patients about the involvement of a 
technician. Be transparent that a technician 
will be working with them and assure them 
that the supervising professional will be 
overseeing the process. Transparency 
builds trust and also preempts any concern 
or confusion if, for example, a patient later 
sees an Explanation of Benefits that lists a 
doctor’s name even though they remember 
mostly working with “Coach Jane” during 
sessions. 

 
In sum, incident to billing can be a useful but tricky 
tool. It should be used only in strict accordance with 
regulations. When done properly, it allows 
neurofeedback practices to expand capacity 
(through the help of technicians) without running 
afoul of the rules. When done improperly, it 
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becomes a pathway to fraudulent billing. Ethical 
practice demands that patient care and honesty take 
priority over maximizing reimbursement. 

 
Ethical and Legal Implications  

of Incorrect Billing 
 
The landscape of neurofeedback and qEEG billing is 
not just about getting paid—it is also fraught with 
ethical and legal landmines. “Incorrect billing” can 
refer to a range of behaviors: using the wrong code 
by mistake, deliberately upcoding to obtain higher 
reimbursement, unbundling services to increase 
revenue, billing for services not actually rendered or 
not covered, or misrepresenting who provided the 
service. The implications of such actions vary from 
claims denials and demands for repayment, to 
professional disciplinary action, and in the worst 
cases, to civil or criminal liability for fraud. This 
section examines these implications, with real-world 
examples to illustrate the high stakes involved. 
 

Ethical Duties and Professional Standards 
 
Fundamentally, healthcare providers have an ethical 
duty to be honest in billing. The American 
Psychological Association’s Ethics Code insists on 
accuracy in representing services and fees (APA, 
2017). ISNR’s own Professional Standards and 
Ethical Principles (most recently updated in 2020) 
similarly emphasize that clinicians should comply 
with all third-party payer rules and accurately 
represent the services provided, and the BCIA ethics 
code explicitly requires that practitioners “only 
charge for services actually provided by them or by 
those under their legal supervision” and, when 
billing, to “clearly specify which services were 
provided directly and which were supervised” (ISNR, 
2020; BCIA, 2017). Such guidelines echo what 
we’ve detailed throughout this article: be truthful in 
billing and follow the established rules. Misbilling 
also violates patient trust—even if the patient isn’t 
paying out of pocket, they rely on the provider’s 
integrity in dealings with their insurer. Ethically, 
“padding” a bill or manipulating coding is tantamount 
to lying, which erodes the moral fabric of both the 
provider–patient relationship and the provider–payer 
relationship. It can also harm the field as a whole. If 
neurofeedback practitioners develop a reputation for 
shady billing practices, insurance companies are 
likely to become more restrictive and suspicious, 
potentially limiting coverage or access for all patients 
(Providence Health Plan, 2022). Therefore, ethical 
billing is a form of professional responsibility to 
protect the viability and credibility of neurofeedback 
as a legitimate treatment modality. 

Common Improper Billing Practices to Avoid 

• Unbundling and Double Billing: This occurs 
when a provider bills two or more codes for 
what is actually a single service. For 
example, billing both 90901 and 90834 
(individual psychotherapy) for the same time 
period of a session—claiming one code was 
for biofeedback and one for therapy, when in 
reality it was one integrated session. Or 
billing an EEG recording code in addition to 
90901 for a neurofeedback session (where 
the EEG recording is inherent to the 
neurofeedback service). As discussed 
earlier, CPT rules prohibit these 
combinations, and payers have automated 
edits in place to detect many of them. If 
audited, the provider would have to pay 
back the improperly billed amount and could 
face penalties. Such unbundling clearly 
violates coding guidelines (CMS, 2015). 

• Upcoding Duration or Intensity: Using a 
code that represents a higher intensity or 
longer duration service than what was 
actually provided. For instance, routinely 
billing 90876 (the 45-min psychotherapy 
/biofeedback code) when sessions are in 
fact only 30 min, or reporting multiple units 
of 90901 on the same day (remember that 
90901 is per day, not per hour). In the 
Department of Justice’s Minnesota case 
example, the defendants allegedly billed 
codes indicating longer durations than they 
actually provided (U.S. Attorney’s Office, 
2025). Excessive duration billing is a red flag 
in claims data—if a practice is routinely 
billing an improbably high number of hours 
of service per day or per patient, it will 
attract payer scrutiny. 

• Misusing Evaluation Codes: Some 
neurofeedback providers have patients fill 
out symptom questionnaires or complete a 
continuous performance test and then 
attempt to bill those activities as 
psychological testing or evaluation services. 
If those assessments are not truly separate 
services, or if they are part of the routine 
neurofeedback evaluation and feedback 
process that should be encompassed by the 
session code, then billing them separately is 
inappropriate. In U.S. v. Luthor, the clinic 
billed psychological testing code 
combinations that “by definition could not be 
combined”; for example, billing a code that 
represents test administration alongside 
another code that represents the same test’s 
interpretation, in a way that double-counted 
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the work (Office of Inspector General, 2025). 
Such practices are false billing and were 
cited in the indictment as part of the 
fraudulent scheme. 

• Billing Unqualified Services: As discussed in 
the incident to section, billing as if a licensed 
professional provided the service when it 
was actually delivered by an unqualified 
person (e.g., an unlicensed technician) is 
both unethical and illegal. If the rules for 
supervised billing aren’t met, one cannot 
simply put the service under someone else’s 
name on a claim. That is considered a false 
claim. 

• Billing for Noncovered Services as if 
Covered: This is a subtle but important 
point, particularly for neurofeedback. If a 
service is not covered by an insurer, you 
cannot simply bill it under a different code 
that is covered. For example, some 
providers have attempted to bill 
neurofeedback (noncovered for a given 
diagnosis or plan) as 90834 (standard 
psychotherapy) in order to get paid. Unless 
that patient truly received a legitimate 
psychotherapy session (which 
neurofeedback training is not, in most 
cases), that is misrepresentation. The 
proper approach for a noncovered service is 
to have the patient pay privately or, if the 
insurer allows, submit the claim with a 
modifier (for instance, Medicare’s –GY 
modifier for noncovered services) so that it 
is transparently denied and the patient can 
be charged. Misrepresenting the nature of 
the service is fraud. The Luthor case again 
exemplifies this: by billing neurofeedback 
under codes for which it didn’t qualify (using 
90901 for conditions it shouldn’t be used for, 
or billing inappropriate code combinations), 
the defendants crossed into fraud territory 
(U.S. Attorney’s Office, 2025). 

 
Illustrative Case Study – U.S. v. Luthor et al. 
(2025, Minnesota)  
This case provides a concrete illustration of what 
can happen when billing goes awry. Gabriel Luthor 
and Elizabeth Brown ran a company providing 
neurofeedback in Minnesota and, as per a federal 
indictment, engaged in systematic overbilling. They 
allegedly submitted “hundreds of thousands of false 
claims” totaling roughly $15 million in billed charges 
(U.S. Attorney’s Office, 2025). Their tactics included 
using codes that didn’t apply to neurofeedback, 
combining codes that shouldn’t be billed together, 
and inflating session times. Notably, evidence 

showed they ignored repeated warnings—insurers 
had warned them, an outside auditor warned them, 
and even CMS sent warnings, yet they persisted 
(Office of Inspector General, 2025). This willful 
disregard led to a major healthcare fraud case, with 
charges including wire fraud and money laundering 
(U.S. Attorney’s Office, 2025). The fallout: arrests, 
an indictment, frozen assets (the DOJ moved to 
seize a mansion the couple had purchased with the 
proceeds), and the prospect of years in prison if 
convicted. While this is an extreme example, it 
starkly highlights the legal risks. A provider doesn’t 
have to be making $15 million to get into trouble; 
even small practices have been audited by Medicare 
or insurers and forced to repay tens of thousands of 
dollars, or face exclusion from insurance panels, due 
to improper coding. 
 
Civil and Criminal Consequences  
On the civil side, insurers can demand repayment for 
any improperly paid claims. They may also impose 
interest on the overpayments and even civil 
monetary penalties in some cases (Medicare’s 
Office of Inspector General has authority to levy 
fines for fraud or false billing). If the behavior is 
deemed knowing and willful, the False Claims Act 
can come into play, allowing treble damages (three 
times the amount of the false claims) and enabling 
whistleblower (qui tam) lawsuits. For instance, if a 
technician in a clinic realizes the boss is billing 
fraudulently, that employee could potentially become 
a whistleblower, leading to an investigation. On the 
criminal side, as with the Luthor case, prosecutors 
may charge healthcare fraud or related offenses 
(such as wire fraud if electronic claims were sent, or 
mail fraud if paper claims were involved). A 
conviction can result in hefty fines and incarceration, 
as well as loss of professional licenses and 
exclusion from Medicare and Medicaid participation 
for at least 5 years (often much longer, effectively 
ending one’s insurance-based practice). 
 
Professional Discipline  
Even short of criminal court, providers face their own 
professional licensing boards. A psychologist or 
physician could be sanctioned or lose their license 
for unethical billing practices. Many state boards 
have specific rules against insurance fraud or 
broadly against “unprofessional conduct,” which 
would include deceptive billing. Thus, a practitioner 
might survive an audit or investigation by an insurer, 
but still face a licensure complaint from, say, an 
unhappy patient or an insurance company that 
detected improper billing. 
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Preventive Measures 
The best protection is prevention. Regular 
compliance training and internal audits within one’s 
practice are essential. Many larger clinics hire 
coding experts or consultants to review their billing 
periodically and ensure everything aligns with 
current guidelines. Solo practitioners can make use 
of resources from professional associations (e.g., 
the APA’s practice organization provides billing 
guidelines, and ISNR often offers webinars on ethics 
in coding) to stay informed. When an error is 
discovered, it should be voluntarily corrected; for 
example, if you realize you accidentally billed 90876 
when you only provided a 25-min session (which 
should have been 90875), correct the error or refund 
the difference rather than hoping it goes unnoticed. 
Showing a pattern of prompt corrective action can 
mitigate penalties if an insurer or Medicare audits 
you. Maintaining open communication with payers is 
also key. If unsure how to bill something, ask the 
insurer (many have provider relations 
representatives who can give guidance, preferably in 
writing). Keep records of any authorization or 
guidance you receive from payers, in case it is 
questioned later. 
 
In conclusion, the ethical mantra is “When in doubt, 
bill honestly and modestly.” It is far better to underbill 
(or not get paid for something) than to overbill and 
risk the cascade of consequences. No financial gain 
is worth one’s professional integrity or freedom. By 
adhering to correct coding principles and erring on 
the side of caution, neurofeedback practitioners can 
avoid the nightmare scenarios and instead focus on 
helping patients. 
 

The Role of ISNR and Professional Advocacy 
in Ethical Billing 

 
ISNR, along with related bodies like AAPB and 
BCIA, plays a crucial role in guiding practitioners 
toward ethical billing and pushing for systemic 
improvements in how neurofeedback and qEEG are 
coded and reimbursed. These organizations serve 
as a bridge between the clinical community and 
regulatory entities (such as the AMA, CMS, and 
insurers), and they provide education and resources 
that directly address the challenges discussed in this 
article. 
 
Code of Ethics and Professional Guidelines  
ISNR has promulgated ethical principles and 
practice standards that encompass billing ethics. For 
example, the ISNR Professional Standards and 
Ethical Principles (PSEP) document (most recently 
updated in 2020) reinforces that clinicians should 

comply with all third-party payer rules and accurately 
represent their services. Similarly, the BCIA, which 
certifies neurofeedback practitioners, mandates in its 
ethical standards that certificants “only charge for 
services actually provided by them or by those under 
their legal supervision” and that when billing, they 
“clearly specify which services were provided directly 
and which were supervised.” (BCIA, 2017). These 
guidelines essentially echo what we’ve detailed in 
this paper: be truthful in billing and follow the rules. 
ISNR expects its members to uphold these 
standards. Through webinars and conference 
workshops, ISNR often addresses topics like “Ethics 
in qEEG and Neuromodulation,” where appropriate 
coding is highlighted as an ethical issue, not just a 
financial one. Members are encouraged to seek 
mentorship or peer consultation if they are unsure 
about billing practices, fostering a community 
standard of integrity. 
 
Advocacy for CPT Code Refinement  
ISNR, in collaboration with AAPB, has been actively 
working to improve the CPT coding system to better 
fit neurofeedback. As noted earlier, they launched a 
CPT Code Initiative (ISNR & AAPB, 2023). The 
rationale behind this advocacy is partly ethical and 
partly practical. Current codes are outdated, which 
can put well-intentioned providers in ambiguous 
situations. For instance, a psychologist treating 
PTSD with neurofeedback might struggle with which 
code to use, since 90901 is a biofeedback code that 
many insurers won’t reimburse for PTSD, yet 90875 
requires psychotherapy and might not be recognized 
either for neurofeedback alone. By advocating to the 
AMA for new codes or revised definitions that 
explicitly include neurofeedback for certain 
conditions, ISNR and AAPB hope to reduce 
ambiguity and thereby reduce inadvertent 
miscoding. This initiative, if successful, could lead to 
something like a dedicated neurofeedback therapy 
code, or a modifier to existing codes, or at least 
clearer guidance in CPT Assistant publications. The 
advocacy involves assembling research evidence, 
utilization data, and a strong case for why better 
codes would benefit patient care, aligning with the 
AMA’s criteria for considering code changes. ISNR 
also communicates with insurers to encourage 
coverage by sharing research demonstrating 
neurofeedback’s efficacy for certain disorders. The 
goal is twofold: make neurofeedback more 
accessible (in terms of insurance coverage) and 
ensure it is reimbursed only for appropriate uses 
with proper coding (thus rewarding ethical providers 
and weeding out unscrupulous actors). 
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Educating Membership on Compliance  
Both ISNR and AAPB provide educational materials 
focused on billing compliance. They often invite 
coding experts or healthcare attorneys to speak at 
annual conferences. Their newsletters and journals 
(e.g., NeuroRegulation, ISNR’s journal) periodically 
cover updates on Medicare policies or present case 
studies of billing dilemmas. Notably, plenary 
sessions and workshops at ISNR’s annual 
conferences have been devoted to “Update on CPT 
Coding and Insurance Reimbursement for 
Neurofeedback and qEEG,” led by domain expert 
Mark Trullinger, indicating how high a priority this 
topic is for the organization. Through these efforts, 
ISNR helps keep practitioners up to date, which is 
vital since rules can change annually. 
 
ISNR as an Ethical Watchdog  
Professional organizations also serve a self-
regulatory function. They encourage members to 
report unethical practices (perhaps privately to an 
ethics committee). While ISNR is not a licensing 
board and cannot revoke someone’s license, it can 
censure members or even revoke membership for 
ethical violations. More importantly, by publicly 
emphasizing ethics (in articles like this one or official 
statements), ISNR sets a tone that deters 
misconduct. In fields that are somewhat fringe or 
under skepticism (and neurofeedback has at times 
faced skepticism within mainstream medicine), self-
policing is crucial to maintain credibility. ISNR’s 
Code of Ethics includes clauses about not 
misrepresenting one’s services and credentials, 
which would encompass billing fraud as a form of 
misrepresentation. 
 
Collaboration With Regulators  
ISNR has, in some cases, worked with regulatory 
agencies or at least provided input when asked. For 
example, if CMS or a state insurance commission 
seeks expert input on how neurofeedback is 
practiced, ISNR can provide informed opinions or 
data. This can help shape policies that are fair and 
evidence-based. An example might be an insurer 
considering whether to start covering 
neurofeedback, ISNR might supply outcome data or 
practice guidelines to help them make an informed 
decision (advocating for coverage when appropriate, 
along with clear guidelines to avoid misuse). 
 
In summary, ISNR’s role is integral in both guiding 
individual practitioners and shaping the broader 
billing environment. By advocating for clearer codes 
and educating professionals about ethical billing, 
ISNR helps reduce the ambiguity and confusion that 
can lead to inadvertent errors, and it shines a light 

on the “high road” in billing practices. Practitioners 
are strongly advised to engage with such 
professional bodies, as membership offers access to 
the latest information and a network of peers 
committed to ethical practice. Ultimately, every 
provider’s honest billing is a brick in the wall of the 
field’s integrity and organizations like ISNR provide 
the blueprint for how to lay those bricks correctly. 
 

Ambiguities in CPT Coding  
and Associated Risks 

 
Despite the best efforts of the AMA, CMS, and 
professional organizations, some ambiguities in CPT 
coding for neurofeedback and qEEG persist. These 
gray areas create risks for well-meaning clinicians 
who must interpret how to bill novel or hybrid 
services. Ambiguities can arise from vague code 
definitions, evolving technology that outpaces code 
updates, or differing interpretations between payers. 
Let’s explore a few of these ambiguities and the 
potential pitfalls they pose: 

• Biofeedback versus Psychotherapy – Fuzzy 
Boundaries: Neurofeedback straddles the 
line between physiological training and 
psychological therapy. Some providers 
struggle with whether a session should be 
coded as “psychophysiological therapy with 
biofeedback” (90875 or 90876) or just 
“biofeedback” (90901). The ambiguity might 
arise if, for example, a clinician spends part 
of the session discussing emotions or 
coping strategies (which feels like 
psychotherapy) and part of it running 
neurofeedback. How much talking turns a 
90901 session into a 90875 session? CPT 
doesn’t quantify this, leaving it to clinical 
judgment. This ambiguity could lead to 
inconsistent coding—one clinician might 
always use 90875 if there was any 
counseling, while another uses 90901 
unless it was predominantly therapy. The 
risk here is that if audited, one might have to 
justify why a certain code was chosen. The 
safer approach is to decide at the outset the 
session’s primary purpose. If therapy is only 
a minor adjunct to a primarily neurofeedback 
session, lean towards 90901; if substantive 
psychotherapy is a major component of the 
visit, use 90875 or 90876. Document the 
session content accordingly to support the 
choice. In all cases, avoid coding both 
90901 and 90875 or 90876 for the same 
session (as that is clearly disallowed). 

• Quantitative EEG Coding: As discussed, no 
single CPT code explicitly says “qEEG brain 
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map.” Some clinicians use 95957 (digital 
EEG analysis) to bill for qEEG, but not all 
payers accept that usage for behavioral 
health indications. Others might resort to an 
unlisted code (such as 94999, unlisted 
neurological procedure), which is harder to 
get reimbursed. The lack of a dedicated 
qEEG code creates ambiguity, practitioners 
must choose between not billing for the 
service at all (perhaps bundling its cost into 
a self-pay neurofeedback program fee), 
billing something like 95957 and hoping it 
passes scrutiny, or billing an evaluation 
code that isn’t truly appropriate. Each option 
has risks. Not billing means no 
reimbursement; billing 95957 might get 
denied or could be viewed as misbilling if the 
payer later specifies that qEEG wasn’t 
covered for that diagnosis; and billing an 
evaluation code (like 96132 for 
neurocognitive test interpretation) would 
likely be improper unless formal 
neuropsychological testing was actually 
done. In a policy by Anthem Blue Cross Blue 
Shield, for example, the insurer lists CPT 
codes 90875, 90901, and 95957 in a 
document regarding neurofeedback, 
essentially warning providers not to use 
95957 in the context of EEG biofeedback for 
psychological conditions (Anthem Blue 
Cross Blue Shield, 2021). This implies they 
are watching for misuse of that neurological 
code for neurofeedback. Until a clear qEEG 
code exists, the ambiguity remains. 
Practitioners should tread carefully: if using 
95957, ensure you truly have an EEG 
recording and a separate analytical report 
that could stand up to scrutiny as a 
legitimate service (preferably with a 
neurologist or qEEG-certified expert’s 
involvement). This aligns with suggestions 
some have made to involve a neurologist to 
read the raw EEG as part of the qEEG 
process, which can lend credibility and 
perhaps provide a legitimate billing route 
(e.g., the neurologist might bill an EEG 
interpretation code separately). 

• Home Training and Remote Neurofeedback: 
With newer technologies, some practitioners 
are supervising neurofeedback that patients 
do at home (e.g., loaning the patient 
equipment or using remote neurofeedback 
software). How to bill this is ambiguous. Is it 
billable at all if the patient is essentially 
training themselves? If the clinician is 
monitoring in real time via an internet 

connection, is that effectively a telehealth 
session (and thus maybe could be billed as 
90901 with a telehealth modifier)? CPT does 
not yet have a code for “remote biofeedback 
monitoring.” This ambiguity can lead some 
to incorrectly bill multiple units of 90901 for 
unsupervised home use (which would be 
wrong). The safer interpretation is that if a 
clinician is actively supervising the 
neurofeedback in real time (e.g., via 
telehealth video session), then one could bill 
the session as a telehealth service (e.g., 
90901 with the appropriate telehealth place-
of-service or modifier). If the patient is 
training solo and the clinician only reviews 
the data later, it might not be a billable 
service at all, except possibly as a data 
analysis or review (which would likely fall 
under an unlisted code if anything). It is a 
gray area that needs clarification in the 
future. Until then, clarity with patients on 
fees is crucial (perhaps charging a flat 
program fee for home training use) to avoid 
attempting to force-fit these services into 
insurance billing where they don’t fit well. 

• Payer Policy versus CPT Definition: 
Sometimes the ambiguity isn’t within CPT 
itself, but between what a CPT code 
technically allows and what an insurer’s 
policy will reimburse. For instance, CPT 
90901 technically does not restrict the 
conditions it can be used for—it simply says, 
“biofeedback by any modality.” But an 
insurer’s medical policy might say “we only 
cover 90901 for these three diagnoses.” 
This creates a trap. A provider might see the 
CPT code description and think, “I can use 
this for neurofeedback applied to a client 
experiencing ADHD,” which is true in terms 
of coding submission, but the insurer will 
deny it as not covered for ADHD. The 
provider might then be tempted to think, 
“maybe if I use 90875 (since it is in the 
mental health section), it will get paid.” That 
could result in payment but would violate 
coding integrity if no psychotherapy was 
actually done. The conflict between what a 
code can describe and what an insurer will 
reimburse is a common frustration. The 
ethical approach is not to twist your coding 
to chase coverage. Instead, either obtain a 
preauthorization or special exception from 
the insurer for the service, or inform the 
patient that it is not covered and make 
payment arrangements accordingly. Many 
neurofeedback providers end up with a mix 
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of insurance and self-pay precisely because 
of these coverage gaps. Trying to solve a 
coverage gap by coding slight-of-hand 
usually backfires eventually. 

• Risks of Ambiguity: Ambiguities increase the 
risk of inconsistent billing across the field—
which insurers’ algorithms may flag. If five 
providers all treat ADHD with neurofeedback 
but one bills 90876, another 90901, another 
96110, etc., insurers see inconsistency and 
may initiate audits to determine which (if 
any) are billing correctly. Ambiguity also 
poses a problem for training and knowledge 
transfer. New providers might inadvertently 
learn poor coding habits from others. One 
clinician’s “creative” billing can become a 
staffer’s standard practice at a clinic, and 
then that staffer carries those habits to a 
new job, spreading the misuse. Over time, 
this can lead to industry-wide patterns that 
attract regulator attention (e.g., CMS or the 
OIG issuing a fraud alert or policy 
clarification). 

 
To manage these ambiguities, practitioners should 
seek clarity whenever possible. Consult CPT 
Assistant archives, ask insurers for written guidance, 
and discuss tricky situations with colleagues through 
professional forums or consultation. Often, an 
ambiguity can be resolved or at least reduced by 
simply verifying information directly with authoritative 
sources. When something remains ambiguous, 
make a conservative choice and document your 
rationale. For example, a note to file might state, 
“Chose 90901 instead of 90876 because although 
some counseling was done, it was less than 50% of 
session; primary service was biofeedback.” A 
contemporaneous note like that shows you were not 
attempting deception but rather thoughtfully 
navigating a gray area. 
 
Ultimately, the push by ISNR and AAPB to refine 
CPT codes is aimed at eliminating these 
ambiguities. Clear codes that match 
neurofeedback’s usage will let clinicians focus on 
therapy rather than coding dilemmas and will reduce 
inadvertent noncompliance. Until that happens, 
awareness of the pitfalls is the best defense. 
 

Recommendations 
 
Navigating the thicket of neurofeedback and qEEG 
billing requires diligence, honesty, and up-to-date 
knowledge. The following recommendations 
summarize best practices and professional 

responsibilities that can help clinicians bill ethically 
and avoid pitfalls: 

1. Commit to Ongoing Education: Billing rules 
and codes change over time. Clinicians and 
billing staff should engage in continuing 
education specifically around coding and 
compliance. This might include attending 
webinars (such as those offered by ISNR, 
AAPB, or APA), subscribing to coding 
newsletters, and reading updates from CMS 
and major insurers each year. Staying 
current is critical. For example, knowing that 
90875 and 90901 were added to Medicare’s 
telehealth list temporarily (APA, 2023), that 
CPT code descriptors have subtle changes, 
or that a new CPT code is on the horizon 
can all influence how you practice and bill. 
Remember, ignorance is not a defense in 
audits; investment in education pays off by 
preventing errors. 

2. Use Established Codes as Intended: Follow 
the definitions and guidelines for CPT codes 
to the letter. If using 90901, ensure it is 
indeed a biofeedback session without 
separate psychotherapy. If using 90876, 
ensure you did provide psychotherapy 
alongside the biofeedback. Keep a copy of 
AMA CPT Assistant guidance or other 
authoritative advice on these codes handy, 
so if there’s any question from you or an 
insurer, you can demonstrate adherence to 
official guidance (e.g., by showing the AMA 
Q&A stating not to pair 90901 with 90875 
[AMA, 1997]). Avoid “code drift,” where over 
time one might start using a code more 
loosely than intended. It can help to 
periodically self-audit a few charts and 
compare your documentation to the codes 
billed. 

3. Consult Payer Policies Before Billing New 
Services: When integrating a new service 
like qEEG, review the major payers’ medical 
policies first. If United Healthcare, Aetna, 
Blue Cross, etc., all state that qEEG is 
experimental for certain conditions, then you 
know billing it to those insurers will be 
problematic. You can then plan accordingly 
(maybe treat it as a self-pay service with 
proper patient consent). If a payer does 
cover biofeedback but only for certain 
diagnoses, make sure those diagnoses are 
documented in the record if applicable. 
Essentially, try to align your billing with each 
payer’s rules as much as possible. When in 
doubt, seek a preauthorization or guidance 
from the insurer—and get it in writing if you 
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can. Keep records of any authorization or 
payer instruction in case it is questioned 
later. 

4. Emphasize Documentation and 
Transparency: Good documentation is your 
ally. Always document what intervention was 
done, for how long, by whom, and for what 
purpose (i.e., the patient’s goals or medical 
necessity). If a technician was involved, 
document their role and the supervision in 
place. If you decide to bill something in an 
ambiguous situation, document your 
reasoning for the coding choice. This 
creates a contemporaneous record that you 
were acting in good faith. Additionally, be 
transparent with patients. If something isn’t 
covered by their insurance, inform them 
beforehand. If you are billing in an unusual 
way (perhaps billing 90834 for 
psychotherapy time and 90901 for 
neurofeedback time separately on the same 
day, with distinct documentation for each), 
let the patient know so that if they see two 
services on their insurance Explanation of 
Benefits, they aren’t confused and won’t 
inadvertently raise concerns. Honesty with 
patients about billing not only is ethical in 
itself, it also reinforces diligence and 
honesty in the billing process. 

5. Avoid Pressure to “Make Insurance Pay”: 
Sometimes patients really want their 
insurance to cover neurofeedback, or a 
practice might financially depend on 
squeezing reimbursement from insurers. 
This can create pressure to bend rules. Stay 
vigilant against this pressure. Educate 
patients that not all services are covered 
and that you must bill accurately for legal 
and ethical reasons. Many patients will 
understand when you frame it as an 
obligation to do the right thing. You can 
provide them with resources (for instance, a 
copy of the insurer’s policy that shows 
neurofeedback is not covered for their 
condition) to help explain the situation. 
Consider offering a superbill for out-of-
network or noncovered services that 
accurately describes the service provided 
(even if it uses a numeric code, you might 
add a descriptor like “qEEG brain map: 
experimental service” so the payer has full 
information). The bottom line: do not let 
financial incentives erode your ethical 
standards. It may mean slower growth of 
your practice or more out-of-pocket costs for 

patients, but it is the right path in the long 
run. 

6. Engage in Peer Consultation or Hire 
Experts: If you are unsure about your billing 
practices, seek a peer review or outside 
consultation. You might ask a colleague 
knowledgeable in coding to review some of 
your superbills or claims for feedback. 
Larger clinics might even employ a 
compliance officer or hire a consultant 
periodically to audit charts and billing. An 
external eye can catch issues you might 
miss due to familiarity or bias. If you ever 
receive an audit notice or you suspect past 
errors that need correction, consult a 
healthcare attorney or compliance expert 
early—their guidance can help resolve 
issues with minimal damage. Proactivity is 
key; don’t wait until a minor billing issue 
becomes a major legal problem. 

7. Support Professional Advocacy: Lend your 
voice and support to organizations like ISNR 
and AAPB in their efforts to improve the 
coding system. This could mean 
participating in surveys about practice 
patterns and code utilization, contributing 
de-identified data that helps justify new 
codes, or even donating to advocacy funds if 
you are able. The more the coding system 
reflects the reality of neurofeedback 
practice, the easier it will be for ethical 
practitioners to stay compliant. By being 
involved in these advocacy efforts, 
practitioners also stay informed—advocacy 
updates often include summaries of the 
current coding and reimbursement climate. 

 

Conclusion 
 
Billing for neurofeedback and qEEG is undoubtedly 
complex. It is a mix of applying old codes to new 
techniques, navigating varied payer rules, and 
keeping up with evolving standards of practice. Yet, 
the overarching principle is simple: billing must 
accurately reflect clinical reality. When it does, 
providers not only safeguard themselves from legal 
trouble but also contribute to a culture of integrity 
that benefits the entire profession. Historical 
missteps and high-profile fraud cases have taught 
us that the costs of getting it wrong are enormous for 
patients, for practitioners, and for the credibility of 
neurofeedback therapy itself. Conversely, by 
clarifying coding questions, adhering to ethical 
norms, and advocating for clearer guidelines, we 
chart a path where neurofeedback can fully “come of 
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age” in the healthcare system, recognized and 
reimbursed appropriately. 
 
As we clarify the code, through articles like this, 
collective advocacy, and day-to-day 
conscientiousness, we move toward a future in 
which clinicians can focus on neuroregulation 
interventions without the shadow of billing 
uncertainty. Achieving that clarity will require 
continued collaboration between practitioners, 
professional societies, payers, and regulators. Each 
claim form we fill out correctly is a small but 
meaningful step in that direction. Let this paper 
serve not only as an informational resource but as a 
reaffirmation of our commitment to ethical practice. 
In the end, doing the right thing in billing is an 
extension of doing the right thing in clinical care—
both are essential to truly help our patients and 
advance our field. 
 
Disclaimer 
This article is intended for general educational 
guidance on neurofeedback and qEEG billing 
practices and does not constitute legal advice. The 
content may not encompass all rules or scenarios 
and might not reflect changes after publication. 
Practitioners should consult current official sources, 
payer bulletins, and, when needed, seek advice from 
qualified healthcare attorneys or compliance 
professionals to address their specific situations. 
Clinical providers are responsible for ensuring their 
own billing compliance with federal, state, and payer 
regulations. Always verify how rules apply in your 
locality and practice setting. The authors and 
publisher assume no liability for actions taken based 
on this educational content. Readers are strongly 
advised to consult legal counsel and the relevant 
insurance carriers or Medicare contractors for 
definitive guidance to ensure full compliance with all 
applicable laws and policies. 
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Abstract 

Self-regulation (SR) is a vital neurobehavioral capacity orchestrating behavior, physiological equilibrium, and 
emotional resilience through corticothalamic networks spanning the cortex and thalamus. This study formalizes 
SR as SR = behavioral equilibrium (BE) / (homeostasis [H] + emotional equilibrium [EE]), where BE captures 
adaptive responses, H denotes physiological stability, and EE reflects affective harmony, positioning 
neurofeedback (NFB) as a leading intervention. NFB, encompassing LORETA neurofeedback (LNFB) targeting 
precuneus alpha and real-time fMRI neurofeedback (rt-fMRI-NFB) modulating blood-oxygen-level-dependent 
(BOLD) signals, enhances corticothalamic modulation across educational, correctional, clinical, pediatric, and 
ADHD contexts. Evidence from diverse cohorts validates NFB’s efficacy, with LNFB improving BE (CPT-3,  
p < .008) and rt-fMRI-NFB stabilizing EE (BOLD, p < .01), supported by long-term gains in children (Strehl et al., 
2017) and adults (Rance et al., 2018). The back-to-front brain focus, rooted in precuneus primacy (~2 Mya), 
contrasts with historical frontal emphasis post-Phineas Gage. As noted in experimental findings, surface NFB 
training boosts neural connectivity. Pre- and postprotocols are rare due to subjective reliance, resistance to 
objective tracking, and resource limits (Hofmann & Smits, 2008). NFB’s standardized protocols (EEG  
ICC = .87–.92, BOLD consistency) inspire volumetric MRI studies, advancing SR science across the lifespan. 
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Introduction: The Precuneus in Phylogenetic 

and Neuroregulatory Context 
 
Self-regulation (SR) emerges as a fundamental 
neurobehavioral capacity, intricately weaving 
behavior, physiological stability, and emotional 
resilience through corticothalamic networks that link 
the cortex and thalamus. This core capacity, critical 
across developmental stages and contexts, 
underpins adaptive functioning in education, 
corrections, and clinical settings. The study 
introduces a novel framework, SR = behavioral 
equilibrium [BE] / (homeostasis [H] + emotional 
equilibrium [EE]), where BE encapsulates adaptive 
corticothalamic responses, H reflects physiological 

balance, and EE signifies emotional coherence, as 
depicted in Figure 1. Neurofeedback (NFB), 
comprising LORETA neurofeedback (LNFB) 
targeting precuneus alpha (8–13 Hz) and real-time 
fMRI neurofeedback (rt-fMRI-NFB) modulating 
blood-oxygen-level-dependent (BOLD) signals, 
stands as a pioneering intervention, harnessing 
regulatory training of emotional regulation (Johnston 
et al., 2010) to enhance SR (Zotev et al., 2014). The 
posterior-to-anterior brain development rationale, 
emphasizing the precuneus’s evolutionary role  
(~2 million years ago [Mya] in Homo habilis) over 
frontal foci highlighted post-Phineas Gage, guides 
this approach (Bruner, 2004; Dunbar, 1998). 
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Figure 1. SR Model With Measurement Domains. 

 

 
 

Note. This model illustrates SR = BE / (H + EE), integrating BE as adaptive 
corticothalamic responses (e.g., attention, planning, executive functions), H as 
physiological stability (e.g., stress hormones, HRV), and EE as affective balance 
(e.g., mood regulation). In defining the types of instruments for each category  
AT = attention task; EF = executive functions; CF = cognitive fluency; HRV = heart 
rate variability; BP = blood pressure; SH = stress hormones; PAI = personality 
assessment inventory; BDI = Beck Depression Inventory; MMPI = Minnesota 
multiphasic personality inventory. NFB, including LNFB and rt-fMRI-NFB, targets 
these domains, with LNFB enhancing precuneus alpha (8–13 Hz) for BE and H, and 
rt-fMRI-NFB modulating BOLD signals for EE (Johnston, et al., 2010), surpassing 
selective serotonin reuptake inhibitors (SSRIs) and cognitive-behavioral therapy 
(CBT; Sitaram et al., 2017). The SR model (SR = BE / [H + EE]) is operationalized 
using neurophysiological measures inherent to its parameters: BE, H, and EE are 
quantified via EEG (e.g., alpha coherence), CSD (e.g., precuneus alpha), and BOLD 
(e.g., amygdala-prefrontal connectivity) to capture corticothalamic dynamics, as 
detailed in subsequent sections. 

 
 
Surface NFB training, as later detailed, amplifies 
neural efficiency. Pre- and postprotocols for 
treatment success and outcomes remain uncommon 
across disciplines, often due to reliance on 
subjective clinical assessments, resistance to 
integrating objective corticothalamic or 
neuroendocrine measures, and resource constraints 
in adopting standardized instruments, EEG or MRI 
tracking (Hofmann & Smits, 2008; Stahl, 2000).  
 
This framework builds on NFB’s legacy, evolving 
from early EEG protocols (theta-beta, sensorimotor 
rhythm [SMR]) to precise LNFB and rt-fMRI-NFB 
modalities, offering a quantifiable alternative to 

traditional interventions (Sitaram et al., 2017; 
Thibault et al., 2016). Long-term evidence 
underscores NFB’s potential, with children showing 
sustained ADHD symptom reduction over 2 years 
(Strehl et al., 2017) and adults exhibiting 12-month 
depression relief (Rance et al., 2018), alongside 
Cannon and Lubar’s (2011) 12-month anterior 
cingulate cortex (ACC) modulation. These findings 
suggest NFB’s superiority in fostering enduring SR 
across the lifespan, from pediatric 
neurodevelopment to adult psychopathology. The 
study explores this through experimental cohorts, 
contrasting NFB’s corticothalamic approach with 
existing methods, and proposing standardized 
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protocols to bridge current gaps. Future research, 
leveraging volumetric magnetic resonance imaging 
(vMRI), aims to deepen SR’s corticothalamic 
understanding, positioning NFB as a transformative 
tool in neuroscience and applied psychology. 
 
Literature Review: Phylogenetic Foundations 
and the Precuneus 
SR forms a cornerstone of human neurobehavioral 
adaptability, orchestrating a dynamic interplay of 
cognitive, physiological, and emotional processes 
through corticothalamic networks that connect the 
cortex and thalamus. This section synthesizes 
foundational theories and empirical advancements in 
SR, tracing its evolution from early behavioral 
models to contemporary neuroscientific frameworks, 
with a focus on NFB as a transformative 
intervention. The SR model, SR = BE / H + EE, 
where BE reflects adaptive corticothalamic 
responses, H signifies physiological stability, and EE 
embodies emotional coherence, provides a 
quantifiable lens for understanding these processes, 
as introduced in Figure 1. This review explores SR’s 
historical roots, its neurobiological underpinnings, 
and NFB’s role in advancing SR across diverse 
contexts, setting the stage for experimental and 
exploratory analyses. 
 
Early SR theories emphasized behavioral and 
physiological dimensions, often neglecting 
corticothalamic integration. Cannon’s (1932) 
homeostasis concept framed H as the body’s drive 
for physiological balance, such as maintaining stable 
cortisol levels (r = .72 with HPA-axis regulation), a 
foundational element of SR. Bandura’s (1977)  
self-efficacy theory highlighted BE, linking belief in 
one’s capabilities to adaptive task persistence (r 
= .70), yet lacked neurobiological grounding. Porges’ 
(1995) polyvagal theory introduced an emotional-
physiological nexus, tying H and EE to vagal tone 
and social engagement, with heart rate variability  
(r = .65 with emotional regulation) as a marker, but 
did not address corticothalamic mechanisms. These 
models, while seminal, operated in silos, constrained 
by the era’s technological limits, such as early EEG’s 
surface-level focus and the absence of MRI (Nunez 
& Srinivasan, 2006). They collectively underscore 
SR’s multifaceted nature but fail to unify BE, H, and 
EE within a neuroscientific framework, a gap NFB 
addresses through corticothalamic modulation. 
 
Neurobiological research has since illuminated SR’s 
corticothalamic foundations, revealing the precuneus 
and related networks as critical hubs. The 
precuneus, a posterior parietal region, integrates 
sensory and autonomic inputs, supporting H via 

brainstem relays and BE through parietal-thalamic 
loops, as evidenced by its volumetric primacy in 
early hominins (~20–30 cm³ in Homo habilis,  
~2 Mya; Bruner, 2004; Cavanna & Trimble, 2006). 
The ACC and insula further mediate EE, with the 
ACC facilitating error detection (error-related 
negativity, t = 3.67, p < .01) and the insula 
processing interoception (r = .70 with heart rate), 
forming a self-regulation network (SRN) that bridges 
socioaffective and cognitive domains (Menon & 
Uddin, 2010). Alpha oscillations (8–13 Hz), driven by 
thalamocortical loops, synchronize these regions, 
stabilizing BE through attention (parietal-frontal 
coherence, r = .72) and H via arousal regulation 
(occipital alpha suppression, t = 3.89, p < .001), a 
dynamic NFB leverages for SR enhancement 
(Nunez & Srinivasan, 2006). 
 
NFB’s evolution marks a paradigm shift in SR 
interventions, building on early EEG protocols to 
target corticothalamic networks with precision. Initial 
theta-beta training, developed in the 1970s, aimed to 
reduce theta (4–8 Hz) and increase beta (13–30 Hz) 
activity, improving BE in ADHD by enhancing 
attentional control (theta reduction, t = 3.21, p < .01), 
though electrode placement inconsistencies  
(Cz versus Fz) limited reproducibility (Peniston & 
Kulkosky, 1989). SMR training, focusing on 12–15 
Hz over sensorimotor areas, bolstered H by reducing 
motor hyperactivity (fractional anisotropy, r = .72 
with reaction time), but lacked specificity for EE 
(Sterman & Friar, 1972). Modern NFB, including 
LNFB and rt-fMRI-NFB, overcomes these limitations 
by targeting specific corticothalamic nodes. LNFB 
uses 19-channel EEG to modulate precuneus alpha 
(current source density [CSD], p < .001), while  
rt-fMRI-NFB adjusts BOLD signals in regions like the 
amygdala (t = 3.45, p < .01), enhancing BE, H, and 
EE with greater precision (Cannon et al., 2014; 
Sitaram et al., 2017). Long-term studies highlight 
NFB’s enduring impact on SR across developmental 
stages. In children with ADHD, Van Doren et al. 
(2019) reported sustained symptom reduction,  
F(1, 140) = 8.45, p < .01, and executive function 
gains (p < .05) at 6 months, while Strehl et al. (2017) 
found 2-year maintenance of behavioral regulation, 
t(70) = 4.12, p < .001, with 60% retaining clinical 
improvements. In adults, Cannon and Lubar (2011) 
demonstrated 12-month ACC modulation, and 
Rance et al. (2018) showed 12-month reductions in 
depressive symptoms, t(22) = 3.67, p < .01, 
alongside improved emotional regulation (p < .05). 
Young et al. (2014) further noted 6-month EE 
stability in depression cohorts post-rt-fMRI-NFB, 
underscoring NFB’s capacity to foster lasting 
corticothalamic changes across the lifespan. This 
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literature synthesis positions NFB as a leading SR 
intervention, bridging historical theories with 
neuroscientific advancements. By integrating BE, H, 
and EE through corticothalamic modulation, NFB 
transcends earlier models’ limitations, offering a 
scalable approach for diverse populations. 
Subsequent sections will explore NFB’s efficacy in 
contrasting contexts, propose standardized 
protocols, and present experimental evidence, 
deepening the understanding of SR’s 
corticothalamic underpinnings and NFB’s role in its 
enhancement. 
 
Contrasting Approaches: Passive Interventions 
vs. Autonomous Neuroregulation 
SR represents a neurobehavioral capacity that 
harmonizes behavior, physiological stability, and 
emotional resilience through corticothalamic 
networks linking the cortex and thalamus, a process 
central to the SR model introduced in Figure 1. NFB, 
encompassing LNFB and rt-fMRI-NFB, emerges as 
a leading intervention by directly modulating these 
networks, targeting precuneus alpha (8–13 Hz) and 
BOLD signals to enhance SR across diverse 
contexts. This section contrasts NFB with CBT, 
meditation, and SSRIs, highlighting their impacts on 
brain volume and connectivity, while advocating for 
standardized metrics to configure BE, H, EE, and 
CSD/BOLD and unify SR assessment, as well as 
underscore NFB’s superiority in capturing 
corticothalamic dynamics. NFB’s approach 
leverages corticothalamic precision, with LNFB 
modulating precuneus activity (CSD, p < .001) and 
rt-fMRI-NFB adjusting regional BOLD signals 
(amygdala, t = 3.45, p < .01), fostering 
neuroplasticity (Cannon et al., 2014). Ghaziri et al. 
(2013) demonstrated that surface NFB training 
increases gray matter volume in frontoparietal 
regions by 5–10% posttraining and white matter 
fractional anisotropy (r = .72 with connectivity), 
reflecting enhanced corticothalamic efficiency. 
Additional NFB studies reinforce this: Marins et al. 
(2019) found short-term NFB training with motor 
imagery increased functional connectivity 
(amygdala-prefrontal, Z = 2.34, p < .05) and gray 
matter density in motor areas (p < .01), while Li et al. 
(2021) reported SMR up-regulation NFB improved 
white matter integrity (fractional anisotropy, r = .65,  
p < .05) and BOLD coherence (t = 3.12, p < .01) in 
learning tasks. These findings suggest NFB’s 
capacity to induce lasting structural and functional 
changes, aligning with the SR model by enhancing 
BE (attentional control), H (physiological regulation), 
and EE (emotional stability) through quantifiable 
neural markers. 
 

In contrast, CBT, a widely used psychological 
intervention, indirectly influences SR through 
cognitive restructuring and behavioral strategies. A 
meta-analysis by Fournier et al. (2010) indicated 
CBT reduces depressive symptoms (effect size  
0.6–0.8), but its neural impact is less direct. Yuan et 
al. (2022) observed that CBT in anxiety disorders 
increased gray matter volume in the ACC by ~3–5% 
(p < .05) and enhanced functional connectivity 
between the ACC, precuneus, and prefrontal cortex 
(r = .55, p < .01), suggesting modest neuroplastic 
effects on EE and BE. However, these changes lack 
the specificity of NFB’s corticothalamic targeting, 
and long-term volumetric data remain limited, with  
follow-ups showing partial relapse (50% within 12 
months). CBT’s reliance on external guidance 
further constrains its ability to standardize SR 
metrics like CSD or BOLD, highlighting a gap in 
capturing H comprehensively. Meditation, another 
nonpharmacological approach, promotes SR 
through mindfulness practices, influencing brain 
structure and connectivity. Hölzel et al. (2011) found 
that 8-week mindfulness-based stress reduction 
(MBSR) increased gray matter concentration in the 
hippocampus by ~4–7% (p < .001) and the posterior 
cingulate cortex (r = .60 with attention, p < .05), 
supporting H and EE via stress reduction and 
emotional awareness. Fox et al. (2012) reported 
enhanced default mode network connectivity  
(Z = 2.19, p < .05) and white matter integrity 
(fractional anisotropy, r = .58, p < .01) after  
long-term meditation, indicating BE improvements. 
Yet, meditation’s effects vary widely across 
individuals and protocols, lacking the targeted 
corticothalamic modulation of NFB, and its impact on 
standardized SR metrics (e.g., CSD/BOLD) remains 
underexplored, limiting its comparability. 
 
SSRIs, a pharmacological mainstay, modulate SR 
by altering monoamine levels, primarily affecting EE. 
Arnone et al. (2012) showed that 12-week SSRI 
treatment in depression increased hippocampal 
volume by ~2–4% (p < .05) and restored default 
mode network connectivity (r = .50, p < .01), aligning 
with EE stabilization. However, other studies have 
noted that these gains diminish posttreatment 
(relapse rate 50–60% within 6–12 months), or show 
no change in cortical thickness in early months of 
treatment with minimal impact on H or BE, and no 
consistent BOLD/CSD changes, reflecting SSRIs’ 
transient and nonspecific neural effects (Suh et al. 
2020). Unlike NFB’s direct corticothalamic 
engagement, SSRIs’ systemic action lacks the 
precision to address the SR model’s multifaceted 
components. The SR model (BE / (H + EE)) 
underscores the need for a unified metric to evaluate 
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SR interventions. NFB’s strength lies in its ability to 
measure and modulate BE (e.g., CPT-3 gains,  
t = 3.12, p < .015), H (e.g., cortisol stability, r = .72), 
EE (e.g., PAI reductions, t = 5.814, p < .001), and 
neurophysiological markers (CSD, p < .001; BOLD, 
p < .05) within corticothalamic networks, supported 
by long-term data (Strehl et al., 2017; Rance et al., 
2018). CBT, meditation, and SSRIs show partial 
volume/connectivity changes but fail to integrate 
these dimensions consistently. For instance, while 
CBT enhances ACC volume, it lacks H-specific 
metrics; meditation boosts hippocampal density but 
not BE standardization; and SSRIs improve EE 
without affecting CSD/BOLD systematically. This 
disparity highlights NFB’s primacy in providing a 
comprehensive, corticothalamic-driven SR 
framework. 
 
To advance SR science, future comparisons should 
adopt standardized protocols measuring BE, H, EE, 
and CSD/BOLD across interventions. NFB’s 
leadership is evident in its ability to induce targeted 
neuroplasticity (e.g., Ghaziri et al., 2013; Marins et 
al., 2019) and sustain long-term gains (Cannon & 
Lubar, 2011), unlike the variable or transient effects 
of CBT, meditation, and SSRIs. This section sets the 
stage for proposing NFB-specific protocols and 
experimental validation, emphasizing the need for a 
metric that aligns with the SR model’s 
corticothalamic foundation. 
 
The Need for Standardized Neuroregulatory 
Protocols 
SR is a core neurobehavioral capacity integrating 
behavior, physiological balance, and emotional 
resilience through corticothalamic networks. SR 
demands a standardized approach to measure and 
enhance its components across interventions, as 
formalized by SR = BE / H + EE. NFB, including 
LNFB and rt-fMRI-NFB, demonstrates superiority by 
directly modulating these networks, targeting 
precuneus alpha (CSD, p < .001) and BOLD signals 
(amygdala, p < .05) to foster SR (Cannon et al., 
2014). However, the absence of uniform protocols 
hinders SR research and application, a gap this 
section addresses by proposing standardized 
neuroregulatory protocols grounded in 
corticothalamic metrics. The lack of standardized 
pre- and postprotocols across disciplines 
undermines SR interventions’ efficacy and 
comparability. As noted in the Introduction, this 
stems from reliance on subjective clinical 
assessments (e.g., self-reports), resistance to 
integrating objective corticothalamic or 
neuroendocrine measures (e.g., EEG, cortisol), and 
resource constraints in adopting standardized EEG 

or MRI tracking (Hofmann & Smits, 2008; Stahl, 
2000). For instance, educational settings often use 
teacher ratings to assess BE, lacking 
neurophysiological validation, while clinical trials 
may prioritize symptom checklists over 
corticothalamic markers like CSD or BOLD, limiting 
insights into H and EE. This variability obscures 
NFB’s potential to unify SR measurement, as its 
protocols (e.g., LNFB’s 19-channel EEG,  
rt-fMRI-NFB’s BOLD feedback) consistently quantify 
BE, H, and EE through corticothalamic dynamics 
(Cannon et al., 2012). 
 
Standardized protocols should center on the SR 
model, measuring BE, H, EE, and corticothalamic 
markers (CSD/BOLD) pre- and postintervention. BE 
can be assessed via psychometric tools like the 
Conners Continuous Performance Test 3rd Edition 
(CPT-3, t = 3.12, p < .015) for attention (AT), 
cognitive fluency (CF) and executive function (EF) 
tests, reflecting adaptive corticothalamic responses. 
H requires physiological markers, such as cortisol 
(SH; r = .72 with HPA-axis regulation) and alpha-
amylase (p = .06–.07), heart rate variability (HRV) or 
blood pressure (BP) to quantify autonomic stability, 
while EE benefits from scales like the Personality 
Assessment Inventory (PAI, t = 5.814, p < .001), 
Beck Depression Inventory (BDI) or Minnesota 
Multiphasic Personality Assessment (MMPI) to 
capture emotional regulation (Cannon et al., 2023). 
Neurophysiological metrics, including precuneus 
alpha CSD (p < .001) and BOLD coherence  
(p < .05), provide objective corticothalamic data, as 
NFB studies demonstrate (Zotev et al., 2014).  
Long-term evidence, such as 2-year ADHD 
improvements in children (Strehl et al., 2017) and 
12-month depression relief in adults (Rance et al., 
2018), underscores the need for protocols that track 
sustained corticothalamic changes. 
 
Implementing these protocols requires a multi-modal 
approach. LNFB’s 19-channel EEG protocol, 
spanning 15–20 sessions, offers reproducibility 
(intraclass correlation coefficient [ICC] = .87–.92), 
while rt-fMRI-NFB’s 10–20 BOLD feedback sessions 
provide regional specificity (Cannon et al., 2012). 
Combining EEG source localization, BOLD 
connectivity, and stress biomarkers (e.g., cortisol) 
ensure comprehensive SR assessment, capturing 
corticothalamic plasticity (Li et al., 2021). For 
instance, NFB’s ability to enhance frontoparietal 
connectivity (r = .72, as noted in Contrasting 
Approaches) highlights its structural impact, a metric 
other interventions struggle to utilize in standard 
practice (Ghaziri et al., 2013). Educational, 
correctional, and clinical settings can adopt these 
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protocols to validate SR improvements, aligning with 
the posterior-to-anterior brain development rationale, 
where precuneus primacy (~2 Mya) informs 
corticothalamic targeting (Bruner, 2004). 
Standardization also addresses NFB’s scalability 
across contexts. In education, protocols can track 
BE gains (CPT-3, p < .05) post-COVID, ensuring 
consistent corticothalamic modulation (Cannon et 
al., 2023). In correctional settings, 6-year rearrest 
reductions (74.6%, p < .000) demonstrate H and EE 
stability, warranting standardized metrics for broader 
application (Cannon et al., 2025). Clinically, 
sustained 12-month improvements in depression, 
t(22) = 3.67, p < .01, highlight the need for protocols 
that monitor long-term corticothalamic effects 
(Rance et al., 2018). By unifying BE, H, EE, and 
CSD/BOLD measurements, these protocols position 
NFB as a leader in SR science, paving the way for 
experimental validation and broader implementation. 
 
Experimental Evidence: Precuneus 
Neurofeedback and Neuroregulatory Outcomes 
SR orchestrates behavior, physiological balance, 
and emotional resilience through corticothalamic 
networks linking the cortex and thalamus, as 
formalized by the SR model. NFB, including LNFB 
and rt-fMRI-NFB, excels as a leading intervention by 
directly modulating these networks, targeting 
precuneus alpha (8–13 Hz) and BOLD signals to 
enhance SR across diverse cohorts. This section 
presents experimental evidence from educational, 
correctional, clinical, pediatric, and ADHD 
populations, demonstrating NFB’s efficacy in 
improving BE, H, EE, and corticothalamic markers 
(CSD/BOLD), supported by long-term outcomes. In 
an educational cohort (n = 24, mean age = 16,  
SD = 1.14) recovering from post-COVID disruptions, 
LNFB increased precuneus alpha CSD, enhancing 
BE with significant gains on the Conners Continuous 
Performance Test 3rd Edition (CPT-3, repeated-
measures ANOVA F(1, 8) = 12.24, p = .008,  
η² = .60). Improvements spanned detectability  
(t = 3.12, p = .015), perseverations (t = 2.89,  
p = .021), and commissions (t = 2.67, p = .029), 
reflecting corticothalamic attentional modulation 
within frontoparietal networks (Cannon et al., 2023). 
Six-month follow-up confirmed sustained gains 
(CPT-3, t = 2.98, p = .018), consistent with Van 
Doren et al. (2019), who reported 6-month ADHD 
symptom reduction, F(1, 140) = 8.45, p < .01 and 
executive function improvements (p < .05) in 
children, and Strehl et al. (2017), noting 2-year 
behavioral regulation maintenance, t(70) = 4.12,  
p < .001. EE improved, with Personality Assessment 
Inventory-Adolescent (PAI-A) reductions across 16 
scales, F(1, 30) = 48.22, p < .000, η² = .62, including 

anxiety (t = 4.23, p = .002) and depression (t = 3.98, 
p = .004), sustained without ongoing intervention 
(Cannon et al., 2023). 
 
Correctional interventions (n = 63, mean age = 
37.11, SD = 9.69) with substance use disorders 
(SUDs) showcased LNFB’s impact on H and EE 
over 20 sessions. Pre- and posttraining PAI 
contrasts revealed reductions across all scales but 
two, F(1, 30) = 176.20, p < .000, η² = .85, with 
subscales reflecting affective neuroregulation 
(anxiety, t = 5.67, p < .001; aggression, t = 4.32,  
p < .001; traumatic stress, t = 7.26, p < .001; 
Cannon et al., 2025). sLORETA analysis indicated 
broadband CSD increases (delta to high-beta,  
p < .01) in medial frontal (BA 10) and parietal 
cortices (BA 7), enhancing BE via executive 
corticothalamic modulation, complemented by  
rt-fMRI-NFB’s regional BOLD adjustments (t = 3.12, 
p = .013; Ros et al., 2020). Six-year rearrest 
outcomes (74.6% avoided rearrest, χ² = 15.25,  
p < .000; 82.5% avoided substance-related rearrest, 
χ² = 26.68, p < .000) highlighted sustained H and EE 
stability, aligning with Cannon and Lubar (2011), 
who reported 12-month ACC modulation, and Rance 
et al. (2018), showing 12-month depressive 
symptom reductions, t(22) = 3.67, p < .01, in adults. 
 
Clinical trials (n = 13, mean age = 28, SD = 9.1,  
8 with psychiatric diagnoses) demonstrated LNFB’s 
efficacy in enhancing precuneus alpha CSD across 
12–20 sessions (eyes-open baseline [EOB]  
t(12) = −3.3, p = .006; eyes-closed baseline [ECB] 
t(12) = −2.97, p = .012), with nonclinical controls 
outperforming diagnostics (EOB t = -3.78, p = .019; 
Cannon et al., 2014). Diagnostic improvements 
included EE (PAI subscales, anxiety, t = 5.814,  
p = .001; depression, t = 4.461, p = .003; somatic 
complaints, t = 4.12, p < .001) and BE (Delis-Kaplan 
Executive Function System [DKEFS] verbal fluency 
errors, t = 2.64, p = .033; category switching,  
t = 2.89, p = .021), persisting at 30-day follow-up. 
Long-term data from Cannon and Lubar (2011) and 
Rance et al. (2018) confirmed 12-month 
corticothalamic stability. Nonclinical adults (n = 63, 
mean age = 19.2, SD = 2.0) exhibited elevated ECB 
CSD (p < .000) during self-referential tasks, affirming 
SR’s role in the default mode network (DMN; Li et 
al., 2021). 
 
A pediatric case (n = 1, age = 3, intrauterine drug 
exposure [IUDE]) showed LNFB’s precuneus alpha 
CSD augmentation (p < .001, R² = 0.8856) over 20 
sessions, improving BE (K-CPT-2 completion,  
t = 3.01, p = .013) and EE (Adaptive Behavior 
Assessment System-3 [ABAS-3], t = 2.86, p = .010; 
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social domain, t = 2.78, p = .016; Cannon et al., 
2018). ADHD adolescents (n = 8, mean age = 14.26, 
SD = 3.5) exhibited BE and EE gains (IVA+  
Full-Scale Response Quotient [FSRQ], t = 4.11,  
p = .005; Hyperactivity/Impulsivity [HE], t = 4.54,  
p = .003) across 15–20 sessions, with sLORETA 
connectivity shifts (BA 13/29 to posterior cingulate,  
Z = 2.19, p = .05) indicating SR network (SRN) 
recalibration (Cannon et al., 2014). Long-term 
follow-up from Strehl et al. (2017) supports 
sustained SRN modulation over 2 years. 
Methodological reliability underpins these findings. 
Quantitative EEG (qEEG) metrics and LNFB sources 
at 30-day intervals (n = 15, mean age = 27.3,  
SD = 8.9) confirmed stable precuneus alpha CSD 
(ICC = .87–.92, p < .001) and test–retest reliability  
(r = .89, p < .001), validating longitudinal consistency 
(Cannon et al., 2012). NFB’s neuroplasticity, 
including prefrontal-parietal connectivity shifts  
(t = 3.67, p < .01) and rt-fMRI-NFB’s BOLD gains 
(amygdala-prefrontal, p < .05), sets a corticothalamic 
foundation, with surface NFB training increasing 
gray matter volume in frontoparietal regions (5–10% 
posttraining) and white matter fractional anisotropy  
(r = .72 with connectivity; Ghaziri et al., 2013). These 
results affirm NFB’s leadership in enhancing SR, 
integrating BE, H, and EE through corticothalamic 
conditioning, as evidenced by long-term outcomes 
across cohorts. The posterior-to-anterior brain 
development focus, emphasizing precuneus primacy 
(~2 Mya), informs this approach, urging volumetric 
MRI studies to quantify NFB’s corticothalamic legacy 
(Bruner, 2004; Saj et al., 2021). 
 
Exploratory Insights: Neuro-ontogeny, Alpha 
Dynamics, and SR Networks 
SR emerges as a neurobehavioral capacity that 
hones a synchronicity with behavior, physiological 
balance, and emotional resilience through 
corticothalamic networks connecting the cortex and 
thalamus. This section delves into the  
neuro-ontogenetic, oscillatory, and network 
dynamics underpinning SR, positioning NFB as a 
transformative intervention that leverages these 
mechanisms to enhance SR across developmental 
and contextual spectrums, drawing on experimental 
evidence and long-term outcomes to inform 
theoretical advancements. The neuro-ontogenetic 
trajectory of SR reveals the precuneus’s 
foundational role, predating prefrontal development 
in human evolution. Paleoneurological evidence 
indicates precuneus volumetric increases (~20–30 
cm³ in Homo habilis, ~2 Mya) driven by 
sociocognitive demands like tool use and tribal 
coordination, contrasting with prefrontal expansion 
(~200 thousand [kya] in Homo sapiens) linked to 

emotional regulation (Bruner, 2004; Dunbar, 1998). 
This posterior-to-anterior progression, evidenced by 
cranial asymmetry and neocortical gyrification  
(~1.8 in Homo sapiens vs. ~1.4 in Pan troglodytes), 
positions the precuneus as a hub for H (autonomic 
stability via brainstem relays) and BE (sensory 
integration via parietal-thalamic loops), while 
prefrontal regions later refine EE through limbic 
inhibition (Zilles et al., 1988). NFB targets this 
corticothalamic legacy, with LNFB modulating 
precuneus alpha (CSD, p < .001) to enhance SR, as 
seen in pediatric cases (Cannon et al., 2018). 
 
Alpha oscillations (8–13 Hz) serve as a cornerstone 
of SR, reflecting corticothalamic synchrony within the 
SR model. Thalamocortical loops (thalamic reticular 
nucleus inhibition, ~10–20 ms latency) generate 
these rhythms, stabilizing BE through attention 
(parietal-frontal coherence, r = .72) and H via 
arousal regulation (occipital alpha suppression,  
t = 3.89, p < .001; Nunez & Srinivasan, 2006). 
Ontogenetically, alpha power evolves from infancy 
(~3–4 Hz) to adulthood (10–12 Hz), paralleling 
neocortical myelination (corpus callosum fractional 
anisotropy, r = .75 by age 10) and synaptic pruning 
(~40% reduction by adolescence), peaking at 
optimal SR capacity (ICC = .90; Cannon et al., 
2018). NFB enhances this process, as evidenced by 
precuneus alpha CSD increases (p < .001) in IUDE 
cases, improving BE (K-CPT-2, t = 3.01, p = .013) 
and EE (ABAS-3 sociality, t = 2.78, p = .016) 
(Cannon et al., 2014). The SRN, encompassing the 
precuneus, insula, ACC, posterior cingulate, and 
medial prefrontal cortex (mPFC), mediates 
socioaffective integration, a critical aspect of SR 
(Menon & Uddin, 2010). The insula governs H 
(interoception, r = .70 with heart rate) and EE 
(salience, t = 4.12, p < .001), with LNFB enhancing 
insula-precuneus connectivity (Z = 2.01, p = .048). 
The ACC integrates BE and EE through error 
detection (error-related negativity, t = 3.67, p < .01) 
and emotional valence (r = .65 with EE scales), 
disrupted in depression but recalibrated by  
rt-fMRI-NFB’s BOLD precision (amygdala-prefrontal,  
p < .05; deBettencourt et al., 2015). Alpha-mediated 
coherence links these nodes (precuneus-posterior 
cingulate, Z = 2.19, p = .05), enhancing SRN 
homeostasis, as NFB’s long-term effects 
demonstrate (Cannon & Lubar, 2011; Rance et al., 
2018). NFB’s posttraining neuroplasticity reinforces 
its primacy, with EEG-based connectivity shifts 
(theta-beta protocols, r = .68 with attention) and  
rt-fMRI-NFB’s regional enhancements (prefrontal 
BOLD, t = 3.12, p = .013) extending corticothalamic 
dynamics (Li et al., 2021). As noted in prior sections, 
surface NFB training enhances frontoparietal 
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connectivity (r = .72), supporting BE and H (Ghaziri 
et al., 2013). Long-term efficacy, such as 2-year 
ADHD improvements in children (Strehl et al., 2017) 
and 12-month depression relief in adults (Rance et 
al., 2018), underscores NFB’s corticothalamic 
modulation, validated by EEG and BOLD coherence 
(Cannon et al., 2012). These insights inspire 
volumetric MRI studies to quantify NFB’s potential, 
advancing SR science across the lifespan (Saj et al., 
2021). 
 

Conclusion 
 
SR stands as a pivotal neurobehavioral capacity, 
harmonizing behavior, physiological stability, and 
emotional resilience through corticothalamic 
networks that span the cortex and thalamus, as 
formalized by SR = BE / H + EE, where BE reflects 
adaptive responses, H denotes physiological 
balance, and EE signifies emotional coherence, as 
depicted in Figure 1. NFB, encompassing LNFB and 
rt-fMRI-NFB, emerges as a leading intervention by 
directly modulating these networks, enhancing SR 
across educational, correctional, clinical, pediatric, 
and ADHD contexts, as evidenced by experimental 
outcomes (Cannon, 2014; Cannon et al., 2025; 
Cannon et al., 2023). NFB’s corticothalamic efficacy 
is demonstrated across diverse cohorts. In 
educational settings, LNFB improved BE (CPT-3, 
F(1, 8) = 12.24, p = .008, η² = .60), with sustained 
gains at six months (t = 2.98, p = .018), supporting 
post-COVID recovery (Cannon et al., 2023). 
Correctional interventions reduced rearrest by 
74.6% over 6 years (p < .000), stabilizing H and EE 
(PAI, p < .001) among substance use disorder 
populations (Cannon et al., 2025). Clinical trials 
showed LNFB ameliorating psychopathology (PAI 
anxiety, t = 5.814, p = .001; depression, t = 4.461,  
p = .003), with precuneus alpha CSD increases  
(p < .001) persisting at 30 days (Cannon et al., 
2014). Pediatric cases with IUDE improved BE and 
EE (ABAS-3, p = .010) over 20 sessions, while 
ADHD adolescents exhibited enhanced SR  
(IVA+ FSRQ, t = 4.11, p = .005) with corticothalamic 
connectivity shifts (Z = 2.19, p = .05; Cannon et al., 
2018; Lam et al., 2022). These findings underscore 
NFB’s capacity to integrate BE, H, and EE through 
targeted corticothalamic modulation. 
 
Long-term outcomes further affirm NFB’s superiority. 
Studies in children with ADHD reported sustained 
symptom reduction at 6 months (Van Doren et al., 
2019) and 2-year behavioral regulation 
maintenance, t(70) = 4.12, p < .001 (Strehl et al., 
2017). In adults, 12-month improvements in 
depression, t(22) = 3.67, p < .01, and emotional 

regulation (p < .05) highlight NFB’s lasting impact 
(Rance et al., 2018), alongside Cannon and Lubar’s 
(2011) 12-month ACC modulation and Young et al.’s 
(2014) 6-month EE stability in depression cohorts. 
These results, supported by surface NFB’s 
neuroplastic effects on frontoparietal connectivity  
(r = .72), as previously noted, position NFB as a 
transformative tool for SR enhancement (Ghaziri et 
al., 2013). The posterior-to-anterior brain 
development perspective, emphasizing precuneus 
primacy (~2 Mya), aligns with NFB’s focus on 
posterior corticothalamic regions, contrasting with 
historical frontal emphasis post-Phineas Gage 
(Bruner, 2004). This evolutionary lens, combined 
with NFB’s standardized protocols (LNFB’s  
19-channel EEG, rt-fMRI-NFB’s BOLD feedback), 
ensures reproducibility (EEG ICC = .87–.92), driving 
volumetric MRI studies to quantify corticothalamic 
plasticity (Cannon et al., 2012; Saj et al., 2021). By 
unifying BE, H, and EE through corticothalamic 
dynamics, NFB transcends traditional models, 
redefining SR as a trainable construct and paving 
the way for future research across the lifespan. 
 
Recommendations for Future Research 
SR, as a core neurobehavioral capacity 
synchronously integrating behavior, physiology, and 
emotion via corticothalamic networks, positions NFB 
as a leader in enhancing SR, as formalized by the 
hypothesized model SR = BE / H + EE. Building on 
NFB’s demonstrated efficacy (e.g., CPT-3 gains,  
p < .05; rearrest reduction, 74.6%, p < .000), future 
research should focus on longitudinal studies, cohort 
diversification, and mechanistic mapping to solidify 
its corticothalamic foundation (Cannon et al., 2025; 
Cannon et al., 2023). Longitudinal studies should 
extend beyond current 30- or 60-day CSD stability  
(p < .001) and 6-year rearrest and relapse 
outcomes, tracking SR metrics (alpha coherence, 
BOLD connectivity, cortisol, r = .72) over 1–5 years 
to confirm LNFB and rt-fMRI-NFB’s sustained 
effects, building on evidence of 2-year ADHD 
improvements in children (Strehl et al., 2017) and 
12-month depression relief in adults (Rance et al., 
2018). Cohort diversification across pediatric 
neurodevelopment, autism, geriatric 
neurodegeneration, and cross-cultural contexts will 
test SR’s phylogenetic breadth, using standardized 
protocols (Cannon et al., 2018). Mechanistic studies 
should map corticothalamic pathways, linking 
precuneus alpha (8–13 Hz) to H (cortisol, r = .72), 
BE (DLPFC attention, r = .68), and EE (insula-ACC 
loops, r = .65), with multimodal imaging (EEG, DTI, 
BOLD) to quantify neuroplasticity, as prior 
connectivity gains suggest (r = .72; Cannon et al., 
2014; Ghaziri et al., 2013). To advance NFB’s 
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practical application, researchers and clinicians are 
encouraged to publish case reports or standardized 
protocols, detailing the number of electrodes (e.g., 1, 
2, or more), specific frequencies trained, and 
amplitude for each frequency, to enhance 
transparency and replicability in the field. 
 
Author Declaration 
Rex Cannon is the owner of Currents, LLC and 
Editor-in-Chief for NeuroRegulation.  
 

References 
 
Arnone, D., McKie, S., Elliott, R., Thomas, E. J., Downey, D., 

Juhasz, G., Williams, S. R., Deakin, J. F., & Anderson, I. M. 
(2012). Increased amygdala responses to sad but not fearful 
faces in major depression: Relation to mood state and 
pharmacological treatment. The American Journal of 
Psychiatry, 169(8), 841–850. https://doi.org/10.1176 
/appi.ajp.2012.11121774  

Bandura, A. (1977). Social learning theory. Prentice Hall. 
Bruner, E. (2004). Geometric morphometrics and paleoneurology: 

Brain shape evolution in the genus Homo. Journal of Human 
Evolution, 47(5), 279–303. https://doi.org/10.1016 
/j.jhevol.2004.03.009  

Cannon, R. (2014). Parietal foci for attention deficit/hyperactivity 
disorder: Targets for LORETA neurofeedback with outcomes. 
Biofeedback, 42(2), 47–57. https://doi.org/10.5298/1081-
5937-42.2.01  

Cannon, W. B. (1932). The wisdom of the body. W. W. Norton & 
Company. 

Cannon, R. L., Baldwin, D. R., Diloreto, D. J., Phillips, S. T., 
Shaw, T. L., & Levy, J. J. (2014). LORETA neurofeedback in 
the precuneus: Operant conditioning in basic mechanisms of 
self-regulation. Clinical EEG and Neuroscience, 45(4), 238–
248. https://doi.org/10.1177/1550059413512796  

Cannon, R. L., Baldwin, D. R., Shaw, T. L., Diloreto, D. J., 
Phillips, S. M., Scruggs, A. M., & Riehl, T. C. (2012). 
Reliability of quantitative EEG (qEEG) measures and 
LORETA current source density at 30 days. Neuroscience 
Letters, 518(1), 27–31. https://doi.org/10.1016 
/j.neulet.2012.04.035  

Cannon, R., & Lubar, J. (2011). Long-term effects of 
neurofeedback training in anterior cingulate cortex: A short 
follow-up report. Journal of Neurotherapy, 15(2), 130–150. 
https://doi.org/10.1080/10874208.2011.570694  

Cannon, R., Mills, C., Geroux, M. J., Zhart, L. A., Boluyt, K., 
Webber, R., & Cook, D. (2025). LORETA neurofeedback at 
precuneus: A standard approach for use in incarcerated 
populations with substance use problems. NeuroRegulation. 
[Unpublished manuscript]. 

Cannon, R. L., Strunk, W., Carroll, S., & Carroll, S. (2018). 
LORETA neurofeedback at precuneus in 3-year-old female 
with intrauterine drug exposure. NeuroRegulation, 5(2), 75–
82. https://doi.org/10.15540/nr.5.2.75  

Cannon, R., Tedder, J., & Millsaps, K. (2023). LORETA 
neurofeedback in the educational setting: A standard protocol 
to improve learning and self-regulation as a method for 
student success in post-COVID recovery. In Proceedings of 
the 2023 ISNR Annual Conference: Keynote and Plenary 
Presentations, 10(4), 260–270. https://doi.org/10.15540 
/nr.10.4.260  

Cavanna, A. E., & Trimble, M. R. (2006). The precuneus: A 
review of its functional anatomy and behavioural correlates. 
Brain, 129(3), 564–583. https://doi.org/10.1093/brain/awl004  

deBettencourt, M. T., Cohen, J. D., Lee, R. F., Norman, K. A., & 
Turk-Browne, N. B. (2015). Closed-loop training of attention 

with real-time brain imaging. Journal of Neuroscience, 18(3), 
470–475. https://doi.org/10.1038/nn.3940  

Dunbar, R. I. M. (1998). The social brain hypothesis. Evolutionary 
Anthropology: Issues, News, and Reviews, 6(5), 178–190. 
https://doi.org/10.1002/(SICI)1520-6505(1998)6:5<178::AID-
EVAN5>3.0.CO;2-8  

Fournier, J. C., DeRubeis, R. J., Hollon, S. D., Dimidjian, S., 
Amsterdam, J. D., Shelton, R. C., & Fawcett, J. (2010). 
Antidepressant drug effects and depression severity: A 
patient-level meta-analysis. Journal of the American Medical 
Association, 303(1), 47–53. https://doi.org/10.1001 
/jama.2009.1943  

Fox, K. C. R., Zakarauskas, P., Dixon, M., Ellamil, M., Thompson, 
E., & Christoff, K. (2012). Meditation experience predicts 
introspective accuracy. PLoS ONE, 7(9), Article e45370. 
https://doi.org/10.1371/journal.pone.0045370 

Ghaziri, J., Tucholka, A., Larue, V., Blanchette-Sylvestre, M., 
Reyburn, G., Gilbert, G., Lévesque, J., & Beauregard, M. 
(2013). Neurofeedback training induces changes in white and 
gray matter. Clinical EEG and Neuroscience, 44(4), 265–272. 
https://doi.org/10.1177/1550059413476031  

Hofmann, S. G., & Smits, J. A. J. (2008). Cognitive-behavioral 
therapy for adult anxiety disorders: A meta-analysis of 
randomized placebo-controlled trials. Journal of Clinical 
Psychiatry, 69(4), 621–632. https://doi.org/10.4088 
/JCP.v69n0415  

Hölzel, B. K., Carmody, J., Vangel, M., Congleton, C., 
Yerramsetti, S. M., Gard, T., & Lazar, S. W. (2011). 
Mindfulness practice leads to increases in regional brain gray 
matter density. Psychiatry Research: Neuroimaging, 191(1), 
36–43. https://doi.org/10.1016/j.pscychresns.2010.08.006  

Johnston, S. J., Boehm, S. G., Healy, D., Goebel, R., & Linden, D. 
E. J. (2010). Neurofeedback: A promising tool for the self-
regulation of emotion networks. NeuroImage, 49(1), 1068–
1072. https://doi.org/10.1016/j.neuroimage.2009.07.056  

Lam, S.-L., Criaud, M., Lukito, S., Westwood, S. J., Agbedjro, D., 
Kowalczyk, O. S., Curran, S., Barret, N., Abbott, C., Liang, H., 
Simonoff, E., Barker, G. J., Giampietro, V., & Rubia, K. 
(2022). Double-blind, sham-controlled randomized trial testing 
the efficacy of fMRI neurofeedback on clinical and cognitive 
measures in children with ADHD. American Journal of 
Psychiatry, 179(12), 947–958. https://doi.org/10.1176 
/appi.ajp.21100999  

Li, L., Wang, Y., Zeng, Y., Hou, S., Huang, G., Zhang, L., Yan, N., 
Ren, L., & Zhang, Z. (2021). Multimodal neuroimaging 
predictors of learning performance of sensorimotor rhythm 
up-regulation neurofeedback. Frontiers in Neuroscience, 15, 
Article 699999. https://doi.org/10.3389/fnins.2021.699999  

Marins, T., Rodrigues, E. C., Bortolini, T., Melo, B., Moll, J., & 
Tovar-Moll, F. (2019). Structural and functional connectivity 
changes in response to short-term neurofeedback training 
with motor imagery. NeuroImage, 194, 283–290. 
https://doi.org/10.1016/j.neuroimage.2019.03.027  

Menon, V., & Uddin, L. Q. (2010). Saliency, switching, attention 
and control: A network model of insula function. Brain 
Structure and Function, 214(5–6), 655–667. https://doi.org 
/10.1007/s00429-010-0262-0  

Nunez, P. L., & Srinivasan, R. (2006). Electric fields of the brain: 
The neurophysics of EEG (2nd ed.). Oxford University Press.  

Peniston, E. G., & Kulkosky, P. J. (1989). Alpha-theta brainwave 
training and beta-endorphin levels in alcoholics. Alcoholism: 
Clinical and Experimental Research, 13(2), 271–279. 
https://doi.org/10.1111/j.1530-0277.1989.tb00325.x  

Porges, S. W. (1995). Orienting in a defensive world: Mammalian 
modifications of our evolutionary heritage. A polyvagal theory. 
Psychophysiology, 32(4), 301–318. https://doi.org/10.1111 
/j.1469-8986.1995.tb01213.x  

Rance, M., Walsh, C., Sukhodolsky, D. G., Pittman, B., Qiu, M., 
Kichuk, S. A., Wasylink, S., Koller, W. N., Bloch, M., Gruner, 
P., Scheinost, D., Pittenger, C., & Hampson, M. (2018). Time 

http://www.neuroregulation.org/
https://doi.org/10.1176/appi.ajp.2012.11121774
https://doi.org/10.1176/appi.ajp.2012.11121774
https://doi.org/10.1016/j.jhevol.2004.03.009
https://doi.org/10.1016/j.jhevol.2004.03.009
https://doi.org/10.5298/1081-5937-42.2.01
https://doi.org/10.5298/1081-5937-42.2.01
https://doi.org/10.1177/1550059413512796
https://doi.org/10.1016/j.neulet.2012.04.035
https://doi.org/10.1016/j.neulet.2012.04.035
https://doi.org/10.1080/10874208.2011.570694
https://doi.org/10.15540/nr.5.2.75
https://doi.org/10.15540/nr.10.4.260
https://doi.org/10.15540/nr.10.4.260
https://doi.org/10.1093/brain/awl004
https://doi.org/10.1038/nn.3940
https://doi.org/10.1002/(SICI)1520-6505(1998)6:5%3c178::AID-EVAN5%3e3.0.CO;2-8
https://doi.org/10.1002/(SICI)1520-6505(1998)6:5%3c178::AID-EVAN5%3e3.0.CO;2-8
https://doi.org/10.1001/jama.2009.1943
https://doi.org/10.1001/jama.2009.1943
https://doi.org/10.1371/journal.pone.0045370
https://doi.org/10.1177/1550059413476031
https://doi.org/10.4088/JCP.v69n0415
https://doi.org/10.4088/JCP.v69n0415
https://doi.org/10.1016/j.pscychresns.2010.08.006
https://doi.org/10.1016/j.neuroimage.2009.07.056
https://doi.org/10.1176/appi.ajp.21100999
https://doi.org/10.1176/appi.ajp.21100999
https://doi.org/10.3389/fnins.2021.699999
https://doi.org/10.1016/j.neuroimage.2019.03.027
https://doi.org/10.1007/s00429-010-0262-0
https://doi.org/10.1007/s00429-010-0262-0
https://doi.org/10.1111/j.1530-0277.1989.tb00325.x
https://doi.org/10.1111/j.1469-8986.1995.tb01213.x
https://doi.org/10.1111/j.1469-8986.1995.tb01213.x


Cannon  NeuroRegulation  

 

 

163 | www.neuroregulation.org Vol. 12(2):154–163  2025 doi:10.15540/nr.12.2.154 
 

course of clinical change following neurofeedback. 
NeuroImage, 181, 807–813. https://doi.org/10.1016 
/j.neuroimage.2018.05.001  

Saj, A., Pierce, J. E., Ronchi, R., Ros, T., Thomasson, M., 
Bernati, T., Van De Ville, D., Serino, A., & Vuilleumier, P. 
(2021). Real-time fMRI and EEG neurofeedback: A 
perspective on applications for the rehabilitation of spatial 
neglect. Annals of Physical and Rehabilitation Medicine, 
64(5), Article 101561. https://doi.org/10.1016 
/j.rehab.2021.101561  

Sitaram, R., Ros, T., Stoeckel, L., Haller, S., Scharnowski, F., 
Lewis-Peacock, J., Weiskopf, N., Blefari, M. L., Rana, M., 
Oblak, E., Birbaumer, N., & Sulzer, J. (2017). Closed-loop 
brain training: The science of neurofeedback. Nature Reviews 
Neuroscience, 18(2), 86–100. https://doi.org/10.1038 
/nrn.2016.164  

Stahl, S. M. (2000). Essential psychopharmacology: 
Neuroscientific basis and practical applications (2nd ed.). 
Cambridge University Press.  

Sterman, M. B., & Friar, L. (1972). Suppression of seizures in an 
epileptic following sensorimotor EEG biofeedback training. 
Electroencephalography and Clinical Neurophysiology, 33(1), 
89–95. https://doi.org/10.1016/0013-4694(72)90028-4  

Strehl, U., Aggensteiner, P., Wachtlin, D., Brandeis, D., Albrecht, 
B., Arns, M., Arana, M., Bach, C., Banaschewski, T., Bogen, 
T., Flaig-Röhr, A., Freitag, C. M., Fuchsenberger, Y., Gest, 
S., Gevensleben, H., Herde, L., Hohmann, S., Legenbauer, 
T., Marx, A.-M., … Holtmann, M. (2017). Neurofeedback of 
slow cortical potentials in children with attention-
deficit/hyperactivity disorder: A multicenter randomized trial 
controlling for unspecific effects. Frontiers in Human 
Neuroscience, 11, Article 135. https://doi.org 
/10.3389/fnhum.2017.00135  

Suh, J. S., Minuzzi, L., Raamana, P. R., Davis, A., Hall, G. B., 
Harris, J., Hassel, S., Zamyadi, M., Arnott, S. R., Alders, G. 
L., Sassi, R. B., Milev, R., Lam, R. W., MacQueen, G. M., 
Strother, S. C., Kennedy, S. H., & Frey, B. N. (2020). An 
investigation of cortical thickness and antidepressant 

response in major depressive disorder: A CAN-BIND study 
report. NeuroImage: Clinical, 25, Article 102178. 
https://doi.org/10.1016/j.nicl.2020.102178 

Thibault, R. T., MacPherson, A., Lifshitz, M., Roth, R. R., & Raz, 
A. (2016). Neurofeedback with fMRI: A critical systematic 
review. NeuroImage, 172, 786–807. https://doi.org/10.1016 
/j.neuroimage.2017.12.071 

Van Doren, J., Arns, M., Heinrich, H., Vollebregt, M. A., Strehl, U., 
& Loo, S. K. (2019). Sustained effects of neurofeedback in 
ADHD: A systematic review and meta-analysis. European 
Child & Adolescent Psychiatry, 28(3), 293–305. https://doi.org 
/10.1007/s00787-018-1121-4  

Yuan, S., Wu, H., Wu, Y., Xu, H., Yu, J., Zhong, Y., Zhang, N., Li, 
J., Xu, Q., & Wang, C. (2022). Neural effects of cognitive 
behavioral therapy in psychiatric disorders: A systematic 
review and activation likelihood estimation meta-analysis. 
Frontiers in Psychology, 13, Article 853804. https://doi.org 
/10.3389/fpsyg.2022.853804 

Young, K. D., Zotev, V., Phillips, R., Misaki, M., Yuan, H., 
Drevets, W. C., & Bodurka, J. (2014). Real-time fMRI 
neurofeedback training of the amygdala activity in patients 
with major depressive disorder. PLoS ONE, 9(2), Article 
e88785. https://doi.org/10.1371/journal.pone.0088785  

Zilles, K., Armstrong, E., Schleicher, A., & Kretschmann, H.-J. 
(1988). The human pattern of gyrification in the cerebral 
cortex. Anatomy and Embryology, 179(2), 173–179. 
https://doi.org/10.1007/BF00304699  

Zotev, V., Phillips, R., Yuan, H., Misaki, M., & Bodurka, J. (2014). 
Self-regulation of human brain activity using simultaneous 
real-time fMRI and EEG neurofeedback. NeuroImage, 85(Pt 
3), 985–995. https://doi.org/10.1016 
/j.neuroimage.2013.04.126  

 
 
Received: March 6, 2025 
Accepted: April 3, 2025 
Published: June 27, 2025 

 

 

http://www.neuroregulation.org/
https://doi.org/10.1016/j.neuroimage.2018.05.001
https://doi.org/10.1016/j.neuroimage.2018.05.001
https://doi.org/10.1016/j.rehab.2021.101561
https://doi.org/10.1016/j.rehab.2021.101561
https://doi.org/10.1038/nrn.2016.164
https://doi.org/10.1038/nrn.2016.164
https://doi.org/10.1016/0013-4694(72)90028-4
https://doi.org/10.3389/fnhum.2017.00135
https://doi.org/10.3389/fnhum.2017.00135
https://doi.org/10.1016/j.nicl.2020.102178
https://doi.org/10.1016/j.neuroimage.2017.12.071
https://doi.org/10.1016/j.neuroimage.2017.12.071
https://doi.org/10.1007/s00787-018-1121-4
https://doi.org/10.1007/s00787-018-1121-4
https://doi.org/10.3389/fpsyg.2022.853804
https://doi.org/10.3389/fpsyg.2022.853804
https://doi.org/10.1371/journal.pone.0088785
https://doi.org/10.1007/BF00304699
https://doi.org/10.1016/j.neuroimage.2013.04.126
https://doi.org/10.1016/j.neuroimage.2013.04.126

