Effect of Threshold Setting on Neurofeedback Training

  • Sejin Nam Duksung Women's University
  • Sungwon Choi
Keywords: neurofeedback, rewards, threshold, learning theory, brain wave


This study aimed to confirm the effect of threshold setting on the performance of neurofeedback training. The experimental conditions used to confirm the effect of the different threshold settings on the degree of electroencephalographic (EEG) changes in the initial training conditions were unfamiliar to neurofeedback. Rewards were presented in low, medium, and high frequency groups according to the different threshold settings. The sensory-motor rhythm (SMR; 12–15 Hz) neurofeedback protocol was performed for all groups. We looked at whether the posttraining brain wave increases were significant in each group compared to the brain waves during training. The SMR protocol was performed in a single session and consisted of four blocks totaling 10 minutes. EEG data was collected before training as a baseline, during training, and posttraining. The results of the group analysis showed that the mean SMR value of the posterior EEG in the high frequency group was significantly higher than the SMR value in the first EEG block. The threshold settings affected learning in neurofeedback training. It was found that initially setting the threshold value for easy compensation was more effective than the setting for hard compensation.


American Psychiatric Association. (2000). Diagnostic and statistical manual of mental disorders (4th ed., text rev.). Washington, DC: Author.

Arnold, L. E., Lofthouse, N., Hersch, S., Pan, X., Hurt, E., Bates, B., … Grantier, C. (2012). EEG neurofeedback for ADHD: Double-blind sham-controlled randomized pilot feasibility trial. Journal of Attention Disorders, 17(5), 410–419. https://doi.org/10.1177/1087054712446173

Arns, M., Feddema, I., & Kenemans, J. L. (2014). Differential effects of theta/beta and SMR neurofeedback in ADHD on sleep onset latency. Frontiers in Human Neuroscience, 8, 1019. https://doi.org/10.3389/fnhum.2014.01019

Barea, R., Boquete, L., Mazo, M., & López, E. (2002). System for assisted mobility using eye movements based on electrooculography. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 10(4), 209–218. http://doi.org/10.1109/TNSRE.2002.806829

Bashashati, A., Ward, R. K., Birch, G. E., Hashemi, M. R., & Khalilzadeh, M. A. (2003, September). Fractal dimension-based EEG biofeedback system. In Proceedings of the 25th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (IEEE Cat. No. 03CH37439, Vol. 3, pp. 2220–2223). Cancun, Mexico: IEEE. https://doi.org/10.1109/IEMBS.2003.1280200

Batty, M. J., Bonnington, S., Tang, B.-K., Hawken, M. B., & Gruzelier, J. H. (2006). Relaxation strategies and enhancement of hypnotic susceptibility: EEG neurofeedback, progressive muscle relaxation and self-hypnosis. Brain Research Bulletin, 71(1–3), 83–90. https://doi.org/10.1016/j.brainresbull.2006.08.005

Bauer, R., Fels, M., Royter, V., Raco, V., & Gharabaghi, A. (2016). Closed-loop adaptation of neurofeedback based on mental effort facilitates reinforcement learning of brain self-regulation. Clinical Neurophysiology, 127(9), 3156–3164. https://doi.org/10.1016/j.clinph.2016.06.020

Choe, A. Y., Hwang, S. T., Kim, J. H., Park, K. B., Chey, J. Y., & Hong, H. (2014). Validity of the K-WAIS-IV short forms. Korean Journal of Clinical Psychology, 33(2), 413–428. https://doi.org/10.15842/kjcp.2014.33.2.011

Coben, R., & Evans, J. R. (Eds.). (2010). Neurofeedback and Neuromodulation Techniques and Applications. Cambridge, MA: Academic Press.

Collura, T. F. (1999). U.S. Patent No. 5,899,867. Washington, DC: U.S. Patent and Trademark Office. https://patentimages.storage.googleapis.com/3a/9c/a0/3f87c3cb979c35/US5899867.pdf

Collura, T. F. (2007). U.S. Patent No. 7,269,456. Washington, DC: U.S. Patent and Trademark Office. https://patentimages.storage.googleapis.com/f9/30/53/f7bdf0a23396e3/US7269456B2.pdf

Cortoos, A., De Valck, E., Arns, M., Breteler, M. H. M., & Cluydts, R. (2010). An exploratory study on the effects of tele-neurofeedback and tele-biofeedback on objective and subjective sleep in patients with primary insomnia. Applied Psychophysiology and Biofeedback, 35(2), 125–134. https://doi.org/10.1007/s10484-009-9116-z

Dayan, P., & Balleine, B. W. (2002). Reward, motivation, and reinforcement learning. Neuron, 36(2), 285–298. https://doi.org/10.1016/S0896-6273(02)00963-7

Demos, J. N. (2005). Getting started with neurofeedback. New York, NY: W. W. Norton & Company.

Doppelmayr, M., & Weber, E. (2011). Effects of SMR and theta/beta neurofeedback on reaction times, spatial abilities, and creativity. Journal of Neurotherapy, 15(2), 115–129. https://doi.org/10.1080/10874208.2011.570689

Dunn, L. B., Holtzheimer, P. E., Hoop, J. G., Mayberg, H. S., Roberts, L. W., & Appelbaum, P. S. (2011). Ethical issues in deep brain stimulation research for treatment-resistant depression: Focus on risk and consent. AJOB Neuroscience, 2(1), 29–36. https://doi.org/10.1080/21507740.2010.533638

Egner, T., & Gruzelier, J. H. (2003). Ecological validity of neurofeedback: Modulation of slow wave EEG enhances musical performance. NeuroReport, 14(9), 1221–1224. https://doi.org/10.1097/01.wnr.0000081875.45938.d1

Egner, T., Zech, T. F., & Gruzelier, J. H. (2004). The effects of neurofeedback training on the spectral topography of the electroencephalogram. Clinical Neurophysiology, 115(11), 2452–2460. https://doi.org/10.1016/j.clinph.2004.05.033

Gilbert, C., & Moss, D. (2003). Biofeedback and biological monitoring. In D. Moss, A. McGrady, T. Davies, & I. Wickramaskera (Eds.), Handbook of mind-body medicine in primary care: behavioral and physiological tools (pp. 109–122). Thousand Oaks, CA: Sage.

Good, C. D., Johnsrude, I., Ashburner, J., Henson, R. N. A., Friston, K. J., & Frackowiak, R. S. J. (2001). Cerebral asymmetry and the effects of sex and handedness on brain structure: A voxel-based morphometric analysis of 465 normal adult human brains. NeuroImage, 14(3), 685–700. https://doi.org/10.1006/nimg.2001.0857

Gottlieb, D. A. (2004). Acquisition with partial and continuous reinforcement in pigeon autoshaping. Animal Learning & Behavior, 32(3), 321–334. https://doi.org/10.3758/BF03196031

Grice, G. R. (1948). The relation of secondary reinforcement to delayed reward in visual discrimination learning. Journal of Experimental Psychology, 38(1), 1–16. https://doi.org/10.1037/h0061016

Gruzelier, J. H. (2014a). Differential effects on mood of 12–15 (SMR) and 15–18 (beta1) Hz neurofeedback. International Journal of Psychophysiology, 93(1), 112–115. https://doi.org/10.1016/j.ijpsycho.2012.11.007

Gruzelier, J. H. (2014b). EEG-neurofeedback for optimising performance. III: A review of methodological and theoretical considerations. Neuroscience & Biobehavioral Reviews, 44, 159–182. https://doi.org/10.1016/j.neubiorev.2014.03.015

Gruzelier, J., Inoue, A., Smart, R., Steed, A., & Steffert, T. (2010). Acting performance and flow state enhanced with sensory-motor rhythm neurofeedback comparing ecologically valid immersive VR and training screen scenarios. Neuroscience Letters, 480(2), 112–116. https://doi.org/10.1016/j.neulet.2010.06.019

Gupta, R. K., Afsar, M., Yadav, R. K., Shukla, D. P., & Rajeswaran, J. (2020). Effect of EEG neurofeedback training in patients with moderate–severe traumatic brain injury: A clinical and electrophysiological outcome study. NeuroRegulation, 7(2), 75–83. https://doi.org/10.15540/nr.7.2.75

Hammond, D. C. (2003). The effects of caffeine on the brain: A review. Journal of Neurotherapy, 7(2), 79–89. https://doi.org/10.1300/J184v07n02_07

Hammond, D. C. (2007). What is neurofeedback? Journal of Neurotherapy, 10(4), 25–36. https://doi.org/10.1300/J184v10n04_04

Hammond, D. C. (2011). What is neurofeedback: An update. Journal of Neurotherapy, 15(4), 305–336. https://doi.org/10.1080/10874208.2011.623090

Hardt, J. V., & Kamiya, J. (1976). Conflicting results in EEG alpha feedback studies. Biofeedback and Self-regulation, 1(1), 63–75. https://doi.org/10.1007/BF00998691

Hill, R. W., & Castro, E. (2009). Healing young brains: The neurofeedback solution. Charlottesville, VA: Hampton Roads Publishing.

Jindal, S. (2013, April). Real time embedded system for biofeedback. In Proceedings of the National Conference on Recent Trends in Operations Research (pp. 142–144). New Delhi, India: Amity School of Engineering & Technology. Retrieved from https://www.researchgate.net/profile/Naman_Taneja/publication/275657904_Assertion_of_Purity_Quality_and_Availability_of_Ice_Cream/links/5543ceb40cf23ff7168523b3.pdf - page=153

Konidaris, G., & Barto, A. (2006). Autonomous shaping: Knowledge transfer in reinforcement learning. In Proceedings of the 23rd International Conference on Machine Learning (pp. 489–496). New York, NY: Association for Computing Machinery. https://doi.org/10.1145/1143844.1143906

LaVaque, T. J. (2003). Neurofeedback, neurotherapy, and quantitative EEG. In D. Moss & A. McGrady (Eds.), Handbook of mind-body medicine for primary care, (pp. 123–136). Thousand Oaks, CA: Sage.

Lubar, J. F., Swartwood, M. O., Swartwood, J. N., & O'Donnell, P. H. (1995). Evaluation of the effectiveness of EEG neurofeedback training for ADHD in a clinical setting as measured by changes in TOVA scores, behavioral ratings, and WISC-R performance. Biofeedback and Self-regulation, 20(1), 83–99. https://doi.org/10.1007/BF01712768

Miltenberger, R. G. (2011). Behavior modification: Principles and procedures (5th ed.). Belmont, CA: Wadsworth.

Morales-Quezada, L., Martinez, D., El-Hagrassy, M. M., Kaptchuk, T. J., Sterman, M. B., & Yeh, G. Y. (2019). Neurofeedback impacts cognition and quality of life in pediatric focal epilepsy: An exploratory randomized double-blinded sham-controlled trial. Epilepsy & Behavior, 101, 106570. https://doi.org/10.1016/j.yebeh.2019.106570

Niv, S. (2013). Clinical efficacy and potential mechanisms of neurofeedback. Personality and Individual Differences, 54(6), 676–686. https://doi.org/10.1016/j.paid.2012.11.037

Okello, E. J., Abadi, A. M., & Abadi, S. A. (2016). Effects of green and black tea consumption on brain wave activities in healthy volunteers as measured by a simplified electroencephalogram (EEG): A feasibility study. Nutritional Neuroscience, 19(5), 196–205. https://doi.org/10.1179/1476830515Y.0000000008

Oldfield, R. C. (1971). The assessment and analysis of handedness: The Edinburgh inventory. Neuropsychologia, 9, 97–113. Retrieved from http://andersgade.dk/Readings/Oldfield1971.pdf

Ossadtchi, A., Shamaeva, T., Okorokova, E., Moiseeva, V., & Lebedev, M. A. (2017). Neurofeedback learning modifies the incidence rate of alpha spindles, but not their duration and amplitude. Scientific Reports, 7(1), 3772. https://doi.org/10.1038/s41598-017-04012-0

Pacheco, B. (2011). SMR neurofeedback training for cognitive enhancement: The mediating effect of SMR baseline levels (Doctoral dissertation, Anglia Ruskin University). Retrieved from http://arro.anglia.ac.uk/id/eprint/294451

Rasey, H., Lubar, J. F., McIntyre, A., Zoffuto, A., & Abbott, P. L. (1995). EEG biofeedback for the enhancement of attentional processing in normal college students. Journal of Neurotherapy, 1(3), 15–21. https://doi.org/10.1300/J184v01n03_03

Redwood, D. (2000). Essentials of complementary and alternative medicine. The Journal of Alternative and Complementary Medicine, 6(3), 291–294. https://doi.org/10.1089/acm.2000.6.291

Reynolds, W. F. (1958). Acquisition and extinction of the conditioned eyelid response following partial and continuous reinforcement. Journal of Experimental Psychology, 55(4), 335–341. https://doi.org/10.1037/h0042202

Ros, T., Moseley, M. J., Bloom, P. A., Benjamin, L., Parkinson, L. A., & Gruzelier, J. H. (2009). Optimizing microsurgical skills with EEG neurofeedback. BMC Neuroscience, 10(1), 87. https://doi.org/10.1186/1471-2202-10-87

Ros, T., Théberge, J., Frewen, P. A., Kluetsch, R., Densmore, M., Calhoun, V. D., & Lanius, R. A. (2013). Mind over chatter: Plastic up-regulation of the fMRI salience network directly after EEG neurofeedback. NeuroImage, 65, 324–335. https://doi.org/10.1016/j.neuroimage.2012.09.046

Roy, R., de la Vega, R., Jensen, M. P., & Miró, J. (2020). Neurofeedback for pain management: A systematic review. Frontiers in Neuroscience, 14, 671. https://doi.org/10.3389/fnins.2020.00671

Schwartz, M. S., & Andrasik, F. (Eds.). (2017). Biofeedback: A practitioner's guide (4th ed.). New York, NY: Guilford Publications.

Shaker, M. M. (2007). EEG waves classifier using wavelet transform and Fourier transform. International Journal of Medical, Health, Biomedical, Bioengineering and Pharmaceutical Engineering, 1(3), 169¬–174. Retrieved from http://citeseerx.ist.psu.edu/viewdoc/download?doi=

Sherlin, L. H., Arns, M., Lubar, J., Heinrich, H., Kerson, C., Strehl, U., & Sterman, M. B. (2011). Neurofeedback and basic learning theory: Implications for research and practice. Journal of Neurotherapy, 15(4), 292–304. https://doi.org/10.1080/10874208.2011.623089

Sime, A. (2004). Case study of trigeminal neuralgia using neurofeedback and peripheral biofeedback. Journal of Neurotherapy, 8(1), 59–71. https://doi.org/10.1300/J184v08n01_05

Simkin, D. R., Thatcher, R. W., & Lubar, J. (2014). Quantitative EEG and neurofeedback in children and adolescents: Anxiety disorders, depressive disorders, comorbid addiction and attention-deficit/hyperactivity disorder, and brain injury. Child and Adolescent Psychiatric Clinics of North America, 23(3), 427–464. https://doi.org/10.1016/j.chc.2014.03.001

Skinner, B. F. (1953). Science and human behavior. New York: NY: Simon and Schuster.

Sterman, M. B., & Egner, T. (2006). Foundation and practice of neurofeedback for the treatment of epilepsy. Applied Psychophysiology and Biofeedback, 31(1), 21–35. https://doi.org/10.1007/s10484-006-9002-x

Strehl, U. (2014). What learning theories can teach us in designing neurofeedback treatments. Frontiers in Human Neuroscience, 8, 894. https://doi.org/10.3389/fnhum.2014.00894

Sulzer, J., Haller, S., Scharnowski, F., Weiskopf, N., Birbaumer, N., Blefari, M. L., ... Sitaram, R. (2013). Real-time fMRI neurofeedback: Progress and challenges. NeuroImage, 76(1), 386–399. https://doi.org/10.1016/j.neuroimage.2013.03.033

Terborg, J. R., & Miller, H. E. (1978). Motivation, behavior, and performance: A closer examination of goal setting and monetary incentives. Journal of Applied Psychology, 63(1), 29–39. https://doi.org/10.1037/0021-9010.63.1.29

Thompson, L., & Thompson, M. (1998). Neurofeedback combined with training in metacognitive strategies: Effectiveness in students with ADD. Applied Psychophysiology and Biofeedback, 23(4), 243–263. https://doi.org/10.1023/A:1022213731956

Vernon, D., Dempster, T., Bazanova, O., Rutterford, N., Pasqualini, M., & Andersen, S. (2009). Alpha neurofeedback training for performance enhancement: Reviewing the methodology. Journal of Neurotherapy, 13(4), 214–227. https://doi.org/10.1080/10874200903334397

Vernon, D., Egner, T., Cooper, N., Compton, T., Neilands, C., Sheri, A., & Gruzelier, J. (2003). The effect of training distinct neurofeedback protocols on aspects of cognitive performance. International Journal of Psychophysiology, 47(1), 75–85. https://doi.org/10.1016/S0167-8760(02)00091-0

Wagner, A. R. (1961). Effects of amount and percentage of reinforcement and number of acquisition trials on conditioning and extinction. Journal of Experimental Psychology, 62(3), 234–242. https://doi.org/10.1037/h0042251

Watanabe, T., Sasaki, Y., Shibata, K., & Kawato, M. (2017). Advances in fMRI real-time neurofeedback. Trends in Cognitive Sciences, 21(12), 997–1010. https://doi.org/10.1016/j.tics.2017.09.010

Weber, L. A., Ethofer, T., & Ehlis, A.-C. (2020). Predictors of neurofeedback training outcome: A systematic review. NeuroImage: Clinical, 27, 102301. https://doi.org/10.1016/j.nicl.2020.102301

Xiang, M.-Q., Hou, X.-H., Liao, B.-G., Liao, J.-W., & Hu, M. (2018). The effect of neurofeedback training for sport performance in athletes: A meta-analysis. Psychology of Sport and Exercise, 36, 114–122. https://doi.org/10.1016/j.psychsport.2018.02.004

Yoo, S.-S., O'Leary, H. M., Fairneny, T., Chen, N.-K., Panych, L. P., Park, H., & Jolesz, F. A. (2006). Increasing cortical activity in auditory areas through neurofeedback functional magnetic resonance imaging. NeuroReport, 17(12), 1273–1278. https://doi.org/10.1097/01.wnr.0000227996.53540.22

Young, K. D., Zotev, V., Phillips, R., Misaki, M., Yuan, H., Drevets, W. C., & Bodurka, J. (2014). Real-time FMRI neurofeedback training of amygdala activity in patients with major depressive disorder. PLoS ONE, 9(2), e88785. https://doi.org/10.1371/journal.pone.0088785

Yuan, C.-S., & Bieber, E. J. (Eds.). (2003). Textbook of complementary and alternative medicine. New York, NY: Parthenon Publishing/CRC Press.

Yucha, C., & Montgomery, D. (Eds.). (2008). Evidence-based practice in biofeedback and neurofeedback (2nd ed.). Wheat Ridge, CO: Association for Applied Psychophysiology and Biofeedback.

Research Papers