Zebrafish: An In Vivo Model For The Study Of Therapeutic Targets Of Epilepsy

  • Brindha Durairaj Department of Biochemistry, PSG College of Arts & Science, Coimbatore, Tamil Nadu, India
  • Ravikumar Manish Department of Biochemistry, PSG College of Arts & Science, Coimbatore, Tamil Nadu, India
Keywords: epilepsy, Seizures, Neurotransmitters, Zebrafish, Therapeutic targets


Epilepsy is a common neurological disorder due to excessive brain cell activity. It is characterized by unpredictable seizures resulting in cognition. The release of abnormal electric discharge in the regions of the brain causes epileptic seizures. Neurotransmitters play an important role in normal functioning of the brain and thus alteration of these neurotransmitters are associated with epilepsy. Zebrafish model have recently become a focus for various neurological disorders because of its high genetic similarity when compared with those of humans. Zebrafish can be grown in large numbers and their embryos are optically clear allowing examination of individual genes. This review will look at the utility of the zebrafish in the study of various therapeutic targets of epilepsy such as GABA, AMPA, NMDA, histamine H3, and phosphodiesters.


Ali, D. W., Buss, R. R., & Drapeau, P. (2000). Properties of miniature glutamatergic EPSCs in neurons of the locomotor regions of the developing zebrafish. Journal of Neurophysiology, 83(1), 181–191. https://doi.org/10.1152/jn.2000.83.1.181

Bahi, A., Sadek, B., Schwed, S. J., Walter, M., & Stark, H. (2013). Influence of the novel histamine H3 receptor antagonist ST1283 on voluntary alcohol consumption and ethanol-induced place preference in mice. Psychopharmacology, 228(1), 85–95. https://doi.org/10.1007/s00213-013-3019-7

Ballestero, R. P., Dybowski, J. A., Levy, G., Agranoff, B. W., & Uhler, M. D. (1999). Cloning and characterization of zRICH, a 2’,3’-cyclic-nucleotide 3’-phosphodiesterase induced during zebrafish optic nerve regeneration. Journal of Neurochemistry, 72(4), 1362–1371. https://doi.org/10.1046/j.1471-4159.1999.721362.x

Baraban, S. C., Taylor, M. R., Castro, P. A., & Baier, H. (2005). Pentylenetetrazole induced changes in zebrafish behavior, neural activity and c-fos expression. Neuroscience, 131(3), 759–768. https://doi.org/10.1016/j.neuroscience.2004.11.031

Bender, A. T., & Beavo, J. A. (2006). Cyclic nucleotide phosphodiesterases: Molecular regulation to clinical use. Pharmacological Reviews, 58(3), 488–520. https://doi.org/10.1124/pr.58.3.5

Berg, A. T., & Millichap, J. J. (2013). The 2010 revised classification of seizures and epilepsy. Continuum: Lifelong Learning in Neurology, 19(3), 571–597. https://doi.org/10.1212/01.CON.0000431377.44312.9e

Berkovic, S. F. (2015). Genetics of epilepsy in humans. Cold Spring Harbor Laboratory Perspectives in Medicine. https://doi.org/10.1101/cshperspect.a022400

Bernasconi, A. (2004). Quantitative MR imaging of the neocortex. Neuroimaging Clinics of North America, 14(3), 425–436. https://doi.org/10.1016/j.nic.2004.04.013

Bhowmik, M., Khanam, R., & Vohora, D. (2012). Histamine H3 receptor antagonists in relation to epilepsy and neurodegeneration: A systemic consideration of recent progress and perspectives. British Journal of Pharmacology, 167(7), 1398–1414. https://doi.org/10.1111/j.1476-5381.2012.02093.x

Blake, R. V., Wroe, S. J., Breen, E. K., & McCarthy, R. A. (2000). Accelerated forgetting in patients with epilepsy: Evidence for an impairment in memory consolidation. Brain, 123(3), 472–483. https://doi.org/10.1093/brain/123.3.472

Bowery, N. G., & Smart, T. G. (2006). GABA and glycine as neurotransmitters: A brief history. British Journal of Pharmacology, 147(1), 109–119. https://doi.org/10.1038/sj.bjp.0706443

Brown, R. E., Stevens, D. R., & Haas, H. L. (2001). The physiology of brain histamine. Progress in Neurobiology, 63(6), 637–672. https://doi.org/10.1016/S0301-0082(00)00039-3

Butler, C. R., Bhaduri, A., Acosta-Cabronero, J., Nestor, P. J., Kapur, N., Graham, K. S., … Zeman, A. Z. (2009). Transient epileptic amnesia: Regional brain atrophy and its relationship to memory deficits. Brain, 132(2), 357–368. https://doi.org/10.1093/brain/awn336

Butler, C. R., & Zeman, A. Z. (2008). Recent insights into the impairment of memory in epilepsy: Transient epileptic amnesia, accelerated long-term forgetting and remote memory impairment. Brain, 131(9), 2243–2263. https://doi.org/10.1093/brain/awn127

Carter, D. S., Deshpande, L. S., Rafiq, A., Sombati, S., & DeLorenzo, R. J. (2010). Characterization of spontaneous recurrent epileptiform discharges in hippocampal-entorhinal cortical slices prepared from chronic epileptic animals. Seizure, 20(3), 218–224. https://doi.org/10.1016/j.seizure.2010.11.022

Cendes, F. (2005). Progressive hippocampal and extrahippocampal atrophy in drug resistant epilepsy. Current Opinion in Neurology, 18(2), 173–177. https://doi.org/10.1097/01.wco.0000162860.49842.90

Chang, P., Chandler, K. E., Williams, R. S., & Walker, M. C. (2010). Inhibition of long-term potentiation by valproic acid through modulation of cyclic AMP. Epilepsia, 51(8) 1533–1542. https://doi.org/10.1111/j.1528-1167.2009.02412.x

Chua, H. C., & Chebib, M. (2017). GABAA receptors and the diversity in their structure and pharmacology. Advances in Pharmacology, 79, 1–34. https://doi.org/10.1016/bs.apha.2017.03.003

Cofiel, L. P., & Mattioli, R. (2006). Involvement of histamine receptors in the acquisition of inhibitory avoidance in Carassius auratus. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 30(7), 1246–1250. https://doi.org/10.1016/j.pnpbp.2006.03.017

Coombs, I. D., Soto, D., Zonouzi, M., Renzi, M., Shelley, C., Farrant, M., & Cull-Candy, S.G. (2012). Cornichons modify channel properties of recombinant and glial AMPA receptors. The Journal of Neuroscience, 32(29), 9796–9804. https://doi.org/10.1523/JNEUROSCI.0345-12.2012

Cooper, M. S., D’Amico, L. A., & Henry, C. A. (1999). Confocal microscopic analysis of morphogenetic movements. Methods in Cell Biology, 59, 179–204. https://doi.org/10.1016/S0091-679X(08)61826-9

Cox, J. A., Kucenas, S., & Voigt, M. M. (2005). Molecular characterization and embryonic expression of the family of N-Methyl-D Aspartate receptor subunit genes in the zebrafish. Developmental Dynamics, 234(3), 756–766. https://doi.org/10.1002/dvdy.20532

Cull-Candy, S., Brickley, S., & Farrant, M. (2001). NMDA receptor subunits: Diversity, development and disease. Current Opinion in Neurobiology, 11(3), 327–335. https://doi.org/10.1016/S0959-4388(00)00215-4

Dekker, P. A. (2002). Epilepsy: A manual to medical & clinical officers in Africa (Rev. 2nd ed.). Geneva: World Health Organization.

Featherstone, D. E. (2010). Intercellular glutamate signaling in the nervous system and beyond. ACS Chemistry Neuroscience, 1(1), 4–12. https://doi.org/10.1021/cn900006n

Francis, S. H., Blount, M. A., & Corbin, J. D. (2011). Mammalian cyclic nucleotide phosphodiesterases: Molecular mechanisms and physiological functions. Physiological Reviews, 91(2), 651–690. https://doi.org/10.1152/physrev.00030.2010

Giralt, A., Saavedra, A., Carretón, O., Arumí, H., Tyebji, S., Alberch, J., & Pérez-Navarro, E. (2013). PDE10 inhibition increases GluA1 and CREB phosphorylation and improves spatial and recognition memories in a Huntington’s disease mouse model. Hippocampus, 23(8), 684–695. https://doi.org/10.1002/hipo.22128

Graebenitz, S., Kedo, O., & Speckmann, E.-J., Gorji, A., Panneck, H., Hans, V., … Pape, H.-C. (2011). Interictal-like network activity and receptor expression in the epileptic human lateral amygdala. Brain, 134(10), 2929–2947. https://doi.org/10.1093/brain/awr202

Grauer, S. M., Pulito, V. L., Navarra, R. L., Kelly, M. P., Kelley, C., Graf, R., … Brandon, N. J. (2009). Phosphodiesterase 10A inhibitor activity in preclinical models of the positive, cognitive, and negative symptoms of schizophrenia. Journal of Pharmacology and Experimental Therapeutics, 331(2), 574–590. https://doi.org/10.1124/jpet.109.155994

Griffin, A., Hamling, K. R., Knupp, K., Hong, S., Lee, L. P., & Baraban, S. C. (2017). Clemizole and modulators of serotonin signalling suppress seizures in Dravet syndrome. Brain, 140(3), 669–683. https://doi.org/10.1093/brain/aww342

Grossman, S. D., Wolfe, B. B., Yasuda, R. P., & Wrathall, J. R. (1999). Alterations in AMPA receptor subunit expression after experimental spinal cord contusion injury. Journal of Neuroscience, 19(14), 5711–5720. https://doi.org/10.1523/JNEUROSCI.19-14-05711.1999

Haas, H., & Panula, P. (2003). The role of histamine and the tuberomamillary nucleus in the nervous system. Nature Reviews Neuroscience, 4, 121–130. https://doi.org/10.1038/nrn1034

Hua, J. Y., & Smith, S. J. (2004). Neural activity and the dynamics of central nervous system development. Nature Neuroscience, 7, 327–332. https://doi.org/10.1038/nn1218

Inocente, C., Arnulf, I., Bastuji, H., Thibault-Stoll, A., Raoux, A., Reimão, R., … Franco, P. (2012). Pitolisant, an inverse agonist of the histamine H3 receptor: An alternative stimulant for narcolepsy-cataplexy in teenagers with refractory sleepiness. Clinical Neuropharmacology, 35(2), 55–60. https://doi.org/10.1097/WNF.0b013e318246879d

Kimmel, C. B. (1989). Genetics and early development of zebrafish. Trends in Genetics, 5, 283–288. https://doi.org/10.1016/0168-9525(89)90103-0

Kimmel, C. B. & Warga, R. M. (1988). Cell lineage and developmental potential of cells in the zebrafish embryo. Trends in Genetics, 4(3), 68–74. https://doi.org/10.1016/0168-9525(88)90043-1

Kiviranta, T., Tuomisto, L., & Airaksinen, E. M. (1995). Histamine in cerebrospinal fluid of children with febrile convulsions. Epilepsia, 36(3), 276–280. https://doi.org/10.1111/j.1528-1157.1995.tb00996.x

Kuhne, S., Wijtmans, M., Lim, H. D., Leurs, R., & de Esch, I. J. (2011). Several down, a few to go: Histamine H3 receptor ligands making the final push towards the market? Expert Opinion on Investigational Drugs, 20(12), 1629–1648. https://doi.org/10.1517/13543784.2011.625010

Kuzniecky, R. I., & Knowlton, R. C. (2002). Neuroimaging of epilepsy. Seminars in Neurology, 22(3), 279–288. https://doi.org/10.1055/s-2002-36647

Kwan, P., & Brodie, M. J. (2001). Neuropsychological effects of epilepsy and antiepileptic drugs. The Lancet, 357(9251), 216–222. https://doi.org/10.1016/S0140-6736(00)03600-X

Leurs, R., Bakker, R. A., Timmerman, H., & de Esch, I. J. (2005). The histamine H3 receptor: From gene cloning to H3 receptor drugs. Nature Reviews Drug Discovery, 4, 107–120. https://doi.org/10.1038/nrd1631

Leurs, R., Vischer, H. F., Wijtmans, M., & de Esch, I. J. (2011). En route to new blockbuster anti-histamines: Surveying the offspring of the expanding histamine receptor family. Trends in Pharmacological Sciences, 32(4), 250–257. https://doi.org/10.1016/j.tips.2011.02.004

Leuti, A., Laurenti, D., Giampà, C., Montagna, E., Dato, C., Anzilotti S., … Fusco, F. R. (2013). Phosphodiesterase 10A (PDE10A) localization in the R6/2 mouse model of Huntington’s disease. Neurobiology of Disease, 52, 104–116. https://doi.org/10.1016/j.nbd.2012.11.016

Liddie, S., Anderson, K. L., Paz, A., & Itzhak, Y. (2012). The effect of phosphodiesterase inhibitors on the extinction of cocaine-induced conditioned place preference in mice. Journal of Psychopharmacology, 26(10), 1375–1382. https://doi.org/10.1177/0269881112447991

Liu, S. J., & Zukin, R. S. (2007). Ca2+-permeable AMPA receptors in synaptic plasticity and neuronal death. Trends in Neurosciences, 30(3), 126–134. https://doi.org/10.1016/j.tins.2007.01.006

Mansour, M., Nagarajan, N., Nehring, R. B., Clements, J. D., & Rosenmund, C. (2001). Heteromeric AMPA receptors assemble with a preferred subunit stoichiometry and spatial arrangement. Neuron, 32(5), 841–853. https://doi.org/10.1016/S0896-6273(01)00520-7

Martinez-Mir, M. I., Pollard, H., Moreau, J., Arrang, J. M., Ruat, M., Traiffort, E., … Palacios, J. M. (1990). Three histamine receptors (H1, H2 and H3) visualized in the brain of human and non-human primates. Brain Research, 526(2), 322–327. https://doi.org/10.1016/0006-8993(90)91240-h

Martinos, M. M., Yoong, M., Patil, S., Chin, R. F., Neville, B. G., Scott, R. C., & de Haan, M. (2012). Recognition memory is impaired in children after prolonged febrile seizures. Brain, 135(10), 3153–3164. https://doi.org/10.1093/brain/aws213

Mayer, M. L., & Armstrong, N. (2004). Structure and function of glutamate receptor ion channels. Annual Review of Physiology, 66, 161–181. https://doi.org/10.1146/annurev.physiol.66.050802.084104

Meador, K. J. (2002). Cognitive outcomes and predictive factors in epilepsy. Neurology, 58(8, Suppl. 5), S21–S26. https://doi.org/10.1212/wnl.58.8_suppl_5.s21

Meldrum, B. S. (2000). Glutamate as a neurotransmitter in the brain: Review of physiology and pathology. The Journal of Nutrition, 130(Suppl. 4S), 1007S–1015S. https://doi.org/10.1093/jn/130.4.1007S

Micallef, S., Stark, H., & Sasse, A. (2013). Polymorphisms and genetic linkage of histamine receptors. Life Sciences, 93(15), 487–494. https://doi.org/10.1016/j.lfs.2013.08.012

Möhler, H. (2006). GABA(A) receptor diversity and pharmacology. Cell and Tissue Research, 326(2), 505–516. https://doi.org/10.1007/s00441-006-0284-3

Moriyoshi, K., Masu, M., Ishii, T., Shigemoto, R., Mizuno, N., & Nakanishi, S. (1991). Molecular cloning and characterization of the rat NMDA receptor. Nature, 354, 31–37. https://doi.org/10.1038/354031a0

Olsen, R. W., & Sieghart, W. (2008). International Union of Pharmacology. LXX. Subtypes of gamma-aminobutyric acid(A) receptors: Classification on the basis of subunit composition, pharmacology and function. Pharmacolological Reviews, 60(3), 243–260. https://doi.org/10.1124/pr.108.00505

Ozawa, S., Kamiya, H., & Tsuzuki, K. (1998). Glutamate receptors in the mammalian central nervous system. Progress in Neurobiology, 54(5), 581–618. https://doi.org/10.1016/S0301-0082(97)00085-3

Patten, S. A., & Ali, D. W. (2007). AMPA receptors associated with zebrafish Mauthner cells switch subunits during development. Journal of Physiology, 581(3), 1043–1056. https://doi.org/10.1113/jphysiol.2007.129999

Peitsaro, N., Anichtchik, O. V., & Panula, P. (2000). Identification of a histamine H(3)-like receptor in the zebrafish (Danio rerio) brain. Journal of Neurochemistry, 75(2), 718–724. https://doi.org/10.1046/j.1471-4159.2000.0750718.x

Peitsaro, N., Sundvik, M., Anichtchik, O. V., Kaslin, J., & Panula, P. (2007). Identification of zebrafish histamine H1, H2 and H3 receptors and effects of histaminergic ligands on behavior. Biochemical Pharmacology, 73(8), 1205–1214. https://doi.org/10.1016/j.bcp.2007.01.014

Riedel, G., Platt, B., & Micheau, J. (2003). Glutamate receptor function in learning and memory. Behavioural Brain Research, 140(1–2), 1–47. https://doi.org/10.1016/S0166-4328(02)00272-3

Rogawski, M. A. (2011). Revisiting AMPA receptors as an antiepileptic drug target. Epilepsy Currents, 11(2), 56–63. https://doi.org/10.5698/1535-7511-11.2.56

Sadek, B., Shehab, S., Więcek, M., Subramanian, D., Shafiullah, M., Kieć-Kononowicz, K., & Adem, A. (2013). Anticonvulsant properties of histamine H3 receptor ligands belonging to N-substituted carbamates of imidazopropanol. Bioorganic & Medicinal Chemistry Letters, 23(17), 4886–4891. https://doi.org/10.1016/j.bmcl.2013.06.075

Sancheti, J. S., Shaikh, M. F., Khatwani, P. F., Kulkarni, S. R., & Sathaye, S. (2013). Development and validation of a HPTLC method for simultaneous estimation of L-glutamic acid and γ-aminobutyric acid in mice brain. Indian Journal of Pharmaceutical Sciences, 75(6), 716–721. https://doi.org/10.4103/0250-474X.124797

Sander, K., Kottke, T., & Stark H. (2008). Histamine H3 receptor antagonists go to clinics. Biological and Pharmaceutical Bulletin, 31(12), 2163–2181. https://doi.org/10.1248/bpb.31.2163

Schlicker, E., Betz, R., & Göthert, M. (1988). Histamine H3 receptor-mediated inhibition of serotonin release in the rat brain cortex. Naunyn-Schmiedebergs Archives of Pharmacology, 337(5), 588–590. https://doi.org/10.1007/bf00182737

Schwartz, J. C., Arrang, J. M., Garbarg, M., Pollard, H., & Ruat, M. (1991). Histaminergic transmission in the mammalian brain. Physiological Reviews, 71(1), 1–51. https://doi.org/10.1152/physrev.1991.71.1.1

Seeburg, P. H. (1993). The TINS/TiPS lecture the molecular biology of mammalian glutamate receptor channels. Trends in Neurosciences, 16(9), 359–365. https://doi.org/10.1016/0166-2236(93)90093-2

Seeger, T. F., Bartlett, B., Coskran, T. M., Culp, J. S., James, L. C., Krull, D. L., … Menniti, F. S. (2003). Immunohistochemical localization of PDE10A in the rat brain. Brain Research, 985(2), 113–126. https://doi.org/10.1016/s0006-8993(03)02754-9

Siuciak, J. A., McCarthy, S. A., Chapin, D. S., Fujiwara, R. A., James, L. C., Williams, R. D., … Schmidt, C. J. (2006). Genetic deletion of the striatum-enriched phosphodiesterase PDE10A: Evidence for altered striatal function. Neuropharmacology, 51(2), 374–385. https://doi.org/10.1016/j.neuropharm.2006.01.012

Smith, D. B., Craft, B. R., Collins, J., Mattson, R. H., & Cramer, J. A. (1986). Behavioral characteristics of epilepsy patients compared with normal controls. Epilepsia, 27(6), 760–768. https://doi.org/10.1111/j.1528-1157.1986.tb03607.x

Solnica-Krezel, L., Stemple, D. L., & Driever, W. (1995). Transparent things: Cell fates and cell movements during early embryogenesis of zebrafish. Bioessays, 17(11), 931–939. https://doi.org/10.1002/bies.950171106

Suzuki, K., Harada, A., Suzuki, H., Miyamoto, M., & Kimura, H. (2016). TAK-063, a PDE10A inhibitor with balanced activation of direct and indirect pathways, provides potent antipsychotic-like effects in multiple paradigms. Neuropsychopharmacology, 41, 2252–2262. https://doi.org/10.1038/npp.2016.20

Swanson, G. T., Kamboj, S. K., & Cull-Candy, S. G. (1997). Single-channel properties of recombinant AMPA receptors depend on RNA editing, splice variation, and subunit composition. Journal of Neuroscience, 17(1), 58–69. https://doi.org/10.1523/JNEUROSCI.17-01-00058.1997

Swartzwelder, H. S., Bragdon, A. C., Sutch, C. P., Ault, B., & Wilson, W. A. (1986). Baclofen suppresses hippocampal epileptiform activity at low concentrations without suppressing synaptic transmission. Journal of Pharmacology and Experimental Therapeutics, 237(3), 881–887.

Todd, K. J., Slatter, C. A., & Ali, D. W. (2004). Activation of ionotropic glutamate receptors on peripheral axons of primary motoneurons mediates transmitter release at the zebrafish NMJ. Journal of Neurophysiology, 91(2), 828–840. https://doi.org/10.1152/jn.00599.2003

Tran, S. & Gerlai, R. (2015). Thirty-second net stressor task in adult zebrafish. Bio-Protocol, 5(5), e1413. https://doi.org/10.21769/bioprotoc.1413

Tuomisto, L., & Tacke, U. (1986). Is histamine an anticonvulsive inhibitory transmitter? Neuropharmacology, 25(8), 955–958. https://doi.org/10.1016/0028-3908(86)90029-8

Yazulla, S., & Studholme, K. M. (2001). Neurochemical anatomy of the zebrafish retina as determined by immunocytochemistry. Journal of Neurocytology, 30, 551–592. https://doi.org/10.1007/978-1-4615-1089-5_2

Ying, Z., Babb, T. L., Comair, Y. G., Bushey, M., & Touhalisky, K. (1998). Increased densities of AMPA GluR1 subunit proteins and presynaptic mossy fiber sprouting in the fascia dentata of human hippocampal epilepsy. Brain Research, 798(1–2), 239–246. https://doi.org/10.1016/s0006-8993(98)00421-1

Review Articles