Vagally Mediated Heart Rate Variability: A Risk Factor for Hypertension

  • Spyros Christou Champi Neuroapto
Keywords: Stress, Heart Rate Variability, Hypertention Risk, Central Autonomic Network, biofeedback, cranial electrotherapy stimulation

Abstract

Hypertension is among the leading causes of mortality and an important contributor toward disability-adjusted life years worldwide. Several factors contribute toward individuals’ risk to develop hypertension. Stress is considered an important pathogenic component affecting blood pressure regulation. However, systematic reviews examining the effect of psychosocial stressors and anxiety on hypertension produced spurious results. The observed heterogeneity in the operationalization of stress and subsequent reactivity hindered the characterization of the evidence for the association between exposure, physiological reactivity, and risk for hypertension. This is of paramount importance as physiological reactivity constitutes a biological interface mechanism through which stressors affect blood pressure regulation. The neural substrates of vagally mediated heart rate variability (VM-HRV) indicate that it is able to assimilate such an interfacing mechanism. Large-scale epidemiological studies provided substantial evidence linking decreases in VM-HRV with the development and progression of hypertension, indicating that individuals’ reactivity to stressors, as measured via VM-HRV, increases individuals’ risk for the development and progression of hypertension. As such, VM-HRV can reinforce current screening initiatives and support treatment-related prognosis. Self-regulation techniques, like heart rate variability biofeedback (HRVB), and neuromodulation techniques, like cranial electrotherapy stimulation (CES), are able to enhance VM-HRV and the associated parasympathetic modulation of cardiovascular outcomes, and thus address autonomic imbalances associated with hypertension.

References

Ahern, G. L., Sollers, J. J., Lane, R. D., Labiner, D. M., Herring, A. M., Weinand, M. E., Hutzler, R., & Thayer, J. F. (2001). Heart rate and heart rate variability changes in the intracarotid sodium amobarbital test. Epilepsia, 42(7), 912–921. https://doi.org/10.1046/j.1528-1157.2001.042007912.x

Altemus, M. (2019). Effect of cranial electrical stimulation (CES) on autonomic regulation. U.S National Library of Medicine. https://clinicaltrials.gov/ct2/show/results/NCT02163967

Badoer, E. (2001). Proceedings of the Australian physiological and pharmacological society symposium: The hypothalamus hypothalamic paraventricular nucleus and cardiovascular regulation. Clinical and Experimental Pharmacology and Physiology, 28(1–2), 95–99. https://doi.org/10.1046/j.1440-1681.2001.03413.x

Benarroch, E. E. (1993). The central autonomic network: Functional organization, dysfunction, and perspective. Mayo Clinic Proceedings, 68(10), 988–1001. https://doi.org/10.1016 /S0025-6196(12)62272-1

Boehme, A. K., Esenwa, C., & Elkind, M. S.V. (2017). Stroke risk factors, genetics, and prevention. Circulation Research, 120(3), 472–495. https://doi.org/10.1161 /CIRCRESAHA.116.308398

Briet, M., & Schiffrin, E. L. (2013). Vascular actions of aldosterone. Journal of Vascular Research, 50(2), 89–99. https://doi.org/10.1159/000345243

Brillon, D. J., Zheng, B., Campbell, R. G., & Matthews, D. E. (1995). Effect of cortisol on energy expenditure and amino acid metabolism in humans. American Journal of Physiology–Endocrinology and Metabolism, 268(3), E501–E513. https://doi.org/10.1152/ajpendo.1995.268.3.E501

Brown, E. G., Gallagher, S., & Creaven, A.-M. (2018). Loneliness and acute stress reactivity: A systematic review of psychophysiological studies. Psychophysiology, 55(5), e13031. https://doi.org/10.1111/psyp.13031

Bruno, R. M., Di Pilla, M., Ancona, C., Sørensen, M., Gesi, M., Taddei, S., Munzel, T., & Virdis, A. (2017). Environmental Factors and Hypertension. Current Pharmaceutical Design, 23(22), 3239–3246. https://doi.org/10.2174 /1381612823666170321162233

Cogiamanian, F., Brunoni, A. R., Boggio, P. S., Fregni, F., Ciocca, M., & Priori, A. (2010). Non-invasive brain stimulation for the management of arterial hypertension. Medical Hypotheses, 74(2), 332–336. https://doi.org/10.1016/j.mehy.2009.08.037

Costa Vital, J. E., de Morais Nunes, A., Souza de Albuquerque Cacique New York, B., Araujo de Sousa, B. D., Nascimento, M. F., Formiga, M. F., & Fernandes, A. T. N. S. F. (2021). Biofeedback therapeutic effects on blood pressure levels in hypertensive individuals: A systematic review and meta-analysis. Complementary Therapies in Clinical Practice, 44, 101420. https://doi.org/10.1016/j.ctcp.2021.101420

Cowan, M. J., Pike, K., Burr, R. L., Cain, K. C., & Narayanan, S. B. (1993). Description of time- and frequency-domain-based measures of heart rate variability in individuals taking antiarrhythmics, beta blockers, calcium channel blockers, and/or antihypertensive drugs after sudden cardiac arrest. Journal of Electrocardiology, 26(Suppl. 1–13).

Crosswell, A. D., & Lockwood, K. G. (2020). Best practices for stress measurement: How to measure psychological stress in health research. Health Psychology Open, 7(2). https://doi.org /10.1177/2055102920933072

Cuffee, Y., Ogedegbe, C., Williams, N. J., Ogedegbe, G., & Schoenthaler, A. (2014). Psychosocial risk factors for hypertension: An update of the literature. Current Hypertension Reports, 16(10), 483. https://doi.org/10.1007 /s11906-014-0483-3

Dilgen, J., Tejeda, H. A., & O’Donnell, P. (2013). Amygdala inputs drive feedforward inhibition in the medial prefrontal cortex. Journal of Neurophysiology, 110(1), 221–229. https://doi.org /10.1152/jn.00531.2012

Duggento, A., Bianciardi, M., Passamonti, L., Wald, L. L., Guerrisi, M., Barbieri, R., & Toschi, N. (2016). Globally conditioned Granger causality in brain–brain and brain–heart interactions: A combined heart rate variability/ultra-high-field (7 T) functional magnetic resonance imaging study. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 374(2067), 20150185. https://doi.org/10.1098/rsta.2015.0185

Freel, E. M., & Connell, J. M. C. (2004). Mechanisms of hypertension: The expanding role of aldosterone. Journal of the American Society of Nephrology, 15(8), 1993–2001. https://doi.org/10.1097/01.ASN.0000132473.50966.14

Friedman, B. H., & Thayer, J. F. (1998). Anxiety and autonomic flexibility: A cardiovascular approach. Biological Psychology, 49(3), 303–323. https://doi.org/10.1016/S0301-0511(98)00051-9

Gianaros, P. J., & Wager, T. D. (2015). Brain-body pathways linking psychological stress and physical health. Current Directions in Psychological Science, 24(4), 313–321. https://doi.org/10.1177/0963721415581476

Goit, R. K., & Ansari, A. H. (2016). Reduced parasympathetic tone in newly diagnosed essential hypertension. Indian Heart Journal, 68(2), 153–157. https://doi.org/10.1016 /j.ihj.2015.08.003

Greenhalgh, J., Dickson, R., & Dundar, Y. (2010). Biofeedback for hypertension: A systematic review. Journal of Hypertension, 28(4), 644–652. https://doi.org/10.1097 /HJH.0b013e3283370e20

Guilliams, T. G., & Edwards, L. (2010). Chronic stress and the HPA axis: Clinical assessment and therapeutic considerations. The Standard, 9(2), 1–12. https://www.pointinstitute.org/wp-content/uploads/2012/10 /standard_v_9.2_hpa_axis.pdf

Harbuz, M. S., & Lightman, S. L. (1992). Stress and the hypothalamo-pituitary-adrenal axis: Acute, chronic and immunological activation. Journal of Endocrinology, 134(3), 327–339. https://doi.org/10.1677/joe.0.1340327

Heine, H., & Weiss, M. (1987). Life stress and hypertension. European Heart Journal, 8(Suppl. B), 45–55. https://doi.org /10.1093/eurheartj/8.suppl_B.45

Hu, G., Barengo, N. C., Tuomilehto, J., Lakka, T. A., Nissinen, A., & Jousilahti, P. (2004). Relationship of physical activity and body mass index to the risk of hypertension: A prospective study in Finland. Hypertension, 43(1), 25–30. https://doi.org /10.1161/01.HYP.0000107400.72456.19

Kang, H. W., Kim, H. J., Kim, W. Y., Min, W. K., Min, T. J., Lee, Y. S., & Kim, J. H. (2020). Effects of cranial electrotherapy stimulation on preoperative anxiety and blood pressure during anesthetic induction in patients with essential hypertension. Journal of International Medical Research, 48(8), 300060520939370. https://doi.org/10.1177 /0300060520939370

Khani, S., & Tayek, J. A. (2001). Cortisol increases gluconeogenesis in humans: Its role in the metabolic syndrome. Clinical Science, 101(6), 739–747. https://doi.org /10.1042/cs20010180

Klabunde, R. E. (2021). Cardiovascular physiology concepts (3rd ed.). Netherlands: Wolters Kluwer.

Komesaroff, P. A., Funder, J. W., & Fuller, P. J. (1994). 6 Mineralocorticoid resistance. Baillière’s Clinical Endocrinology and Metabolism, 8(2), 333–355. https://doi.org/10.1016 /s0950-351x(05)80256-3

Kushibiki, M., Yamada, M., Oikawa, K., Tomita, H., Osanai, T., & Okumura, K. (2007). Aldosterone causes vasoconstriction in coronary arterioles of rats via angiotensin II type-1 receptor: Influence of hypertension. European Journal of Pharmacology, 572(2–3), 182–188. https://doi.org/10.1016 /j.ejphar.2007.06.017

Landman, G. W. D., Drion, I., van Hateren, K. J. J., van Dijk, P. R., Logtenberg, S. J. J., Lambert, J., Groenier, K. H., Bilo, H. J. G., & Kleefstra, N. (2013). Device-guided breathing as treatment for hypertension in type 2 diabetes mellitus: A randomized, double-blind, sham-controlled trial. JAMA Internal Medicine, 173(14), 1346–1350. https://doi.org /10.1001/jamainternmed.2013.6883

LeDoux, J. E., Iwata, J., Cicchetti, P., & Reis, D. J. (1988). Different projections of the central amygdaloid nucleus mediate autonomic and behavioral correlates of conditioned fear. The Journal of Neuroscience, 8(7), 2517–2529. https://doi.org/10.1523/JNEUROSCI.08-07-02517.1988

Lehrer, P. M., & Gevirtz, R. (2014). Heart rate variability biofeedback: How and why does it work? Frontiers in Psychology, 5, 756. https://doi.org/10.3389/fpsyg.2014.00756

Liao, D., Cai, J., Barnes, R. W., Tyroler, H. A., Rautaharju, P., Holme, I., & Heiss, G. (1996). Association of cardiac autonomic function and the development of hypertension: The ARIC study. American Journal of Hypertension, 9(12), 1147–1156. https://doi.org/10.1016/s0895-7061(96)00249-x

Linden, W., & Chambers, L. (1994). Clinical effectiveness of non-drug treatment for hypertension: A meta-analysis. Annals of Behavioral Medicine, 16(1), 35–45. https://doi.org/10.1093 /abm/16.1.35

Liu, M.-Y., Li, N., Li, W. A., & Khan, H. (2017). Association between psychosocial stress and hypertension: A systematic review and meta-analysis. Neurological Research, 39(6), 573–580. https://doi.org/10.1080/01616412.2017.1317904

Lynch, S. M., Ward, M., McNulty, H., Angel, C. Z., Horigan, G., Strain, J. J., Purvis, J., Tackett, M., & McKenna, D. J. (2020). Serum levels of miR-199a-5p correlates with blood pressure in premature cardiovascular disease patients homozygous for the MTHFR 677C > T polymorphism. Genomics, 112(1), 669–676. https://doi.org/10.1016/j.ygeno.2019.04.019

Mann, S. J. (2012). Psychosomatic research in hypertension: The lack of impact of decades of research and new directions to consider. The Journal of Clinical Hypertension, 14(10), 657–664. https://doi.org/10.1111/j.1751-7176.2012.00686.x

McGrady, A. (2010). The effects of biofeedback in diabetes and essential hypertension. Cleveland Clinic Journal of Medicine, 77(7 Suppl. 3), S68–S71. https://doi.org/10.3949 /ccjm.77.s3.12

Mohammadi, R., Javanmard, G. H., Alipour, A., & Zare, H. (in press). Effects of mindful breath awareness and muscle relaxation and transcranial electrical stimulation techniques on improving blood pressure status in patients with type 2 diabetes. EXPLORE. https://doi.org/10.1016 /j.explore.2021.05.002

Mussalo, H., Vanninen, E., Ikäheimo, R., Laitinen, T., Laakso, M., Länsimies, E., & Hartikainen, J. (2001). Heart rate variability and its determinants in patients with severe or mild essential hypertension. Clinical Physiology, 21(5), 594–604. https://doi.org/10.1046/j.1365-2281.2001.00359.x

Nagele, E., Jeitler, K., Horvath, K., Semlitsch, T., Posch, N., Herrmann, K. H., Grouven, U., Hermanns, T., Hemkens, L. G., & Siebenhofer, A. (2014). Clinical effectiveness of stress-reduction techniques in patients with hypertension: Systematic review and meta-analysis. Journal of Hypertension, 32(10), 1936–1944. https://doi.org/10.1097 /HJH.0000000000000298

Nakao, M., Yano, E., Nomura, S., & Kuboki, T. (2003). Blood pressure-lowering effects of biofeedback treatment in hypertension: A meta-analysis of randomized controlled trials. Hypertension Research, 26(1), 37–46. https://doi.org/10.1291 /hypres.26.37

Napadow, V., Dhond, R., Conti, G., Makris, N., Brown, E. N., & Barbieri, R. (2008). Brain correlates of autonomic modulation: Combining heart rate variability with fMRI. NeuroImage, 42(1), 169–177. https://doi.org/10.1016 /j.neuroimage.2008.04.238

Natarajan, N., Balakrishnan, A. K., & Ukkirapandian, K. (2014). A study on analysis of Heart Rate Variability in hypertensive individuals. International Journal of Biomedical and Advance Research, 5(2), 109–111. https://doi.org/10.7439 /ijbar.v5i2.659

Nolan, R. P., Floras, J. S., Harvey, P. J., Kamath, M. V., Picton, P. E., Chessex, C., Hiscock, N., Powell, J., Catt, M., Hendrickx, H., Talbot, D., & Chen, M. H. (2010). Behavioral neurocardiac training in hypertension: A randomized, controlled trial. Hypertension, 55(4), 1033–1039. https://doi.org/10.1161 /HYPERTENSIONAHA.109.146233

Ornosa-Martín, G., Fernandez-Ballart, J. D., Ceruelo, S., Ríos, L., Ueland, P. M., Meyer, K., & Murphy, M. M. (2020). Homocysteine, the methylenetetrahydrofolate reductase 677C>T polymorphism and hypertension: Effect modifiers by lifestyle factors and population subgroups. British Journal of Nutrition, 124(1), 69–79. https://doi.org/10.1017 /S0007114520000793

Pal, G. K., Adithan, C., Amudharaj, D., Dutta, T. K., Pal, P., Nandan, P. G., & Nanda, N. (2011). Assessment of sympathovagal imbalance by spectral analysis of heart rate variability in prehypertensive and hypertensive patients in Indian population. Clinical and Experimental Hypertension, 33(7), 478–483. https://doi.org/10.3109 /10641963.2010.549275

Palomba, D., Ghisi, M., Scozzari, S., Sarlo, M., Bonso, E., Dorigatti, F., & Palatini, P. (2011). Biofeedback-assisted cardiovascular control in hypertensives exposed to emotional stress: A pilot study. Applied Psychophysiology and Biofeedback, 36(3), 185–192. https://doi.org/10.1007/s10484-011-9160-3

Park, A. T., Leonard, J. A., Saxler, P. K., Cyr, A. B., Gabrieli, J. D. E., & Mackey, A. P. (2018). Amygdala–medial prefrontal cortex connectivity relates to stress and mental health in early childhood. Social Cognitive and Affective Neuroscience, 13(4), 430–439. https://doi.org/10.1093/scan/nsy017

Player, M. S., & Peterson, L. E. (2011). Anxiety disorders, hypertension, and cardiovascular risk: A review. The International Journal of Psychiatry in Medicine, 41(4), 365–377. https://doi.org/10.2190/PM.41.4.f

Podzolkov, V. I., Mel’nikova, T. S., Suvorova, I. A., Churganova, L. I., & Starovoĭtova, S. P. (1992). [Cranial electrostimulation—A new nondrug method of treating the initial stage of hypertension]. Terapevticheskii Arkhiv, 64(1), 24–27.

Poskotinova, L. V., Demin, D. B., Krivonogova, E. V., Dieva, M. N., & Khasnova, N. M. (2013). [The success of heart rate variability biofeedback parameters in persons with different levels of blood pressure]. Vestnik Rossiiskoi Akademii Meditsinskikh Nauk, 7, 20–23.

Saha, S., Drinkhill, M. J., Moore, J. P., & Batten, T. F. C. (2005). Central nucleus of amygdala projections to rostral ventrolateral medulla neurones activated by decreased blood pressure. The European Journal of Neuroscience, 21(7), 1921–1930. https://doi.org/10.1111/j.1460-9568.2005.04023.x

Schroeder, E. B., Liao, D., Chambless, L. E., Prineas, R. J., Evans, G. W., & Heiss, G. (2003). Hypertension, blood pressure, and heart rate variability: The Atherosclerosis Risk in Communities (ARIC) study. Hypertension, 42(6), 1106–1111. https://doi.org/10.1161/01.HYP.0000100444.71069.73

Schumann, A., de la Cruz, F., Köhler, S., Brotte, L., & Bär, K.-J. (2021). The influence of heart rate variability biofeedback on cardiac regulation and functional brain connectivity. Frontiers in Neuroscience, 15, 691988. https://doi.org/10.3389 /fnins.2021.691988

Selye, H. (1956). The Stress of Life. New York, NY: McGraw-Hill.

Shekhar, A., Sajdyk, T. J., Gehlert, D. R., & Rainnie, D. G. (2003). The amygdala, panic disorder, and cardiovascular responses. Annals of the New York Academy of Sciences, 985(1), 308–325. https://doi.org/10.1111/j.1749-6632.2003.tb07090.x

Siepmann, T., Ohle, P., Sedghi, A., Simon, E., Arndt, M., Pallesen, L.-P., Ritschel, G., Barlinn, J., Reichmann, H., Puetz, V., & Barlinn, K. (2021). Randomized sham-controlled pilot study of neurocardiac function in patients with acute ischaemic stroke undergoing heart rate variability biofeedback. Frontiers in Neurology, 12, 669843. https://doi.org/10.3389/fneur.2021.669843

Singh, A., Babyak, M. A., Nolan, D. K., Brummett, B. H., Jiang, R., Siegler, I. C., Kraus, W. E., Shah, S. H., Williams, R. B., & Hauser, E. R. (2015). Gene by stress genome-wide interaction analysis and path analysis identify EBF1 as a cardiovascular and metabolic risk gene. European Journal of Human Genetics, 23(6), 854–862. https://doi.org/10.1038 /ejhg.2014.189

Singh, J. P., Larson, M. G., Tsuji, H., Evans, J. C., O’Donnell, C. J., & Levy, D. (1998). Reduced heart rate variability and new-onset hypertension: Insights into pathogenesis of hypertension: the Framingham Heart Study. Hypertension, 32(2), 293–297. https://doi.org/10.1161/01.hyp.32.2.293

Smith, M. D., & Maani, C. V. (2020). Norepinephrine. In StatPearls [Internet]. Treasure Island, FL: StatPearls Publishing. https://www.ncbi.nlm.nih.gov/books/NBK537259/

Sparrenberger, F., Cichelero, F. T., Ascoli, A. M., Fonseca, F. P., Weiss, G., Berwanger, O., Fuchs, S. C., Moreira, L. B., & Fuchs, F. D. (2009). Does psychosocial stress cause hypertension? A systematic review of observational studies. Journal of Human Hypertension, 23(1), 12–19. https://doi.org/10.1038/jhh.2008.74

Špinar, J. (2012). Hypertension and ischemic heart disease. Cor et Vasa, 54(11), e433–e438. https://doi.org/10.1016 /j.crvasa.2012.11.002

Task Force of the European Society of Cardiology the North American Society of Pacing Electrophysiology. (1996). Heart rate variability: Standards of measurement, physiological interpretation, and clinical use. Circulation, 93(5), 1043–1065. https://doi.org/10.1161/01.CIR.93.5.1043

Thayer, J. F., Hansen, A. L., Saus-Rose, E., & Johnsen, B. H. (2009). Heart rate variability, prefrontal neural function, and cognitive performance: The neurovisceral integration perspective on self-regulation, adaptation, and health. Annals of Behavioral Medicine, 37(2), 141–153. https://doi.org /10.1007/s12160-009-9101-z

Thayer, J. F., Yamamoto, S. S., & Brosschot, J. F. (2010). The relationship of autonomic imbalance, heart rate variability and cardiovascular disease risk factors. International Journal of Cardiology, 141(2), 122–131. https://doi.org/10.1016 /j.ijcard.2009.09.543

Tsigos, C., & Chrousos, G. P. (2002). Hypothalamic–pituitary–adrenal axis, neuroendocrine factors and stress. Journal of Psychosomatic Research, 53(4), 865–871. https://doi.org /10.1016/S0022-3999(02)00429-4

Vos, T., Lim, S. S., Abbafati, C., Abbas, K. M., Abbasi, M., Abbasifard, M., Abbasi-Kangevari, M., Abbastabar, H., Abd-Allah, F., Abdelalim, A., Abdollahi, M., Abdollahpour, I., Abolhassani, H., Aboyans, V., Abrams, E. M., Abreu, L. G., Abrigo, M. R. M., Abu-Raddad, L. J., Abushouk, A. I., Acebedo, A., … Murray, C. J. L. (2020). Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: A systematic analysis for the Global Burden of Disease Study 2019. The Lancet, 396(10258), 1204–1222. https://doi.org/10.1016/S0140-6736(20)30925-9

Wajngarten, M., & Silva, G. S. (2019). Hypertension and stroke: Update on treatment. European Cardiology Review, 14(2), 111–115. https://doi.org/10.15420/ecr.2019.11.1

Xanthakis, V., & Vasan, R. S. (2013). Aldosterone and the risk of hypertension. Current Hypertension Reports, 15(2), 102–107. https://doi.org/10.1007/s11906-013-0330-y

Xu, Y., Day, T. A., & Buller, K. M. (1999). The central amygdala modulates hypothalamic–pituitary–adrenal axis responses to systemic interleukin-1β administration. Neuroscience, 94(1), 175–183. https://doi.org/10.1016/S0306-4522(99)00311-5

Ziegler, G., Dahnke, R., Yeragani, V. K., & Bär, K.-J. (2009). The relation of ventromedial prefrontal cortex activity and heart rate fluctuations at rest. The European Journal of Neuroscience, 30(11), 2205–2210. https://doi.org/10.1111 /j.1460-9568.2009.07008.x

Published
2021-09-30
Section
Clinical Corner