LORETA Neurofeedback at precuneus in 3-year-old female with intrauterine drug exposure

  • Rex L Cannon 1) Knoxville Neurofeedback Group 2) SPESA research Insitute
  • Whitney Strunk Knoxville Neurofeedback Group
  • Stephanie Carroll Knoxville Neurofeedback Group
  • Spencer Carroll Knoxville Neurofeedback Group
Keywords: neurofeedback, EEG, LORETA neurofeedback, intrauterine drug exposure


This case study presents data for operant conditioning of alpha current source density (CSD)in a 3-year-old female that completed 20 sessions of LNFB to address sequelae associated with intrauterine drug exposure (IUDE), including explosive reactions to unfavorable activities and siblings, deficits in self-care and self-direction and reducing social deficits. One of the more difficult processes is to assess children less than 6 years of age due to extreme variability in affect, interest and focus. However, IUDE increases the range of potential problems and diagnostic confounds. This individual showed improvements across ABAS-3 ratings by parents post-training and was able to complete the K-CPT post training and at 30-day follow-up. Her data demonstrated a general increase in the desired response (alpha CSD at precuneus) across time. Additional changes were evident in the default network (DMN) and a theorized mechanism of self-regulation (SRN) post training with a significant decrease at follow-up suggesting a learning effect over time. This case study demonstrates that LNFB may produce positive effects in children under the age of 4.

Author Biography

Rex L Cannon, 1) Knoxville Neurofeedback Group 2) SPESA research Insitute


Bard, K. A., Coles, C. D., Platzman, K. A., & Lynch, M. E. (2000). The effects of prenatal drug exposure, term status, and caregiving on arousal and arousal modulation in 8-week-old infants. Dev Psychobiol, 36(3), 194-212.

Bhide, P. G., & Kosofsky, B. E. (2009). Neuro-developmental consequences of prenatal drug exposure. Preface. Dev Neurosci, 31(1-2), 5. doi:10.1159/000209397

Blom, J. L., & Anneveldt, M. (1982). An electrode cap tested. Electroencephalogr Clin Neurophysiol, 54(5), 591-594.

Buckingham-Howes, S., Mazza, D., Wang, Y., Granger, D. A., & Black, M. M. (2016). Prenatal Drug Exposure and Adolescent Cortisol Reactivity: Association with Behavioral Concerns. J Dev Behav Pediatr, 37(7), 565-572. doi:10.1097/DBP.0000000000000338

Butz, A. M., Pulsifer, M. B., Leppert, M., Rimrodt, S., & Belcher, H. (2003). Comparison of intelligence, school readiness skills, and attention in in-utero drug-exposed and nonexposed preschool children. Clin Pediatr (Phila), 42(8), 727-739. doi:10.1177/000992280304200809

Cannon, R. (2014). Parietal Foci for Attention/Deficit Hyperactivity Disorder: Targets for LORETA Neurofeedback with outcomes. Biofeedback, 42, 47-57.

Cannon, R., Congedo, M., Lubar, J., & Hutchens, T. (2009). Differentiating a network of executive attention: LORETA neurofeedback in anterior cingulate and dorsolateral prefrontal cortices. Int J Neurosci, 119(3), 404-441. doi:10.1080/00207450802480325

Cannon, R., Lubar, J., Congedo, M., Thornton, K., Towler, K., & Hutchens, T. (2007). The effects of neurofeedback training in the cognitive division of the anterior cingulate gyrus. Int J Neurosci, 117(3), 337-357. doi:10.1080/00207450500514003

Cannon, R. L., Baldwin, D. R., Diloreto, D. J., Phillips, S. T., Shaw, T. L., & Levy, J. J. (2014). LORETA Neurofeedback in the Precuneus: Operant Conditioning in Basic Mechanisms of Self-Regulation. Clin EEG Neurosci, 45(4), 238-248. doi:10.1177/1550059413512796

Derauf, C., Kekatpure, M., Neyzi, N., Lester, B., & Kosofsky, B. (2009). Neuroimaging of children following prenatal drug exposure. Semin Cell Dev Biol, 20(4), 441-454. doi:10.1016/j.semcdb.2009.03.001

Franck, E. J. (1996). Prenatally drug-exposed children in out-of-home care: are we looking at the whole picture? Child Welfare, 75(1), 19-34.

Freeman, J. (2000). Testing drug-exposed children. Iowa Med, 90(6), 9.

Gao, W., Zhu, H., Giovanello, K. S., Smith, J. K., Shen, D., Gilmore, J. H., & Lin, W. (2009). Evidence on the emergence of the brain's default network from 2-week-old to 2-year-old healthy pediatric subjects. Proc Natl Acad Sci U S A, 106(16), 6790-6795. doi:10.1073/pnas.0811221106

Giovanello, K. S., Schnyer, D., & Verfaellie, M. (2009). Distinct hippocampal regions make unique contributions to relational memory. Hippocampus, 19(2), 111-117. doi:10.1002/hipo.20491

Harrison, P. L., & Oakland, T. (2015). Adaptive Behavior Assessment System Manual (Third Edition ed.).

Huybrechts, K. F., Bateman, B. T., Desai, R. J., Hernandez-Diaz, S., Rough, K., Mogun, H., . . . Patorno, E. (2017). Risk of neonatal drug withdrawal after intrauterine co-exposure to opioids and psychotropic medications: cohort study. BMJ, 358, j3326. doi:10.1136/bmj.j3326

Jaeger, D. A., Suchan, B., Scholmerich, A., Schneider, D. T., & Gawehn, N. (2015). Attention Functioning in Children with Prenatal Drug Exposure. Infant Ment Health J, 36(5), 522-530. doi:10.1002/imhj.21530

Kelley, S. J. (1992). Parenting stress and child maltreatment in drug-exposed children. Child Abuse Negl, 16(3), 317-328.

Kne, T., Shaw, M. W., Garfield, E. F., & Hicks, J. (1994). A program to address the special needs of drug-exposed children. J Sch Health, 64(6), 251-253.

Mayes, L. C., Cicchetti, D., Acharyya, S., & Zhang, H. (2003). Developmental trajectories of cocaine-and-other-drug-exposed and non-cocaine-exposed children. J Dev Behav Pediatr, 24(5), 323-335.

McNichol, T. (1999). The impact of drug-exposed children on family foster care. Child Welfare, 78(1), 184-196.

Menon, V., & Uddin, L. Q. (2010). Saliency, switching, attention and control: a network model of insula function. Brain Struct Funct, 214(5-6), 655-667. doi:10.1007/s00429-010-0262-0

Nadebaum, C., Anderson, V., Vajda, F., Reutens, D., & Wood, A. (2012). Neurobehavioral consequences of prenatal antiepileptic drug exposure. Dev Neuropsychol, 37(1), 1-29. doi:10.1080/87565641.2011.589483

Nomi, J. S., Farrant, K., Damaraju, E., Rachakonda, S., Calhoun, V. D., & Uddin, L. Q. (2016). Dynamic functional network connectivity reveals unique and overlapping profiles of insula subdivisions. Hum Brain Mapp, 37(5), 1770-1787. doi:10.1002/hbm.23135

Odriozola, P., Uddin, L. Q., Lynch, C. J., Kochalka, J., Chen, T., & Menon, V. (2016). Insula response and connectivity during social and non-social attention in children with autism. Soc Cogn Affect Neurosci, 11(3), 433-444. doi:10.1093/scan/nsv126

Pulsifer, M. B., Radonovich, K., Belcher, H. M., & Butz, A. M. (2004). Intelligence and school readiness in preschool children with prenatal drug exposure. Child Neuropsychol, 10(2), 89-101. doi:10.1080/09297040490911104

Robey, A., Buckingham-Howes, S., Salmeron, B. J., Black, M. M., & Riggins, T. (2014). Relations among prospective memory, cognitive abilities, and brain structure in adolescents who vary in prenatal drug exposure. J Exp Child Psychol, 127, 144-162. doi:10.1016/j.jecp.2014.01.008

Sheinkopf, S. J., Lester, B. M., Sanes, J. N., Eliassen, J. C., Hutchison, E. R., Seifer, R., . . . Casey, B. J. (2009). Functional MRI and response inhibition in children exposed to cocaine in utero. Preliminary findings. Dev Neurosci, 31(1-2), 159-166. doi:10.1159/000207503

Supekar, K., Uddin, L. Q., Prater, K., Amin, H., Greicius, M. D., & Menon, V. (2010). Development of functional and structural connectivity within the default mode network in young children. Neuroimage, 52(1), 290-301. doi:10.1016/j.neuroimage.2010.04.009

Uddin, L. Q., & Menon, V. (2009). The anterior insula in autism: under-connected and under-examined. Neurosci Biobehav Rev, 33(8), 1198-1203. doi:10.1016/j.neubiorev.2009.06.002

Clinical Corner