COVID-19 and the Brain: Infection Mechanisms, Electroencephalographic Findings and Clinical Implications

  • Darius John Herbert Rountree-Harrison Macquarie University
Keywords: COVID-19, long-COVID, electroencephalogram, neurofeedback, neuromodulation

Abstract

The term long-COVID refers to a wide array of psychological impacts arising from infection with the Severe Acute Respiratory Coronavirus 2 (SARS-CoV-2). The virus has been reported to attack the nervous system directly, with nondirect impacts to organs and systems, such as elevated inflammation, blood pressure, and immune responses also damaging the brain. The electroencephalogram (EEG) has been used to image these insults and provides a valuable tool to guide understanding of infection mechanisms and, consequentially, therapeutic intervention. Due to the high likelihood of neurological complications, neurofeedback and other forms of neuromodulation may be particularly well suited to help long-COVID patients recover. However, clinicians providing neuromodulation interventions should be aware of, and take adequate steps to minimize, risks to themselves and others in providing face-to-face services. This review seeks to provide mental health professionals with an overview of the impacts of COVID-19 upon the nervous system, details current EEG findings, and outlines possibly relevant neurofeedback and neuromodulation interventions.

References

Abdo, W. F., Broerse, C. I., Grady, B. P., Wertenbroek, A. A. A. C. M., Vijlbrief, O., Buise, M. P., Beukema, M., van der Kuil, M., Tuladhar, A. M., Meijer, F. J. A., & van der Hoeven, J. G. (2021). Prolonged unconsciousness following severe COVID-19. Neurology, 96(10), 1437–1442. https://doi.org/10.1212/WNL.0000000000011355

Agorastos, A., Kellner, M., Baker, D. G., & Stiedl, O. (2015). Diminished Vagal and/or Increased Sympathetic Activity in Post-Traumatic Stress Disorder. In C. R. Martin, V. R. Preedy, & V. B. Patel (Eds.), Comprehensive guide to post-traumatic stress disorder (pp.1–15). Springer. https://doi.org/10.1007/978-3-319-08613-2_30-1

Ardell, J. L. (2001). Neurohumoral control of cardiac function. In N. Sperelakis, Y. Kurachi, A. Terzic, & M. V. Cohen (Eds.), Heart physiology and pathology (4th ed., pp. 45–59). Academic Press. https://doi.org/10.1016/B978-012656975-9/50005-5

Arns, M., Conners, C. K., & Kraemer, H. C. (2013). A decade of EEG theta/beta ratio research in ADHD: A meta-analysis. Journal of Attention Disorders, 17(5), 374–383. https://doi.org/10.1177/1087054712460087

Arns, M., Gunkelman, J., Olbrich, S., Sander, C., & Hegerl, U. (2011). EEG vigilance and phenotypes in neuropsychiatry: Implications for intervention. In R. Coben & J. R. Evans (Eds.), Neurofeedback and neuromodulation techniques and applications (pp. 79–123). Academic Press. https://doi.org/10.1016/B978-0-12-382235-2.00004-4

Arns, M., Heinrich, H., & Strehl, U. (2014). Evaluation of neurofeedback in ADHD: The long and winding road. Biological Psychology, 95, 108–115. https://doi.org/10.1016/j.biopsycho.2013.11.013

Australian Department of Health. (2021). People at higher risk of coronavirus (COVID-19). Health News. https://www.health.gov.au/news/health-alerts/novel-coronavirus-2019-ncov-health-alert/advice-for-people-at-risk-of-coronavirus-covid-19

Australian Institute of Health and Welfare. (2021). Mental health services in Australia. https://www.aihw.gov.au/reports/mental-health-services/mental-health-services-in-australia/report-contents/mental-health-impact-of-covid-19

Ayers, M. E. (1995). EEG neurofeedback to bring individuals out of level 2 coma. Biofeedback & Self-Regulation, 20(3), 304–305.

Ayers, M. E., Sams, M. W., & Sterman, M. B. (2000). When to inhibit EEG activity instead of reinforcing and inhibiting simultaneously. Journal of Neurotherapy, 4(1), 83–93. https://doi.org/10.1300/J184v04n01_10

Balcombe, L., & De Leo, D. (2020). An integrated blueprint for digital mental health services amidst COVID-19. JMIR Mental Health, 7(7), e21718. https://doi.org/10.2196/21718

Bartsch, T., & Wulff, P. (2015). The hippocampus in aging and disease: From plasticity to vulnerability. Neuroscience, 309, 1–16. https://doi.org/10.1016/j.neuroscience.2015.07.084

Bearden, T. S., Cassisi, J. E., & Pineda, M. (2003). Neurofeedback training for a patient with thalamic and cortical infarctions. Applied Psychophysiology and Biofeedback, 28(3), 241–253. https://doi.org/10.1023/a:1024689315563

Beck, R. W., Laugharne, J., Laugharne, R., Woldman, W., McLean, B., Mastropasqua, C., Jorge, R., & Shankar, R. (2017). Neuroscience and Biobehavioral Reviews Abnormal cortical asymmetry as a target for neuromodulation in neuropsychiatric disorders : A narrative review and concept proposal. Neuroscience & Biobehavioral Reviews, 83, 21–31. https://doi.org/10.1016/j.neubiorev.2017.09.025

Benz, N., Hatz, F., Bousleiman, H., Ehrensperger, M. M., Gschwandtner, U., Hardmeier, M., Ruegg, S., Schindler, C., Zimmermann, R., Monsch, A. U., & Fuhr, P. (2014). Slowing of EEG background activity in Parkinson’s and Alzheimer’s disease with early cognitive dysfunction. Frontiers in Aging Neuroscience, 6, 314. https://doi.org/10.3389/fnagi.2014.00314

Berridge, C. W., Schmeichel, B. E., & España, R. A. (2012). Noradrenergic modulation of wakefulness/arousal. Sleep Medicine Reviews, 16(2), 187–197. https://doi.org/10.1016/j.smrv.2011.12.003

Bodro, M., Compta, Y., & Sánchez-Valle, R. (2021). Presentations and mechanisms of CNS disorders related to COVID-19. Neurology, Neuroimmunology & Neuroinflammation, 8(1), e923. https://doi.org/10.1212/NXI.0000000000000923

Bolay, H., & Moskowitz, M. A. (2005). The emerging importance of cortical spreading depression in migraine headache. Revue Neurologique, 161(6–7), 655–657. https://doi.org/10.1016/S0035-3787(05)85108-2

Bounias, M., Laibow, R. E., Stubblebine, A. N., Sandground, H., & Bonaly, A. (2002). EEG-neurobiofeedback treatment of patients with brain injury part 4: Duration of treatments as a function of both the initial load of clinical symptoms and the rate of rehabilitation. Journal of Neurotherapy, 6(1), 23–28. https://doi.org/10.1300/J184v06n01_03

Budzynski, T. H., Budzynski, H. K., Evans, J., & Abarbanel, A. (2009). Introduction to quantitative EEG and neurofeedback: Advanced theory and applications. Academic Press. https://www.sciencedirect.com/science/book/9780123745347

Cassano, P., Petrie, S. R., Hamblin, M. R., Henderson, T. A., & Iosifescu, D. V. (2016). Review of transcranial photobiomodulation for major depressive disorder: Targeting brain metabolism, inflammation, oxidative stress, and neurogenesis. Neurophotonics, 3(3), 031404. https://doi.org/10.1117/1.NPh.3.3.031404

Cassia, M. A., Casazza, R., Napodano, P., & Cozzolino, M. (2021). COVID-19 infection and acute kidney injury: Cause or complication? Blood Purification, 10–13. https://doi.org/10.1159/000516336

Ceban, F., Nogo, D., Carvalho, I. P., Lee, Y., Nasri, F., Xiong, J., Lui, L. M. W., Subramaniapillai, M., Gill, H., Liu, R. N., Joseph, P., Teopiz, K. M., Cao, B., Mansur, R. B., Lin, K., Rosenblat, J. D., Ho, R. C., & McIntyre, R. S. (2021). Association between mood disorders and risk of COVID-19 infection, hospitalization, and death: A systematic review and meta-analysis. JAMA Psychiatry, 78(10), 1079–109. https://doi.org/10.1001/jamapsychiatry.2021.1818

Chang, C., Metzger, C. D., Glover, G. H., Duyn, J. H., Heinze, H.-J., & Walter, M. (2013). Association between heart rate variability and fluctuations in resting-state functional connectivity. NeuroImage, 68, 93–104. https://doi.org/10.1016/j.neuroimage.2012.11.038

Chang, W.-L., Lee, J.-T., Li, C.-R., Davis, A. H. T., Yang, C.-C., & Chen, Y.-J. (2019). Effects of heart rate variability biofeedback in patients with acute ischemic stroke: A randomized controlled trial. Biological Research for Nursing, 22(1), 34–44. https://doi.org/10.1177/1099800419881210

Charles, A. C., & Baca, S. M. (2013). Cortical spreading depression and migraine. Nature Reviews Neurology, 9(11), 637–644. https://doi.org/10.1038/nrneurol.2013.192

Cheng, Q., Yang, Y., & Gao, J. (2020). Infectivity of human coronavirus in the brain. EBioMedicine, 56, 102799. https://doi.org/10.1016/j.ebiom.2020.102799

Cho, H.-Y., Kim, K., Lee, B., & Jung, J. J. (2015). The effect of neurofeedback on a brain wave and visual perception in stroke: A randomized control trial. Journal of Physical Therapy Science, 27(3), 673–676. https://doi.org/10.1589/jpts.27.673

Chrousos, G. P. (2009). Stress and disorders of the stress system. Nature Reviews Endocrinology, 5(7), 374–381. https://doi.org/10.1038/nrendo.2009.106

Cutsforth-Gregory, J. K., & Benarroch, E. E. (2017). Nucleus of the solitary tract, medullary reflexes, and clinical implications. Neurology, 88(12), 1187–1196. https://doi.org/10.1212/WNL.0000000000003751

Dampney, R. A. L. (2016). Central neural control of the cardiovascular system: Current perspectives. Advances in Physiology Education, 40(3), 283–296. https://doi.org/10.1152/advan.00027.2016

Davis, C., Logan, N., Tyson, G., Orton, R., Harvey, W., Perkins, J., The COVID-19 Genomics UK (COG-UK) Consortium, Peacock, T. P., Barclay, W. S., Cherepanov, P., Palmarini, M., Murcia, P. R., Patel, A. H., Robertson, D. L., Thomson, E. C., & Willett, B. J. (2021). Reduced neutralization of the Delta (B.1.617.2) SARS-CoV-2 variant of concern following vaccination. medRxiv, 2021.06.23.21259327. https://doi.org/10.1101/2021.06.23.21259327

De La Torre, J. C. (2017). Treating cognitive impairment with transcranial low level laser therapy. Journal of Photochemistry & Photobiology B: Biology, 168, 149–155. https://doi.org/10.1016/j.jphotobiol.2017.02.008

De Marco, M. & Venneri, A. (2018). Volume and connectivity of the ventral tegmental area are linked to neurocognitive signatures of Alzheimer’s disease in humans. Journal of Alzeimer’s Disease, 63, 167–180. https://doi.org/10.3233/JAD-171018

Drenckhahn, C., Winkler, M. K. L., Major, S., Scheel, M., Kang, E.-J., Pinczolits, A., Grozea, C., Hartings, J. A., Woitzik, J., & Dreier, J. P. (2012). Correlates of spreading depolarization in human scalp electroencephalography. Brain, 135(3), 853–868. https://doi.org/10.1093/brain/aws010

DuBrow, S., & Davachi, L. (2016). Temporal binding within and across events. Neurobiology of Learning and Memory, 134(Part A), 107–114. https://doi.org/10.1016/j.nlm.2016.07.011

Duff, J. (2016). The usefulness of quantitative EEG (QEEG) and neurotherapy in the assessment and treatment of post-concussion syndrome. Clinical EEG and Neuroscience, 35(4), 198–209. https://doi.org/10.1177/155005940403500410

Dunkley, B. T., Doesburg, S. M., Sedge, P. A., Grodecki, R. J., Shek, P. N., Pang, E. W., & Taylor, M. J. (2014). Resting-state hippocampal connectivity correlates with symptom severity in post-traumatic stress disorder. NeuroImage: Clinical, 5, 377–384. https://doi.org/10.1016/j.nicl.2014.07.017

Egner, T., & Sterman, M. B. (2006). Neurofeedback treatment of epilepsy: From basic rationale to practical application. Expert Review of Neurotherapeutics, 6(2), 247–257. https://doi.org/10.1586/14737175.6.2.247

Elbaum, J., & Benson, D. M. (2007). Acquired brain injury: An integrative neuro-rehabilitation approach. New York, NY: Springer. https://doi.org/10.1007/978-0-387-37575-5

Evans, J. R. (Ed.). (2007). Handbook of neurofeedback: Dynamics and clinical applications (1st ed.). Boca Raton, FL: CRC Press. https://doi.org/10.1201/b14658

Fanselow, M. S., & Dong, H.-W. (2010). Are the dorsal and ventral hippocampus functionally distinct structures? Neuron, 65(1), 7–19. https://doi.org/10.1016/j.neuron.2009.11.031

Farinholt, T., Doddapaneni, H., Qin, X., Menon, V., Meng, Q., Metcalf, G., Chao, H., Gingras, M.-C, Farinholt, P., Agrawal, C., Muzny, D. M., Piedra, P. A., Gibbs, R. A., & Petrosino, J. (2021). Transmission event of SARS-CoV-2 Delta variant reveals multiple vaccine breakthrough infections. medRxiv, 2021.06.28.2125878. https://doi.org/10.1101/2021.06.28.21258780

Fink, T. E., & Hagen, T. A. (2012). Use of a simple BrainMaster EEG training protocol to facilitate cognitive and physical recovery of a 22-month-old child suffering a SIDS-related anoxic injury: A case study (pp. 1–11). http://www.brainmaster.com/tfc/index_files/Publications/2015 Acorn_Health_Brainmaster_Study.pdf

Flamand, M., Perron, A., Buron, Y., & Szurhaj, W. (2020). Pay more attention to EEG in COVID-19 pandemic. Clinical Neurophysiology, 131(8), 2062–2064. https://doi.org/10.1016/j.clinph.2020.05.011

Frank, E., & Landgraf, R. (2008). The vasopressin system — From antidiuresis to psychopathology. European Journal of Pharmacology, 583(2–3), 226–242. https://doi.org/10.1016/j.ejphar.2007.11.063

Galanopoulou, A. S., Ferastraoaru, V., Correa, D. J., Cherian, K., Duberstein, S., Gursky, J., Hanumanthu, R., Hung, C., Molinero, I., Khodakivska, O., Legatt, A. D., Patel, P., Rosengard, J., Rubens, E., Sugrue, W., Yozawitz, E., Mehler, M. F., Ballaban-Gil, K., Haut, S. R., Moshé, S. L., & Boro, A. (2020). EEG findings in acutely ill patients investigated for SARS-CoV-2/COVID-19: A small case series preliminary report. Epilepsia Open, 5(2), 314–324. https://doi.org/10.1002/epi4.12399

Gevensleben, H., Albrecht, B., Lütcke, H., Auer, T., Dewiputri, W. I., Schweizer, R., Moll, G., Heinrich, H., & Rothenberger, A. (2014). Neurofeedback of slow cortical potentials: Neural mechanisms and feasibility of a placebo-controlled design in healthy adults. Frontiers in Human Neuroscience, 8, 990, 1–13. https://doi.org/10.3389/fnhum.2014.00990

Gilbert, C. (2003). Clinical applications of breathing regulation: Beyond anxiety management. Behavior Modification, 27(5), 692–709. https://doi.org/10.1177/0145445503256322

González-Alonso, J. (2012). Human thermoregulation and the cardiovascular system. Experimental Physiology, 97(3), 340–346. https://doi.org/10.1113/expphysiol.2011.058701

Gonzalez-Lima, F., & Barrett, D. W. (2014). Augmentation of cognitive brain functions with transcranial lasers. Frontiers in Systems Neuroscience, 8, 36, 1–4. https://doi.org/10.3389/fnsys.2014.00036

Gonzalez-Lima, F., Barksdale, B. R., & Rojas, J. C. (2014). Mitochondrial respiration as a target for neuroprotection and cognitive enhancement. Biochemical Pharmacology, 88(4), 584–593. https://doi.org/10.1016/j.bcp.2013.11.010

Gunn, B. G., & Baram, T. Z. (2017). Stress and seizures: Space, time and hippocampal circuits. Trends in Neurosciences, 40(11), 667–679. https://doi.org/10.1016/j.tins.2017.08.004

Hagedorn, D. (2014). Infection risk mitigation for biofeedback providers. Biofeedback, 42(3), 93–95. https://doi.org/10.5298/1081-5937-42.3.06

Hamblin, M. R. (2016). Shining light on the head: Photobiomodulation for brain disorders. BBA Clinical, 6, 113–124. https://doi.org/10.1016/j.bbacli.2016.09.002

Hamblin, M. R. (2019). Photobiomodulation for Alzheimer’s disease: Has the light dawned? Photonics, 6(3), 77. https://doi.org/10.3390/photonics6030077

Hammond, D. C. (2005). Temporal lobes and their importance in neurofeedback. Journal of Neurotherapy, 9(1), 67–88. https://doi.org/10.1300/J184v09n01_08

Hammond, D. C. (2007). Can LENS neurofeedback treat anosmia resulting from a head injury? Journal of Neurotherapy, 11(1), 57–62. https://doi.org/10.1300/J184v11n01_06

Hammond, D. C. (2011). What is neurofeedback: An update. Journal of Neurotherapy, 15(4), 305–336. https://doi.org/10.1080/10874208.2011.623090

Hampshire, A., Trender, W., Chamberlain, S. R., Jolly, A. E., Grant, J. E., Patrick, F., Mazibuko, N., Williams, S. C. R., Barnby, J. M., Hellyer, P. & Mehta, M. A. (2021). Cognitive deficits in people who have recovered from COVID-19. EClinicalMedicine, 39, 101044. https://doi.org/10.1016/j.eclinm.2021.101044

Henry, D., Jones, M., Stehlik, P., & Glasziou, P. (2021). Effectiveness of COVID-19 vaccines: Findings from real world studies. The Medical Journal of Australia, 1505, 1–10. https://www.mja.com.au/journal/2021/effectiveness-covid-19-vaccines-findings-real-world-studies

Huston, J. M., & Tracey, K. J. (2015). The pulse of inflammation: Heart rate variability, the cholinergic anti-inflammatory pathway, and implications for therapy. Journal of Internal Medicine, 269(1), 45–53. https://doi.org/10.1111/j.1365-2796.2010.02321.x

Inui, K., Motomura, E., Kaige, H., & Nomura, S. (2001). Temporal slow waves and cerebrovascular diseases. Psychiatry and Clinical Neurosciences, 55(5), 525–531. https://doi.org/10.1046/j.1440-1819.2001.00900.x

Isokawa-Akesson, M., Wilson, C. L., & Babb, T. L. (1989). Inhibition in synchronously firing human hippocampal neurons. Epilepsy Research, 3(3), 236–247. https://doi.org/10.1016/0920-1211(89)90030-2

Johnstone, J., Gunkelman, J., & Lunt, J. (2005). Clinical database development: Characterization of EEG phenotypes. Clinical EEG and Neuroscience, 36(2), 99–107. httpa://doi.org/10.1177/155005940503600209

Jürgens, U. (2002). Neural pathways underlying vocal control. Neuroscience & Biobehavioral Reviews, 26(2), 235–258. https://doi.org/10.1016/S0149-7634(01)00068-9

Karki, R., Sharma, B. R., Tuladhar, S., Williams, E. P., Zalduondo, L., Samir, P., Zheng, M., Sundaram, B., Banoth, B., Malireddi, R. K. S., Schreiner, P., Neale, G., Vogel, P., Webby, R., Jonsson, C. B., & Kanneganti, T.-D. (2020). Synergism of TNF- a and IFN- g triggers inflammatory cell death , tissue damage, and mortality in SARS-CoV-2 infection and cytokine shock syndromes. Cell, 184(1), 149–168. https://doi.org/10.1016/j.cell.2020.11.025

Kazemian, N., Mahmoudi, M., Halperin, F., Wu, J. C., & Pakpour, S. (2020). Gut microbiota and cardiovascular disease: Opportunities and challenges. Microbiome, 8, 36, 1–17. https://doi.org/10.1186/s40168-020-00821-0

Keller, I., & Garbacenkaite, R. (2015). Neurofeedback in three patients in the state of unresponsive wakefulness. Applied Psychophysiology and Biofeedback, 40, 349–356. https://doi.org/10.1007/s10484-015-9296-7

Klok, F. A., Kruip, M. J. H. A., van der Meer, N. J. M., Arbous, M. S., Gommers, D. A. M. P. J., Kant, K. M., Kaptein, F. H. J., van Paassen, J., Stals, M. A. M., Huisman, M. V, & Endeman, H. (2020). Incidence of thrombotic complications in critically ill ICU patients with COVID-19. Thrombosis Research, 191, 145–147. https://doi.org/10.1016/j.thromres.2020.04.013

Kober, S. E., Schweiger, D., Witte, M., Reichert, J. L., Grieshofer, P., Neuper, C., & Wood, G. (2015). Specific effects of EEG based neurofeedback training on memory functions in post-stroke victims. Journal of NeuroEngineering and Rehabilitation, 12, 107, 1–13. https://doi.org/10.1186/s12984-015-0105-6

Koberda, J. L. (2014). Z-Score LORETA neurofeedback as a potential therapy in cognitive dysfunction and dementia. Journal of Psychology & Clinical Psychiatry, 1(6), 00037, 1–11. https://doi.org/10.15406/jpcpy.2014.01.00037

Koberda, J. L. (2015). Traumatic brain injury: Is neurofeedback the best available therapy? Journal of Neurology and Neurobiology, 1(3), 2–3. https://doi.org/10.16966/2379-7150.110

Koberda, J. L., & Stodolska-Koberda, U. (2014). Z-score LORETA neurofeedback as a potential rehabilitation modality in patients with CVA. Journal of Neurology and Stroke, 1(5), 00029, 1–5. https://doi.org/10.15406/jnsk.2014.01.00029

Koch, G., Motta, C., Bonnì, S., Pellicciari, M. C., Picazio, S., Casula, E. P., Maiella, M., Di Lorenzo, F., Ponzo, V., Ferrari, C., Scaricamazza, E., Caltagirone, C., & Martorana, A. (2020). Effect of rotigotine vs placebo on cognitive functions among patients with mild to moderate Alzheimer disease: A randomized clinical trial. JAMA Network Open, 3(7), e2010372, 1–12. https://doi.org/10.1001/jamanetworkopen.2020.10372

Kopańska, M., Banaś-Zabczyk, A., Łagowska, A., Kuduk, B., & Szczygielski, J. (2021). Changes in EEG recordings in COVID-19 patients as a basis for more accurate QEEG diagnostics and EEG neurofeedback therapy: A systematic review. Journal of Clinical Medicine, 10(6), 1300. https://doi.org/10.3390/jcm10061300

Kotchoubey, B., Strehl, U., Uhlmann, C., Holzapfel, S., König, M., Fröscher, W., Blankenhorn, V., & Birbaumer, N. (2001). Modification of slow cortical potentials in patients with refractory epilepsy: A controlled outcome study. Epilepsia, 42(3), 406–416. https://doi.org/10.1046/j.1528-1157.2001.22200.x

Krasniqi, S., & Daci, A. (2019). Role of the angiotensin pathway and its target therapy in epilepsy management. International Journal of Molecular Sciences, 20(3), 726. https://doi.org/10.3390/ijms20030726

Kromenacker, B. W., Sanova, A. A., Marcus, F. I., Allen, J. J. B., & Lane, R. D. (2018). Vagal mediation of low-frequency heart rate variability during slow yogic breathing. Psychosomatic Medicine, 80(6), 581–587. https://doi.org/10.1097/PSY.0000000000000603

Kubota, T., Gajera, P. K., & Kuroda, N. (2021). Meta-analysis of EEG findings in patients with COVID-19. Epilepsy & Behavior, 115, 107682. https://doi.org/10.1016/j.yebeh.2020.107682

Kumral, D., Schaare, H. L., Beyer, F., Reinelt, J., Uhlig, M., Liem, F., Lampe, L., Babayan, A., Reiter, A., Erbey, M., Roebbig, J., Loeffler, M., Schroeter, M. L., Husser, D., Witte, A. V, Villringer, A., & Gaebler, M. (2019). The age-dependent relationship between resting heart rate variability and functional brain connectivity. NeuroImage, 185, 521–533.. https://doi.org/10.1016/j.neuroimage.2018.10.027

Larsen, P. D., Tzeng, Y. C., Sin, P. Y. W., & Galletly, D. C. (2010). Respiratory sinus arrhythmia in conscious humans during spontaneous respiration. Respiratory Physiology & Neurobiology, 174(1–2), 111–118. https://doi.org/10.1016/j.resp.2010.04.021

Lechan, R. M., & Toni, R. (2016). Functional anatomy of the hypothalamus and pituitary. In K. R. Feingold, B. Anawalt, A. Boyce, G. Chrousos, W. W. de Herder, K. Dhatariya, K. Dungan, J. M. Hershman, J. Hofland, S. Kalra, G. Kaltsas, C. Koch, P. Kopp, M. Korbonits, C. S. Kovacs, W. Kuohung, B. Laferrère, M. Levy, E. A. McGee, R. McLachlan, J. E. Morley, M. New, J. Purnell, R. Sahay, F. Singer, M. A. Sperling, C. A. Stratakis, D. L. Trence, D. P. Wilson (Eds.), Endotext. South Dartmouth (MA): MDText.com, Inc. http://www.ncbi.nlm.nih.gov/pubmed/25905349

Lehrer, P. M., & Gevirtz, R. (2014). Heart rate variability biofeedback: How and why does it work? Frontiers in Psychology, 5, 756, 1–9. https://doi.org/10.3389/fpsyg.2014.00756

Liang, X., Zou, Q., He, Y., & Yang, Y. (2013). Coupling of functional connectivity and regional cerebral blood flow reveals a physiological basis for network hubs of the human brain. Proceedings of the National Academy of Sciences of the United States of America, 110(5), 1929–1934. https://doi.org/10.1073/pnas.1214900110

Liotta, E. M., Batra, A., Clark, J. R., Shlobin, N. A., Hoffman, S. C., Orban, Z. S., & Koralnik, I. J. (2020). Frequent neurologic manifestations and encephalopathy-associated morbidity in Covid-19 patients. Annals of Clinical and Translational Neurology, 7(11), 2221–2230. https://doi.org/10.1002/acn3.51210

Llitjos, J.-F., Leclerc, M. Chochois, C., Monsallier, J.-M., Ramakers, M., Auvray, M., & Merouani, K. (2020). High incidence of venous thromboembolic events in anticoagulated severe COVID-19 patients. Journal of Thrombosis and Haemostasis, 18(7), 1743–1746. https://doi.org/10.1111/jth.14869

Marcus, E. M., & Jacobson, S., & Curtis, B. (2003). Integrated neuroscience: A clinical problem solving approach (1st ed.). Boston, MA: Springer. https://doi.org/10.1007/978-1-4615-1077-2

Marshall, M. (2020). How COVID-19 can damage the brain. Nature, 585(17 September), 342–343. https://doi.org/https://doi.org/10.1038/d41586-020-02599-5

Mather, M., & Thayer, J. F. (2018). How heart rate variability affects emotion regulation brain networks. Current Opinion in Behavioral Sciences, 19, 98–104. https://doi.org/10.1016/j.cobeha.2017.12.017

Mayer, K. N., Ghadri, J.-R, Jaguszewski, M., Scherff, F., Saguner, A. M., Kazemian, E., Baumann, C. R., Jenewein, J., Tsakiris, M., Lüscher, T. F., Brugger, P., & Templin, C. (2016). Takotsubo syndrome — A close connection to the brain: A prospective study investigating neuropsychiatric traits. IJC Metabolic & Endocrine, 12, 36–41. https://doi.org/10.1016/j.ijcme.2016.06.001

Menon, V. (2011). Large-scale brain networks and psychopathology: A unifying triple network model. Trends in Cognitive Sciences, 15(10), 483–506. https://doi.org/10.1016/j.tics.2011.08.003

Moore, N. Z., Lempka, S. F., & Machado, A. (2014). Central neuromodulation for refractory pain. Neurosurgery Clinics of North America, 25(1), 77–83. https://doi.org/10.1016/j.nec.2013.08.011

Morales-Quezada, L., Martinez, D., El-Hagrassy, M. M., Kaptchuk, T. J., Sterman, M. B., & Yeh, G. Y. (2019). Neurofeedback impacts cognition and quality of life in pediatric focal epilepsy: An exploratory randomized double-blinded sham-controlled trial. Epilepsy & Behavior, 101, 106570. https://doi.org/10.1016/j.yebeh.2019.106570

Moreira, M. S., Velasco, I. T., Ferreira, L. S., Ariga, S. K. K., Abatepaulo, F., Grinberg, L. T., & Marques, M. M. (2011). Effect of laser phototherapy on wound healing following cerebral ischemia by cryogenic injury. Journal of Photochemistry and Photobiology, B: Biology, 105(3), 207–215. https://doi.org/10.1016/j.jphotobiol.2011.09.005

Moss, D., & Shaffer, F. (2017). The application of heart rate variability biofeedback to medical and mental health disorders. Biofeedback, 45(1), 2–8. https://doi.org/10.5298/1081-5937-45.1.03

Motomura, E., Inui, K., Shiroyama, T., Nakagawa, M., Nakase, S., & Okazaki, Y. (2003). Is temporal slow wave on EEG a useful diagnostic tool in vascular depression? Psychiatry and Clinical Neurosciences, 57(6), 610–611. https://doi.org/10.1046/j.1440-1819.2003.01178.x

Mottaz, A., Solcà, M., Magnin, C., Corbet, T., Schnider, A., & Guggisberg, A. G. (2015). Neurofeedback training of alpha-band coherence enhances motor performance. Clinical Neurophysiology, 126(9), 1754–1760. https://doi.org/10.1016/j.clinph.2014.11.023

Naeser, M. A., Martin, P. I., Ho, M. D., Krengel, M. H., Bogdanova, Y., Knight, J. A., Yee, M. K., Zafonte, R., Frazier, J., Hamblin, M. R., & Koo, B.-B. (2016). Transcranial, red/near-infrared light-emitting diode therapy to improve cognition in chronic traumatic brain injury. Photomedicine and Laser Surgery, 34(12), 610–626. https://doi.org/10.1089/pho.2015.4037

Naeser, M. A., Saltmarche, A. E., Krengel, M. H., Hamblin, M. R., & Knight, J. A. (2010). Transcranial LED therapy for cognitive dysfunction in chronic, mild traumatic brain injury: Two case reports. In M. R. Hamblin, R. W. Waynant, & J. Anders (Eds.), Mechanisms for Low-Light Therapy V (Proceedings Vol. 7552). Society of Photo-optical Instrumentation Engineers. https://doi.org/10.1117/12.842510

Naeser, M. A., Zafonte, R., Krengel, M. H., Martin, P. I., Frazier, J., Hamblin, M. R., Knight, J. A., Meehanill, W. P., & Baker, E. H. (2014). Significant improvements in cognitive performance post-transcranial, red/near-infrared light-emitting diode treatments in chronic, mild traumatic brain injury: Open-protocol study. Journal of Neurotrauma, 31(11), 1008–1017. https://doi.org/10.1089/neu.2013.3244

Nakahara, S., Adachi, M., Ito, H., Matsumoto, M., Tajinda, K., & van Erp, T. G. M. (2018). Hippocampal pathophysiology: Commonality shared by temporal lobe epilepsy and psychiatric disorders. Neuroscience Journal, 2018, 4852359. https://doi.org/10.1155/2018/4852359

Nampoothiri, S., Sauve, F., Ternier, G., Fernandois, D., Coelho, C., Imbernon, M., Deligia, E., Perbet, R., Florent, V., Baroncini, M., Pasquier, F., Trottein, F., Maurage, C.-A., Mattot, V., Giacobini, P., Rasika, S., & Prevot, V. (2020). The hypothalamus as a hub for SARS-CoV-2 brain infection and pathogenesis. bioRxiv, 2020.06.08.139329. https://doi.org/10.1101/2020.06.08.139329

Nattie, E., & Li, A. (2012). Central chemoreceptors: Locations and functions. Comprehensive Physiology, 2(1), 221–254. https://doi.org/10.1002/cphy.c100083

Ni, W., Yang, X., Yang, D., Bao, J., Li, R., Xiao, Y., Hou, C., Wang, H., Liu, J., Yang, D., Xu, Y., Cao, Z., & Gao, Z. (2020). Role of angiotensin-converting enzyme 2 (ACE2) in COVID-19. Critical Care, 24, 422, 1–10. https://doi.org/10.1186/s13054-020-03120-0

Nicola, S. M. (2007). The nucleus accumbens as part of a basal ganglia action selection circuit. Psychopharmacology, 191(3), 521–550. https://doi.org/10.1007/s00213-006-0510-4

Niv, S. (2013). Clinical efficacy and potential mechanisms of neurofeedback. Personality and Individual Differences, 54(6), 676–686. https://doi.org/10.1016/j.paid.2012.11.037

Noorimotlagh, Z., Mirzaee, S. A., Jaafarzadeh, N., Maleki, M., Kalvandi, G., & Karami, C. (2021). A systematic review of emerging human coronavirus (SARS-CoV-2) outbreak: Focus on disinfection methods, environmental survival, and control and prevention strategies. Environmental Science and Pollution Research, 28, 1–15. https://doi.org/10.1007/s11356-020-11060-z

Nunes-Vaz, R. A., & Macintyre, C. R. (2021). Observations on the current outbreak of the SARS-CoV-2 Delta variant in Sydney. Global Biosecurity, 3(1), 2–4. http://doi.org/10.31646/gbio.121

Odriozola, A., Ortega, L., Martinez, L., Odriozola, S., Torrens, A., Corroleu, D., Martínez, S., Ponce, M., Meije, Y., Presas, M., Duarte, A., Odriozola, M. B., & Malik, R. A. (2020). Widespread sensory neuropathy in diabetic patients hospitalized with severe COVID-19 infection. Diabetes Research and Clinical Practice, 172, 108631. https://doi.org/10.1016/j.diabres.2020.108631

Olliaro, P., Torreele, E., & Vaillant, M. (2021). COVID-19 vaccine efficacy and effectiveness — The elephant (not) in the room. The Lancet Microbe, 2(7), e279–e280. https://doi.org/10.1016/S2666-5247(21)00069-0

Omejc, N., Rojc, B., Battaglini, P. P., & Marusic, U. (2019). Review of the therapeutic neurofeedback method using electroencephalography: EEG neurofeedback. Bosnian Journal of Basic Medical Sciences, 19(3), 213–220. https://doi.org/10.17305/bjbms.2018.3785

Panariello, F., Cellini, L., Speciani, M., De Ronchi, D., & Atti, A. R. (2020). How does SARS-CoV-2 affect the central nervous system? A working hypothesis. Frontiers in Psychiatry, 11, 582345. https://doi.org/10.3389/fpsyt.2020.582345

Park, G., & Thayer, J. F. (2014). From the heart to the mind: Cardiac vagal tone modulates top-down and bottom-up visual perception and attention to emotional stimuli. Frontiers in Psychology, 5, 278, 1–8. https://doi.org/10.3389/fpsyg.2014.00278

Perna, G., Riva, A., Defillo, A., Sangiorgio, E., Nobile, M., & Caldirola, D. (2019). Heart rate variability: Can it serve as a marker of mental health resilience? Journal of Affective Disorders, 263, 754–761. https://doi.org/10.1016/j.jad.2019.10.017

Persson, P. B., & Kirchheim, H. R. (1991). Baroreceptor reflexes: Integrative functions and clinical aspects. Springer. https://doi.org/10.1007/978-3-642-76366-3

Peters, S. K., Dunlop, K., & Downar, J. (2016). Cortico-striatal-thalamic loop circuits of the salience network: A central pathway in psychiatric disease and treatment. Frontiers in Systems Neuroscience, 10, 104. https://doi.org/10.3389/fnsys.2016.00104

Petra, A. I., Panagiotidou, S., Hatziagelaki, E., Stewart, J. M., Conti, P., & Theoharides, T. C. (2015). Gut-microbiota-brain axis and its effect on neuropsychiatric disorders with suspected immune dysregulation. Clinical Therapeutics, 37(5), 984–995. https://doi.org/10.1016/j.clinthera.2015.04.002

Pichiorri, F., Morone, G., Petti, M., Toppi, J., Pisotta, I., Molinari, M., Paolucci, S., Inghilleri, M., Astolfi, L., Cincotti, F., & Mattia, D. (2015). Brain–computer interface boosts motor imagery practice during stroke recovery. Annals of Neurology, 77(5), 851–865. https://doi.org/10.1002/ana.24390

Porges, S. W. (1995). Orienting in a defensive world: Mammalian modifications of our evolutionary heritage. A polyvagal theory. Psychophysiology, 32(4), 301–318. https://doi.org/10.1111/j.1469-8986.1995.tb01213.x

Przedborski, S. (2017). The two-century journey of Parkinson disease research. Nature Reviews Neuroscience, 18(4), 251–259. https://doi.org/10.1038/nrn.2017.25

Purushothuman, S., Johnstone, D. M., Nandasena, C., Mitrofanis, J., & Stone, J. (2014). Photobiomodulation with near infrared light mitigates Alzheimer’s disease-related pathology in cerebral cortex — Evidence from two transgenic mouse models. Alzheimer’s Research & Therapy, 6, 2. https://doi.org/10.1186/alzrt232

Rajkumar, R. P. (2020). Post-traumatic stress in the wake of the COVID-19 pandemic: A scoping review. F1000Research, 9, 675, 1–7. https://doi.org/10.12688/f1000research.24513.1

Ramirez, V., Ryan, C. P., Eldakar, O. T., & Gallup, A. C. (2019). Manipulating neck temperature alters contagious yawning in humans. Physiology & Behavior, 207, 86–89. https://doi.org/10.1016/j.physbeh.2019.04.016

Ranpuria, R., Hall, M., Chan, C. T., & Unruh, M. (2008). Heart rate variability (HRV) in kidney failure: Measurement and consequences of reduced HRV. Nephrology Dialysis Transplantation, 23(2), 444–449. https://doi.org/10.1093/ndt/gfm634

Reichert, J. L., Kober, S. E., Schweiger, D., Grieshofer, P., Neuper, C., & Wood, G. (2016). Shutting down sensorimotor interferences after stroke: A proof-of-principle SMR neurofeedback study. Frontiers in Human Neuroscience, 10, 348, 1–14. https://doi.org/10.3389/fnhum.2016.00348

Ros, T., Baars, B. J., Lanius, R. A., & Vuilleumier, P. (2014). Tuning pathological brain oscillations with neurofeedback: A systems neuroscience framework. Frontiers in Human Neuroscience, 8, 1008. https://doi.org/10.338/fnhum.2014.01008

Roy, B., Dhillon, J. K., Habib, N., & Pugazhandhi, B. (2021). Global variants of COVID-19: Current understanding. Journal of Biomedical Sciences, 1343, 8–11. https://doi.org/10.3126/jbs.v8i1.38453

Rubin, R. (2021). COVID-19 vaccines vs variants—Determining how much immunity is enough. JAMA, 325(13), 1241–1243. https://doi.org/10.1001/jama.2021.3370

Saltmarche, A. E., Naeser, M. A., Ho, K. F., Hamblin, M. R., & Lim, L. (2017). Significant improvement in cognition in mild to moderately severe dementia cases treated with transcranial plus intranasal photobiomodulation: A case series report. Photomedicine and Laser Surgery, 35(8), 432–441. https://doi.org/10.1089/pho.2016.4227

Satarker, S., & Nampoothiri, M. (2020). Involvement of the nervous system in COVID-19: The bell should toll in the brain. Life Sciences, 262, 118568. https://doi.org/10.1016/j.lfs.2020.118568

Schroeder, E. B., Liao, D., Chambless, L. E., Prineas, R. J., Evans, G. W., & Heiss, G. (2003). Hypertension, blood pressure, and heart rate variability. Hypertension, 42(6), 1106–1111. https://doi.org/10.1161/01.HYP.0000100444.71069.73

Schultz, W. (2000). Multiple reward signals in the brain. Nature Reviews Neuroscience, 1, 199–207. https://doi.org/10.1038/35044563

Shaffer, F., McCraty, R., & Zerr, C. L. (2014). A healthy heart is not a metronome: An integrative review of the heart’s anatomy and heart rate variability. Frontiers in Psychology, 5, 1040. https://doi.org/10.3389/fpsyg.2014.01040

Shaffer, F., & Venner, J. (2013). Heart rate variability anatomy and physiology. Biofeedback, 41(1), 13–25. https://doi.org/10.5298/1081-5937-41.1.05

Sherlin, L., Arns, M., Lubar, J., & Sokhadze, E. (2010). A position paper on neurofeedback for the treatment of ADHD. Journal of Neurotherapy, 14(2), 66–78. https://doi.org/10.1080/10874201003773880

Silberstein, S. D. (2000). Practice parameter: Evidence-based guidelines for migraine headache (an evidence-based review): Report of the Quality Standards Subcommittee of the American Academy of Neurology. Neurology, 55(6), 754–762 https://doi.org/10.1212/wnl.55.6.754

Simkin, D. R., Thatcher, R. W., & Lubar, J. (2014). Quantitative EEG and neurofeedback in children and adolescents: Anxiety disorders, depressive disorders, comorbid addiction and attention-deficit/hyperactivity disorder, and brain injury. Child and Adolescent Psychiatric Clinics of North America, 23(3), 427–464. https://doi.org/10.1016/j.chc.2014.03.001

Simon, E. (1974). Temperature regulation: The spinal cord as a site of extrahypothalamic thermoregulatory functions. In Reviews of Physiology, Biochemistry and Phamacology (vol. 71, pp. 1–76). Springer. https://doi.org/10.1007/BFb0027660

Singh, R. B., Choudhury, J., De Meester, F. M., & Wilczynska, A. (2014). The gut, brain, and heart connection. World Heart Journal, 3(2), 151–174. https://www.researchgate.net/publication/261285513_The_Gut_Brain_and_Heart_Connection

Sitaram, R., Ros, T., Stoeckel, L., Haller, S., Scharnowski, F., Lewis-Peacock, J., Weiskopf, N., Blefari, M. L., Rana, M., Oblak, E., Birbaumer, N., & Sulzer, J. (2017). Closed-loop brain training: The science of neurofeedback. Nature Reviews Neuroscience, 18(2), 86–100. https://doi.org/10.1038/nrn.2016.164

Small, S. L., Buccino, G., & Solodkin, A. (2013). Brain repair after stroke—A novel neurological model. Nature Reviews Neurology, 9(12), 698–707. https://doi.org/10.1038/nrneurol.2013.222

Smith, R., Thayer, J. F., Khalsa, S. S., & Lane, R. D. (2017). The hierarchical basis of neurovisceral integration. Neuroscience & Biobehavioral Reviews, 75, 274–296. https://doi.org/10.1016/j.neubiorev.2017.02.003

Stadnytskyi, V., Bax, C. E., Bax, A., & Anfinrud, P. (2020). The airborne lifetime of small speech droplets and their potential importance in SARS-CoV-2 transmission. Proceedings of the National Academy of Sciences of the United States of America, 117(22), 11875–11877. https://doi.org/10.1073/pnas.2006874117

Sterman, M. B. (2010). Biofeedback in the treatment of epilepsy. Cleveland Clinic Journal of Medicine, 77(7 Suppl. 3), S60–S67. https://doi.org/10.3949/ccjm.77.s3.11

Sterman, M. B., & Egner, T. (2006). Foundation and practice of neurofeedback for the treatment of epilepsy. Applied Psychophysiology and Biofeedback, 31(1), 21–35. https://doi.org/10.1007/s10484-006-9002-x

Strehl, U., Aggensteiner, P., Wachtlin, D., Brandeis, D., Albrecht, B., Arana, M., Bach, C., Banaschewski, T., Bogen, T., Flaig-Röhr, A., Freitag, C. M., Fuchsenberger, Y., Gest, S., Gevensleben, H., Herde, L., Hohmann, S., Legenbauer, T., Marx, A.-M., Millenet, S., Pniewski, B. … Holtmann, M. (2017). Neurofeedback of slow cortical potentials in children with attention-deficit/hyperactivity disorder: A multicenter randomized trial controlling for unspecific effects. Frontiers in Human Neuroscience, 11, 135. https://doi.org/10.3389/fnhum.2017.00135

Stute, N. L., Stickford, J. L., Province, V. M., Augenreich, M. A., Ratchford, S. M., & Stickford, A. S. L. (2021). COVID-19 is getting on our nerves: Sympathetic neural activity and hemodynamics in young adults recovering from SARS-CoV-2. The Journal of Physiology, 599(18), 4269–4285. https://doi.org/10.1113/JP281888

Sugahara, H. (2004). Brain blood perfusion hypothesis for migraine, anger, and epileptic attacks. Medical Hypotheses, 62(5), 766–769. https://doi.org/10.1016/j.mehy.2003.11.029

Sundman, M. H., Chen, N.-K., Subbian, V., & Chou, Y.-H.. (2017). The bidirectional gut-brain-microbiota axis as a potential nexus between traumatic brain injury, inflammation, and disease. Brain, Behavior, and Immunity, 66, 31–44. https://doi.org/10.1016/j.bbi.2017.05.009

Tan, G., Thornby, J., Hammond, D. C., Strehl, U., Canady, B., Arnemann, K., & Kaiser, D. A. (2009). Meta-analysis of EEG biofeedback in treating epilepsy. Clinical EEG and Neuroscience, 40(3), 173–179. https://doi.org/10.1177/155005940904000310

Tang, W. H. W., Kitai, T., & Hazen, S. L.. (2017). Gut microbiota in cardiovascular health and disease. Circulation Research, 120(7), 1183–1196. https://doi.org/10.1161/CIRCRESAHA.117.309715

Taubøll, E., Sveberg, L., & Svalheim, S. (2015). Interactions between hormones and epilepsy. Seizure, 28, 3–11. https://doi.org/10.1016/j.seizure.2015.02.012

Thatcher, R. W., Biver, C. J., Soler, E. P., Lubar, J., & Koberda, J. L. (2020). New advances in electrical neuroimaging, brain networks and neurofeedback protocols. Journal of Neurology and Neurobiology, 6(3), 1–14. https://doi.org/10.16966/2379-7150.168

Thayer, J. F., & Lane, R. D. (2000). A model of neurovisceral integration in emotion regulation and dysregulation. Journal of Affective Disorders, 61(3), 201–216. https://doi.org/10.1016/S0165-0327(00)00338-4

Thayer, J. F., Nabors-Oberg, R., & Sollers, J. J., 3rd. (1997). Thermoregulation and cardiac variability: A time-frequency analysis. Biomedical Science Instrumentation, 34, 252–256. https://pubmed.ncbi.nlm.nih.gov/9603048/

Thayer, J. F., Yamamoto, S. S., & Brosschot, J. F. (2010). The relationship of autonomic imbalance, heart rate variability and cardiovascular disease risk factors. International Journal of Cardiology, 141(2), 122–131. https://doi.org/10.1016/j.ijcard.2009.09.543

Tracey, K. J. (2002). The inflammatory reflex. Nature, 420, 853–859. https://doi.org/10.1038/nature01321

Trammell, J. P., MacRae, P. G., Davis, G., Bergstedt, D., & Anderson, A. E. (2017). The relationship of cognitive performance and the theta-alpha power ratio is age-dependent: An EEG study of short term memory and reasoning during task and resting-state in healthy young and old adults. Frontiers in Aging Neuroscience, 9, 364, 1–10. https://doi.org/10.3389/fnagi.2017.00364

Vaschillo, E., Lehrer, P., Rishe, N., & Konstantinov, M. (2002). Heart rate variability biofeedback as a method for assessing baroreflex function: A preliminary study of resonance in the cardiovascular system. Applied Psychophysiology and Biofeedback, 27(1), 1–27. https://doi.org/10.1023/a:1014587304314

Vellieux, G., Rouvel-Tallec, A., Jaquet, P., Grinea, A., Sonneville, R., & d’Ortho, M.-P. (2020). COVID-19 associated encephalopathy: Is there a specific EEG pattern? Clinical Neurophysiology, 131(8), 1928–1930. https://doi.org/10.1016/j.clinph.2020.06.005

Wang, J.-R., & Hsieh, S. (2013). Neurofeedback training improves attention and working memory performance. Clinical Neurophysiology, 124(12), 2406–2420. https://doi.org/10.1016/j.clinph.2013.05.020

Wang, L., Sievert, D., Clark, A. E., Lee, S., Federman, H., Gastfriend, B. D., Shusta, E. V., Palecek, S. P., Carlin, A. F., & Gleeson, J. G. (2021). A human three-dimensional neural-perivascular ‘assembloid’ promotes astrocytic development and enables modeling of SARS-CoV-2 neuropathology. Nature Medicine, 27, 1600–1606. https://doi.org/10.1038/s41591-021-01443-1

Whitley, R. J. (1990). Viral encephalitis. The New England Journal of Medicine, 323(4), 242–250. https://doi.org/10.1056/nejm199007263230406

Wilhelm, I., Groch, S., Preiss, A., Walitza, S., & Huber, R. (2017). Widespread reduction in sleep spindle activity in socially anxious children and adolescents. Journal of Psychiatric Research, 88, 47–55. https://doi.org/10.1016/j.jpsychires.2016.12.018

World Health Organization. (2021). WHO Coronavirus (COVID-19) Dashboard. https://covid19.who.int/

Xi, J., Si, X. A., & Nagarajan, R. (2020). Effects of mask-wearing on the inhalability and deposition of airborne SARS-CoV-2 aerosols in human upper airway. Physics of Fluids, 32, 123311–123316. https://doi.org/10.1063/5.0034580

Xia, N., & Li, H. (2018). Loneliness, social isolation, and cardiovascular health. Antioxidants & Redox Signaling, 28(9), 837–851. https://doi.org/10.1089/ars.2017.7312

Yucha, C. B., & Montgomery, D. D. (2008). Evidence-based practice in biofeedback and neurofeedback. Applied Psychophysiology and Biofeedback. https://h48h0t9r6k3b4jph1szaiz1b-wpengine.netdna-ssl.com/wp-content/uploads/2018/11/EvidenceBasedYuchaMontgomeryW.pdf

Zelano, C., Jiang, H., Zhou, G., Arora, N., Schuele, S., Rosenow, J., & Gottfried, J. A. (2016). Nasal respiration entrains human limbic oscillations and modulates cognitive function. The Journal of Neuroscience, 36(49), 12448–12467. https://doi.org/10.1523/JNEUROSCI.2586-16.2016

Zubair, A. S., McAlpine, L. S., Gardin, T., Farhadian, S., Kuruvilla, D. E., & Spudich, S. (2020). Neuropathogenesis and neurologic manifestations of the Coronaviruses in the age of Coronavirus disease 2019: A review. JAMA Neurology, 77(8), 1018–1027. https://doi.org/10.1001/jamaneurol.2020.2065

Published
2022-03-27
Section
Review Articles