Effect of EEG Neurofeedback Training in Patients with Moderate–Severe Traumatic Brain Injury: A Clinical and Electrophysiological Outcome Study

  • Rajnish Kumar Gupta Department of Clinical Psychology, National Institute of Mental Health and Neurosciences, Bengaluru, India
  • Mohammed Afsar Department of Clinical Psychology, National Institute of Mental Health and Neurosciences, Bengaluru, India
  • Rohit Kumar Yadav Department of Clinical Psychology, National Institute of Mental Health and Neurosciences, Bengaluru, India
  • Dhaval P Shukla Department of Neurosurgery, National Institute of Mental Health and Neurosciences, Bengaluru, India
  • Jamuna Rajeswaran Department of Clinical Psychology, National Institute of Mental Health and Neurosciences, Bengaluru, India
Keywords: neurofeedback, traumatic brain injury, EEG, post-concussion symptoms, electrophysiology

Abstract

Traumatic brain injury (TBI) is a leading cause of death, and its survivors with a disability are considered to be an important global health priority.  In view of a diverse range of disability and its impact on TBI survivors, the need for effective rehabilitation modalities is on a high rise.  Therefore, the present study was aimed to investigate the efficacy of EEG neurofeedback training (EEG-NFT) in moderate–severe TBI patients on their clinical and electrophysiological outcomes.  The study was an experimental longitudinal design with a pre-post comparison.  A total of 14 TBI patients in a postinjury period between 3 months to 2 years were recruited.  All participants received twenty sessions of EEG-NFT.  Baseline and post-NFT comparisons were made on postconcussion symptoms (PCS) and electrophysiological variables.  The result indicates a significant reduction in the severity of PCS following EEG-NFT.  A consistent pattern of reduced slow waves and fast waves amplitude ratios was also noted at post-NFT, although it was not significant across all the brain regions.  The present study suggests EEG-NFT as a contributing factor in improving PCS and normalization of qEEG in TBI patients, which holds an implication for clinical decision-making of EEG-NFT as a viable alternative to be offered to TBI patients.

References

Ali, J. I., Viczko, J., & Smart, C. M. (2020). Efficacy of neurofeedback interventions for cognitive rehabilitation following brain injury: Systematic review and recommendations for future research. Journal of the International Neuropsychological Society, 26(1), 31–46. https://doi.org/10.1017/S1355617719001061

Álvarez, X. A., Sampedro, C., Figueroa, J., Tellado, I., González, A., García-Fantini, M., ... Moessler, H. (2008). Reductions in qEEG slowing over 1 year and after treatment with Cerebrolysin in patients with moderate–severe traumatic brain injury. Journal of Neural Transmission (Vienna), 115(5), 683–692. https://doi.org/10.1007/s00702-008-0024-9

Arciniegas, D. B. (2011). Clinical electrophysiologic assessments and mild traumatic brain injury: State-of-the-science and implications for clinical practice. International Journal of Psychophysiology, 82(1), 41–52. https://doi.org/10.1016/j.ijpsycho.2011.03.004

Azouvi, P., Vallat-Azouvi, C., Joseph, P.-A., Meulemans, T., Bertola, C., Le Gall, D., ... GREFEX Study Group. (2016). Executive functions deficits after severe traumatic brain injury: The GREFEX study. Journal of Head Trauma Rehabilitation, 31(3), E10–E20. https://doi.org/10.1097/HTR.0000000000000169

Bennett, C. N., Gupta, R. K., Prabhakar, P., Christopher, R., Sampath, S., Thennarasu, K., & Rajeswaran, J. (2018). Clinical and biochemical outcomes following EEG neurofeedback training in traumatic brain injury in the context of spontaneous recovery. Clinical EEG and Neuroscience, 49(6), 433–440. https://doi.org/10.1177/1550059417744899

Bennett, C. N., Sampath, S., Christopher, R., Thennarasu, K., & Rajeswaran, J. (2017). Effect of electroencephalogram neurofeedback training on quality of life in patients with traumatic brain injury: In context of spontaneous recovery. Indian Journal of Neurotrauma, 14(02/03), 129–134. https://doi.org/10.1055/s-0038-1649280

Brigo, F., & Mecarelli, O. (2019). Traumatic Brain Injury. In O. Mecarelli (Ed.), Clinical Electroencephalography (pp. 617–622). Switzerland: Springer International Publishing.

Bryant, R. A., O'Donnell, M. L., Creamer, M., McFarlane, A. C., Clark, C. R., & Silove, D. (2010). The psychiatric sequelae of traumatic injury. The American Journal of Psychiatry, 167(3), 312–320. https://doi.org/10.1176/appi.ajp.2009.09050617

Chen, X.-P., Tao, L.-Y., & Chen, A. C. N. (2006). Electroencephalogram and evoked potential parameters examined in Chinese mild head injury patients for forensic medicine. Neuroscience Bulletin, 22(3), 165–170.

Christensen, J. (2012). Traumatic brain injury: Risks of epilepsy and implications for medicolegal assessment. Epilepsia, 53(S4), 43–47. https://doi.org/10.1111/j.1528-1167.2012.03612.x

Coles, J. P., Steiner, L. A., Johnston, A. J., Fryer, T. D., Coleman, M. R., Smieleweski, P., ... Menon, D. K. (2004). Does induced hypertension reduce cerebral ischaemia within the traumatized human brain? Brain, 127(11), 2479–2490. https://doi.org/10.1093/brain/awh268

Dewan, M. C., Rattani, A., Gupta, S., Baticulon, R. E., Hung, Y.-C., Punchak, M., ... Park, K. B. (2018). Estimating the global incidence of traumatic brain injury. Journal of Neurosurgery, 130(4), 1080–1097. https://doi.org/10.3171/2017.10.JNS17352

Dikmen, S., Machamer, J., Fann, J. R., & Temkin, N. R. (2010). Rates of symptom reporting following traumatic brain injury. Journal of the International Neuropsychological Society, 16(3), 401–411. https://doi.org/10.1017/S1355617710000196

Dimoska-Di Marco, A., McDonald, S., Kelly, M., Tate, R., & Johnstone, S. (2011). A meta-analysis of response inhibition and Stroop interference control deficits in adults with traumatic brain injury (TBI). Journal of Clinical and Experimental Neuropsychology, 33(4), 471–485. https://doi.org/10.1080/13803395.2010.533158

Ferguson, P. L., Smith, G. M., Wannamaker, B. B., Thurman, D. J., Pickelsimer, E. E., & Selassie, A. W. (2010). A population-based study of risk of epilepsy after hospitalization for traumatic brain injury. Epilepsia, 51(5), 891–898. https://doi.org/10.1111/j.1528-1167.2009.02384.x

Fong, K. N. K., Chan, M. K. L., Ng, P. P. K., & Ng, S. S. W. (2009). Measuring processing speed after traumatic brain injury in the outpatient clinic. NeuroRehabilitation, 24(2), 165–173. https://doi.org/10.3233/NRE-2009-0465

Galovic, M., Schmitz, B., & Tettenborn, B. (2018). EEG in inflammatory disorders, cerebrovascular diseases, trauma and migraine. In D. L. Schomer & F. H. Lopes da Silva (Eds.), Niedermeyer’s electroencephalography: basic principles, clinical applications, and related fields (7th ed., pp. 371–412). Oxford: Oxford University Press. https://doi.org/10.1093/med/9780190228484.003.0015

GBD 2016 Traumatic Brain Injury and Spinal Cord Injury Collaborators. (2019). Global, regional, and national burden of traumatic brain injury and spinal cord injury, 1990–2016: A systematic analysis for the Global Burden of Disease Study 2016. The Lancet Neurology, 18(1), 56–87. https://doi.org/10.1016/S1474-4422(18)30415-0

Gururaj, G. (2002). Epidemiology of traumatic brain injuries: Indian scenario. Neurological Research, 24(1), 24–28. https://doi.org/10.1179/016164102101199503

Hoffman, D., Stockdale, S., & van Egren, L. (1996). EEG neurofeedback in the treatment of mild traumatic brain injury. Clinical Electroencephalography, 27(2), 6.

Horner, M. D., Ferguson, P. L., Selassie, A. W., Labbate, L. A., Kniele, K., & Corrigan, J. D. (2005). Patterns of alcohol use 1 year after traumatic brain injury: A population-based, epidemiological study. Journal of the International Neuropsychological Society, 11(3), 322–330. https://doi.org/10.1017/S135561770505037X

Keller, I. (2001). Neurofeedback therapy of attention deficits in patients with traumatic brain injury. Journal of Neurotherapy, 5(1–2), 19–32. https://doi.org/10.1300/J184v05n01_03

Langlois, J. A., Rutland-Brown, W., & Wald, M. M. (2006). The epidemiology and impact of traumatic brain injury: A brief overview. Journal of Head Trauma Rehabilitation, 21(5), 375–378. https://doi.org/10.1097/00001199-200609000-00001

Leon-Carrion, J., Martin-Rodriguez, J. F., Damas-Lopez, J., Barroso y Martin, J. M., & Dominguez-Morales, M. R. (2009). Delta-alpha ratio correlates with level of recovery after neurorehabilitation in patients with acquired brain injury. Clinical Neurophysiology, 120(6), 1039–1045. https://doi.org/10.1016/j.clinph.2009.01.021

Lewine, J. D., Plis, S., Ulloa, A., Williams, C., Spitz, M., Foley, J., ... Weaver, L. (2019). Quantitative EEG biomarkers for mild traumatic brain injury. Journal of Clinical Neurophysiology, 36(4), 298–305. https://doi.org/10.1097/WNP.0000000000000588

Marr, A. L., & Coronado, V. G. (Eds.) (2004). Central nervous system injury surveillance data submission standards—2002. Atlanta, GA: US Department of Health and Human Services, CDC.

McLean, A., Jr., Dikmen, S., Temkin, N., Wyler, A. R., & Gale, J. L. (1984). Psychosocial functioning at 1 month after head injury. Neurosurgery, 14(4), 393–399. https://doi.org/10.1227/00006123-198404000-00001

Modarres, M., Kuzma, N. N., Kretzmer, T., Pack, A. I., & Lim, M. M. (2016). EEG slow waves in traumatic brain injury: Convergent findings in mouse and man. Neurobiology of Sleep and Circadian Rhythms, 1, S2451994416300025.

Moeller, J. J., Tu, B., & Bazil, C. W. (2011). Quantitative and qualitative analysis of ambulatory electroencephalography during mild traumatic brain injury. Archives of Neurology, 68(12), 1595–1598. https://doi.org/10.1001/archneurol.2011.1080

Munivenkatappa, A., Rajeswaran, J., Indira Devi, B., Bennet, N., & Upadhyay, N. (2014). EEG neurofeedback therapy: Can it attenuate brain changes in TBI? NeuroRehabilitation, 35(3), 481–484. https://doi.org/10.3233/NRE-141140

Nagata, K., Tagawa, K., Hiroi, S., Shishido, F., & Uemura, K. (1989). Electroencephalographic correlates of blood flow and oxygen metabolism provided by positron emission tomography in patients with cerebral infarction. Electroencephalography and Clinical Neurophysiology, 72(1), 16–30. https://doi.org/10.1016/0013-4694(89)90027-8

Nuwer, M. R., Hovda, D. A., Schrader, L. M., & Vespa, P. M. (2005). Routine and quantitative EEG in mild traumatic brain injury. Clinical Neurophysiology, 116(9), 2001–2025. https://doi.org/10.1016/j.clinph.2005.05.008

Putman, P., van Peer, J., Maimari, I., & van der Werff, S. (2010). EEG theta/beta ratio in relation to fear-modulated response-inhibition, attentional control, and affective traits. Biological Psychology, 83(2), 73–78. https://doi.org/10.1016/j.biopsycho.2009.10.008

Rajeswaran, J., Bennett, C. N., Thomas, S., & Rajakumari, K. (2013). EEG neurofeedback training in clinical conditions. Neuropsychological Rehabilitation, 57–78. https://doi.org/10.1016/B978-0-12-416046-0.00004-3

Reddy, R. P., Rajeswaran, J., Bhagavatula, I. D., & Kandavel, T. (2014). Silent Epidemic: The effects of neurofeedback on quality-of-life. Indian Journal of Psychological Medicine, 36(1), 40–44. https://doi.org/10.4103/0253-7176.127246

Reddy, R. P., Rajeswaran, J., Devi, B. I., & Kandavel, T. (2013). Neurofeedback training as an intervention in a silent epidemic: An Indian scenario. Journal of Neurotherapy, 17(4), 213–225. https://doi.org/10.1080/10874208.2013.847139

Reddy, R. P., Rajeswaran, J., Devi, B. I., & Kandavel, T. (2017). Cascade of traumatic brain injury: A correlational study of cognition, postconcussion symptoms, and quality of life. Indian Journal of Psychological Medicine, 39(1), 32–39. https://doi.org/10.4103/0253-7176.198940

Rusnak, M. (2013). Traumatic brain injury: Giving voice to a silent epidemic. Nature Reviews Neurology, 9(4), 186–187. https://doi.org/10.1038/nrneurol.2013.38

Schoenberger, N. E., Shiflett, S. C., Esty, M. L., Ochs, L., & Matheis, R. J. (2001). Flexyx Neurotherapy System in the treatment of traumatic brain injury: An initial evaluation. Journal of Head Trauma Rehabilitation, 16(3), 260–274. https://doi.org/10.1097/00001199-200106000-00005

Schretlen, D. J., & Shapiro, A. M. (2003). A quantitative review of the effects of traumatic brain injury on cognitive functioning. International Review of Psychiatry, 15(4), 341–349. https://doi.org/10.1080/09540260310001606728

Shapiro, S. S. & Wilk, M. B. (1965). An analysis of variance test for normality (complete samples). Biometrika, 52(3–4), 591–611. https://doi.org/10.1093/biomet/52.3-4.591

Singh, S. K. (2017). Road traffic accidents in India: Issues and challenges. Transportation Research Procedia, 25, 4708–4719. https://doi.org/10.1016/j.trpro.2017.05.484

Spikman, J. M., Timmerman, M. E., Milders, M. V., Veenstra, W. S., & van der Naalt, J. (2012). Social cognition impairments in relation to general cognitive deficits, injury severity, and prefrontal lesions in traumatic brain injury patients. Journal of Neurotrauma, 29(1), 101–111. https://doi.org/10.1089/neu.2011.2084

Stålnacke, B. M. (2012). Postconcussion symptoms in patients with injury-related chronic pain. Rehabilitation Research and Practice, 2012, 528265. https://doi.org/10.1155/2012/528265

Tebano, M. T., Cameroni, M., Gallozzi, G., Loizzo, A., Palazzino, G., Pezzini, G., & Ricci, G. F. (1988). EEG spectral analysis after minor head injury in man. Electroencephalography and Clinical Neurophysiology, 70(2), 185–189. https://doi.org/10.1016/0013-4694(88)90118-6

Thatcher, R. W., Walker, R. A., Gerson, I., & Geisler, F. H. (1989). EEG discriminant analyses of mild head trauma. Electroencephalography and Clinical Neurophysiology, 73(2), 94–106. https://doi.org/10.1016/0013-4694(89)90188-0

Trammell, J. P., MacRae, P. G., Davis, G., Bergstedt, D., & Anderson, A. E. (2017). The relationship of cognitive performance and the theta-alpha power ratio is age-dependent: An EEG study of short term memory and reasoning during task and resting-state in healthy young and old adults. Frontiers in Aging Neuroscience, 9, 364. https://doi.org/10.3389/fnagi.2017.00364

Vaishnavi, S., Rao, V., & Fann, J. R. (2009). Neuropsychiatric problems after traumatic brain injury: Unraveling the silent epidemic. Psychosomatics, 50(3), 198–205. https://doi.org/10.1176/appi.psy.50.3.198

van Dongen-Boomsma, M., Lansbergen, M. M., Bekker, E. M., Kooij, J. J. S., van der Molen, M., Kenemans, J. L., & Buitelaar, J. K. (2010). Relation between resting EEG to cognitive performance and clinical symptoms in adults with attention-deficit/hyperactivity disorder. Neuroscience Letters, 469(1), 102–106. https://doi.org/10.1016/j.neulet.2009.11.053

Walker, A. E., Kollros, J. J., & Case, T. J. (1945). The physiological basis of cerebral concussion: Trauma of the nervous system. Association for Research in Nervous and Mental Disease, 24, 437–472.

Watson, M. R., Fenton, G. W., McClelland, R. J., Lumsden, J., Headley, M., & Rutherford, W. H. (1995). The post-concussional state: Neurophysiological aspects. The British Journal of Psychiatry, 167(4), 514–521. https://doi.org/10.1192/bjp.167.4.514

West, L. K., Curtis, K. L., Greve, K. W., & Bianchini, K. J. (2011). Memory in traumatic brain injury: The effects of injury severity and effort on the Wechsler Memory Scale-III. Journal of Neuropsychology, 5(1), 114–125. https://doi.org/10.1348/174866410X521434

Wright, M. J., Schmitter-Edgecombe, M., & Woo, E. (2010). Verbal memory impairment in severe closed head injury: the role of encoding and consolidation. Journal of Clinical and Experimental Neuropsychology, 32(7), 728–736. https://doi.org/10.1080/13803390903512652

Published
2020-06-26
Section
Research Papers