Intensive Neurofeedback-based Training to Improve Impaired Attention and Executive Functions Secondary to Resection of Tuberculum Sellae Meningioma: A Case Study

  • Gianvito Lagravinese, MsC Clinical and Scientific Institutes Maugeri IRCCS, Bari, Italy https://orcid.org/0000-0001-7717-3071
  • Rodolfo Sardone, MPh Unit of Research Methodology and Data Sciences for Population Health, “Salus in Apulia Study,” National Institute of Gastroenterology “Saverio de Bellis,” Research Hospital, Castellana Grotte, Italy https://orcid.org/0000-0003-1383-1850
  • Stefania De Trane, MD Clinical and Scientific Institutes Maugeri IRCCS, Bari, Italy
  • Fabiana Montenegro, BSc Clinical and Scientific Institutes Maugeri IRCCS, Bari, Italy
  • Ernesto Losavio, MD Clinical and Scientific Institutes Maugeri IRCCS, Bari, Italy
  • Pietro Fiore, MD Clinical and Scientific Institutes Maugeri IRCCS, Bari, Italy https://orcid.org/0000-0001-5621-2393
  • Petronilla Battista, PhD Global Brain Health Institute, University of California, San Francisco, (UCSF) - USA https://orcid.org/0000-0002-3120-1214
Keywords: EEG biofeedback, qEEG, neurorehabilitation, brain tumor, cognitive functions

Abstract

Introduction. The present study aimed to evaluate the effectiveness of neurofeedback (NFB) for the treatment of acquired cognitive impairment after brain tumor surgery. Methods. The patient was a 49-year-old bilingual African woman who underwent surgical craniotomy after a tuberculum sellae meningioma was diagnosed. Cognitive deficits were evident following post-surgical recovery, and therefore intensive NFB training consisting of 15 sessions was carried out over a period of three weeks. Full neuropsychological testing and quantitative EEG analysis were performed before and after the training for outcome measurements. Results. The treatment resulted in improved attention and executive functions; specifically sustained, focused, and divided attentional abilities; cognitive flexibility, access to the lexical vocabulary, and a better processing speed. Analysis of the qEEG revealed an increased alpha peak frequency value and reduced delta/alpha ratio in frontal areas. The EEG examination revealed interhemispheric asymmetry after treatment. Conclusion. These findings suggest that a delta/alpha decrease might account for some clinical effects on cognitive abilities seen in a brain tumor resection survivor, reducing cognitive symptoms that can have a significant impact on daily life functions. Future studies on larger patients’ samples should clarify the feasibility of NFB protocols for patients with brain tumors.

Author Biography

Pietro Fiore, MD, Clinical and Scientific Institutes Maugeri IRCCS, Bari, Italy

Clinical and Scientific Institutes Maugeri IRCCS, Bari, Italy
Department of Clinical and Experimental Medicine, University of Foggia, Italy

References

Abel, T. J., Manzel, K., Bruss, J., Belfi, A. M., Howard, M. A., III., & Tranel, D. (2016). The cognitive and behavioral effects of meningioma lesions involving the ventromedial prefrontal cortex. Journal of Neurosurgery, 124(6), 1568–1577. https://doi.org/10.3171/2015.5.JNS142788

Ali, F. S., Hussain, M. R., Gutiérrez, C., Demireva, P., Ballester, L. Y., Zhu, J.-J., Blanco, A., & Esquenazi, Y. (2018). Cognitive disability in adult patients with brain tumors. Cancer Treatment Reviews, 65, 33–40. https://doi.org/10.1016/j.ctrv.2018.02.007

Ali, J. I., Viczko, J., & Smart, C. M. (2020). Efficacy of neurofeedback interventions for cognitive rehabilitation following brain injury: Systematic review and recommendations for future research. Journal of the International Neuropsychological Society, 26(1), 31–46. https://doi.org/10.1017/S1355617719001061

Alvarez, J. A., & Emory, E. (2006). Executive function and the frontal lobes: A meta-analytic review. Neuropsychology Review, 16(1), 17–42. https://doi.org/10.1007/s11065-006-9002-x

Alvarez, J., Meyer, F. L., Granoff, D. L., & Lundy, A. (2013). The effect of EEG biofeedback on reducing postcancer cognitive impairment. Integrative Cancer Therapies, 12(6), 475–487. https://doi.org/10.1177/1534735413477192

Aminov, A., Rogers, J. M., Johnstone, S. J., Middleton, S., & Wilson, P. H. (2017). Acute single channel EEG predictors of cognitive function after stroke. PLoS ONE, 12(10), e0185841. https://doi.org/10.1371/journal.pone.0185841

Ball, G., Stokes, P. R., Rhodes, R. A., Bose, S. K., Rezek, I., Wink, A.-M., Lord, L.-D., Mehta, M. A., Grasby, P. M., & Turkheimer, F. E. (2011). Executive functions and prefrontal cortex: A matter of persistence? Frontiers in Systems Neuroscience, 5, 3. https://doi.org/10.3389/fnsys.2011.00003

Barrash, J., Abel, T. J., Okerstrom-Jezewski, K. L., Zanaty, M., Bruss, J. E., Manzel, K., Howard, M., III., & Tranel, D. (2020). Acquired personality disturbances after meningioma resection are strongly associated with impaired quality of life. Neurosurgery, 87(2), 276–284. https://doi.org/10.1093/neuros/nyz440

Bartolomei, F., Bosma, I., Klein, M., Baayen, J. C., Reijneveld, J. C., Postma, T. J., Heimans, J. J., van Dijk, B. W., de Munck, J. C., de Jongh, A., Cover, K. S., & Stam, C. J. (2006). Disturbed functional connectivity in brain tumour patients: Evaluation by graph analysis of synchronization matrices. Clinical Neurophysiology, 117(9), 2039–2049. https://doi.org/10.1016/j.clinph.2006.05.018

Battista, P., Griseta, C., Capozzo, R., Lozupone, M., Sardone, R., Panza, F., & Logroscino, G. (2020). Frontal lobe syndrome and dementias. In C. R. Martin, & V. R. Preedy (Eds.), Genetics, Neurology, Behavior, and Diet in Dementia (pp. 617–632). Academic Press. https://doi.org/10.1016/B978-0-12-815868-5.00039-6

Battista, P., Griseta, C., Tortelli, R., Guida, P., Castellana, F., Rivolta, D., & Logroscino, G. (2021). The Modified Five-Point Test (MFPT): Normative data for a sample of Italian elderly. Neurological Sciences, 42(6), 2431–2440. https://doi.org/10.1007/s10072-020-04818-3

BE Plus PRO Standard [Hardware]. (n.d.). Florence, Italy: EB Neuro S.p.A.

Beaumont, A., & Whittle, I. R. (2000). The pathogenesis of tumour associated epilepsy. Acta Neurochirurgica, 142(1), 1–15. https://doi.org/10.1007/s007010050001

Benioudakis, E. S., Kountzaki, S., Batzou, K., Markogiannaki, K., Seliniotaki, T., Darakis, E., Saridaki, M., Vergoti, A., & Nestoros, J. N. (2016). Can neurofeedback decrease anxiety and fear in cancer patients? A case study. Postępy Psychiatrii i Neurologii, 25(1), 59–65. https://doi.org/10.1016/j.pin.2015.12.001

Benvenuti, S. M., Buodo, G., Leone, V., & Palomba, D. (2011). Neurofeedback training for Tourette syndrome: An uncontrolled single case study. Applied Psychophysiology and Biofeedback, 36(4), 281–288. https://doi.org/10.1007/s10484-011-9169-7

BioGraph Infiniti Suite 360 [Software]. (n.d.). Montreal, Canada: Thought Technology Ltd.

Bitter, A. D., Stavrinou, L. C., Ntoulias, G., Petridis, A. K., Dukagjin, M., Scholz, M., & Hassler, W. (2013). The role of the pterional approach in the surgical treatment of olfactory groove meningiomas: A 20-year experience. Journal of Neurological Surgery Part B, Skull Base, 74(2), 97. https://doi.org/10.1055/s-0033-1333618

Blanchard, E. B., & Schwarz, S. P. (1988). Clinically significant changes in behavioral medicine. Behavioral Assessment, 10(2), 171–188.

Butt, S., & Brodlie, K. W. (1993). Preserving positivity using piecewise cubic interpolation. Computers & Graphics, 17(1), 55–64. https://doi.org/10.1016/0097-8493(93)90051-A

Caffarra, P., Vezzadini, G., Dieci, F., Zonato, F., & Venneri, A. (2002). A short version of the Stroop test: Normative data in an Italian population sample = Una versione abbreviata del test di Stroop: Dati normativi nella popolazione italiana. Nuova Rivista di Neurologia, 12(4), 111–115.

Carlesimo, G. A., Caltagirone, C., Gainotti, G., Fadda, L., Gallassi, R., Lorusso, S., Marfia, G., Marra, C., Nocentini, U., & Parnetti, L. (1996). The mental deterioration battery: Normative data, diagnostic reliability and qualitative analyses of cognitive impairment. European Neurology, 36(6), 378–384. https://doi.org/10.1159/000117297

Cobb, W. A., Guiloff, R. J., & Cast, J. (1979). Breach rhythm: The EEG related to skull defects = Rythme de brèche: EEG en relation avec des pertes d'os crânien. Electroencephalography and Clinical Neurophysiology, 47(3), 251–271. https://doi.org/10.1016/0013-4694(79)90278-5

Core Team, R language and environment for statistical computing [Software]. (2013). Vienna, Austria: R Foundation for Statistical Computing. http://www.r-project.org

Cramer, C. K., McKee, N., Case, L. D., Chan, M. D., Cummings, T. L., Lesser, G. J., Shaw, E. G., & Rapp, S. R. (2019). Mild cognitive impairment in long-term brain tumor survivors following brain irradiation. Journal of Neuro-Oncology, 141(1), 235–244. https://doi.org/10.1007/s11060-018-03032-8

Delorme, A., & Makeig, S. (2004). EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. Journal of Neuroscience Methods, 134(1), 9–21. https://doi.org/10.1016/j.jneumeth.2003.10.009

de Munck, J. C., Gonçalves, S. I., Mammoliti, R., Heethaar, R. M., & Lopes da Silva, F. H. (2009). Interactions between different EEG frequency bands and their effect on alpha–fMRI correlations. NeuroImage, 47(1), 69–76. https://doi.org/10.1016/j.neuroimage.2009.04.029

Derks, J., Reijneveld, J. C., & Douw, L. (2014). Neural network alterations underlie cognitive deficits in brain tumor patients. Current Opinion in Oncology, 26(6), 627–633. https://doi.org/10.1097/CCO.0000000000000126

de Ruiter, M. A., Oosterlaan, J., Schouten-van Meeteren, A. Y. N., Maurice-Stam, H., van Vuurden, D. G., Gidding, C., Beek, L. R., Granzen, B., Caron, H. N., & Grootenhuis, M. A. (2016). Neurofeedback ineffective in paediatric brain tumour survivors: Results of a double-blind randomised placebo-controlled trial. European Journal of Cancer, 64, 62–73. https://doi.org/10.1016/j.ejca.2016.04.020

Di Cristofori, A., Zarino, B., Bertani, G., Locatelli, M., Rampini, P., Carrabba, G., & Caroli, M. (2018). Surgery in elderly patients with intracranial meningioma: Neuropsychological functioning during a long term follow-up. Journal of Neuro-Oncology, 137(3), 611–619. https://doi.org/10.1007/s11060-018-2754-3

EB Neuro Galileo Suite [Software]. (n.d.). Florence, Italy: EB Neuro S.p.A.

Egner, T., & Gruzelier, J. H. (2004). EEG biofeedback of low beta band components: Frequency-specific effects on variables of attention and event-related brain potentials. Clinical Neurophysiology, 115(1), 131–139. https://doi.org/10.1016/s1388-2457(03)00353-5

Ehresman, J. S., Garzon-Muvdi, T., Rogers, D., Lim, M., Gallia, G. L., Weingart, J., Brem, H, Bettegowda, C., & Chaichana, K. L. (2019). Risk of developing postoperative deficits based on tumor location after surgical resection of an intracranial meningioma. Journal of Neurological Surgery Part B, Skull Base, 80(1), 59–66. https://doi.org/10.1055/s-0038-1667066

Enriquez-Geppert, S., Huster, R. J., & Herrmann, C. S. (2017). EEG-neurofeedback as a tool to modulate cognition and behavior: A review tutorial. Frontiers in Human Neuroscience, 11, 51. https://doi.org/10.3389/fnhum.2017.00051

Finnigan, S. P., Walsh, M., Rose, S. E., & Chalk, J. B. (2007). Quantitative EEG indices of sub-acute ischaemic stroke correlate with clinical outcomes. Clinical Neurophysiology, 118(11), 2525–2532. https://doi.org/10.1016/j.clinph.2007.07.021

Finnigan, S., Wong, A., & Read, S. (2016). Defining abnormal slow EEG activity in acute ischaemic stroke: Delta/alpha ratio as an optimal QEEG index. Clinical Neurophysiology, 127(2), 1452–1459. https://doi.org/10.1016/j.clinph.2015.07.014

Fuchs, T., Birbaumer, N., Lutzenberger, W., Gruzelier, J. H., & Kaiser, J. (2003). Neurofeedback treatment for attention-deficit/hyperactivity disorder in children: A comparison with methylphenidate. Applied Psychophysiology and Biofeedback, 28(1), 1–12. https://doi.org/10.1023/a:1022353731579

Gevensleben, H., Holl, B., Albrecht, B., Schlamp, D., Kratz, O., Studer, P., Rothenberger, A., Moll, G. H., & Heinrich, H. (2010). Neurofeedback training in children with ADHD: 6-month follow-up of a randomised controlled trial. European Child & Adolescent Psychiatry, 19(9), 715–724. https://doi.org/10.1007/s00787-010-0109-5

Giovagnoli, A. R., Del Pesce, M., Mascheroni, S., Simoncelli, M., Laiacona, M., & Capitani, E. (1996). Trail making test: Normative values from 287 normal adult controls. The Italian Journal of Neurological Sciences, 17, 305–309. https://doi.org/10.1007/bf01997792

Goel, A., Muzumdar, D., & Desai, K. I. (2002). Tuberculum sellae meningioma: A report on management on the basis of a surgical experience with 70 patients. Neurosurgery, 51(6), 1358–1364. http://doi.org/10.1227/01.NEU.0000309111.78968.BC

Gorini, A., Marzorati, C., Casiraghi, M., Spaggiari, L., & Pravettoni, G. (2015). A neurofeedback-based intervention to reduce post-operative pain in lung cancer patients: Study protocol for a randomized controlled trial. JMIR Research Protocols, 4(2), e52. https://doi.org/10.2196/resprot.4251

Hammond, D. C. (2011). What is neurofeedback: An update. Journal of Neurotherapy, 15(4), 305–336. https://doi.org/10.1080/10874208.2011.623090

Harmelech, T., Preminger, S., Wertman, E., & Malach, R. (2013). The day-after effect: Long term, Hebbian-like restructuring of resting-state fMRI patterns induced by a single epoch of cortical activation. The Journal of Neuroscience, 33(22), 9488–9497. https://doi.org/10.1523/JNEUROSCI.5911-12.2013

Hetkamp, M., Bender, J., Rheindorf, N., Kowalski, A., Lindner, M., Knispel, S., Beckmann, M., Tagay, S., & Teufel, M. (2019). A systematic review of the effect of neurofeedback in cancer patients. Integrative Cancer Therapies, 18, 1534735419832361. https://doi.org/10.1177/1534735419832361

Jurewicz, K., Paluch, K., Kublik, E., Rogala, J., Mikicin, M., & Wróbel, A. (2018). EEG-neurofeedback training of beta band (12–22 Hz) affects alpha and beta frequencies–A controlled study of a healthy population. Neuropsychologia, 108, 13–24. https://doi.org/10.1016/j.neuropsychologia.2017.11.021

Klimesch, W. (2012). Alpha-band oscillations, attention, and controlled access to stored information. Trends in Cognitive Sciences, 16(12), 606–617. https://doi.org/10.1016/j.tics.2012.10.007

Krupp, W., Klein, C., Koschny, R., Holland, H., Seifert, V., & Meixensberger, J. (2009). Assessment of neuropsychological parameters and quality of life to evaluate outcome in patients with surgically treated supratentorial meningiomas. Neurosurgery, 64(1), 40–47. https://doi.org/10.1227/01.NEU.0000336330.75381.39

Luctkar-Flude, M., & Groll, D. (2015). A systematic review of the safety and effect of neurofeedback on fatigue and cognition. Integrative Cancer Therapies, 14(4), 318–340. https://doi.org/10.1177/1534735415572886

Marder, E., & Goaillard, J.-M. (2006). Variability, compensation and homeostasis in neuron and network function. Nature Reviews Neuroscience, 7(7), 563–574. https://doi.org/10.1038/nrn1949

Marzbani, H., Marateb, H. R., & Mansourian, M. (2016). Neurofeedback: A comprehensive review on system design, methodology and clinical applications. Basic and Clinical Neuroscience, 7(2), 143–158. https://doi.org/10.15412/J.BCN.03070208

MATLAB [Computer software]. (n.d.). Natick, MA: The Math Works, Inc.

Mayer, K., & Arns, M. (2016). Electroencephalogram neurofeedback: Application in ADHD and epilepsy Psychiatric Annals, 46(10), 594–600. https://doi.org/10.3928/00485713-20160906-01

Megumi, F., Yamashita, A., Kawato, M., & Imamizu, H. (2015). Functional MRI neurofeedback training on connectivity between two regions induces long-lasting changes in intrinsic functional network. Frontiers in Human Neuroscience, 9, 160. https://doi.org/10.3389/fnhum.2015.00160

Murray, S. O., & Wojciulik, E. (2004). Attention increases neural selectivity in the human lateral occipital complex. Nature Neuroscience, 7(1), 70–74. https://doi.org/10.1038/nn1161

Nakamura, M., Roser, F., Struck, M., Vorkapic, P., & Samii, M. (2006). Tuberculum sellae meningiomas: Clinical outcome considering different surgical approaches. Neurosurgery, 59(5), 1019–1029. https://doi.org/10.1227/01.NEU.0000245600.92322.06

Oldfield, R. C. (1971). The assessment and analysis of handedness: The Edinburgh inventory. Neuropsychologia, 9(1), 97–113. https://doi.org/10.1016/0028-3932(71)90067-4

Patel, K., Sutherland, H., Henshaw, J., Taylor, J. R., Brown, C. A., Casson, A. J., Trujillo-Barreton, N. J., Jones, A. K. P., & Sivan, M. (2020). Effects of neurofeedback in the management of chronic pain: A systematic review and meta‐analysis of clinical trials. European Journal of Pain, 24(8), 1440–1457. https://doi.org/10.1002/ejp.1612

Prinsloo, S., Novy, D., Driver, L., Lyle, R., Ramondetta, L., Eng, C., McQuade, J., Lopez, G., & Cohen, L. (2017). Randomized controlled trial of neurofeedback on chemotherapy‐induced peripheral neuropathy: A pilot study. Cancer, 123(11), 1989–1997. https://doi.org/10.1002/cncr.30649

ProComp2 2-channel Biofeedback & Neurofeedback System [Hardware]. (n.d.). Montreal, Canada: Thought Technology, Ltd.

Renton, T., Tibbles, A., & Topolovec-Vranic, J. (2017). Neurofeedback as a form of cognitive rehabilitation therapy following stroke: A systematic review. PloS ONE, 12(5), e0177290. https://doi.org/10.1371/journal.pone.0177290

Rijnen, S. J. M., Meskal, I., Bakker, M., De Baene, W., Rutten, G.-J. M., Gehring, K., & Sitskoorn, M. M. (2019). Cognitive outcomes in meningioma patients undergoing surgery: Individual changes over time and predictors of late cognitive functioning. Neuro-Oncology, 21(7), 911–922. https://doi.org/10.1093/neuonc/noz039

Rothoerl, R. D., Bernreuther, D., Woertgen, C., & Brawanski, A. (2003). The value of routine electroencephalographic recordings in predicting postoperative seizures associated with meningioma surgery. Neurosurgical Review, 26(2), 108–112. https://doi.org/10.1007/s10143-002-0240-y

Sanei, S., & Chambers, J. A. (2013). EEG signal processing. John Wiley & Sons.

Sarvghadi, P., Ghaffari, A., & Rostami, H. R. (2019). The effects of neurofeedback training on short-term memory and quality of life in women with breast cancer. International Journal of Therapy and Rehabilitation, 26(11), 1–8. https://doi.org/10.12968/ijtr.2018.0088

Schleiger, E., Sheikh, N., Rowland, T., Wong, A., Read, S., & Finnigan, S. (2014). Frontal EEG delta/alpha ratio and screening for post-stroke cognitive deficits: The power of four electrodes. International Journal of Psychophysiology, 94(1), 19–24. https://doi.org/10.1016/j.ijpsycho.2014.06.012

Shakibaei, F., Sabaghypour, S., Isfahani, F. F., & Jazi, N. D. (2021). EEG biofeedback for treatment of psychogenic non-epileptic seizures (PNES) in multiple sclerosis: A case report. Applied Psychophysiology and Biofeedback, 46(2), 175–181. https://doi.org/10.1007/s10484-020-09496-7

Simoca, I., Olărescu, A. A., Jipescu, I., & Lisievici, M. (1994). Postoperative outcome of intracranial meningiomas; long-term prognosis. Romanian Journal of Neurology and Psychiatry = Revue Roumaine de Neurologie et Psychiatrie, 32(4), 237–251.

Sitaram, R., Ros, T., Stoeckel, L., Haller, S., Scharnowski, F., Lewis-Peacock, J., Weiskopf, N., Blefari, M. L., Rana, M., Oblak, E., Birbaumer, N., Sulzer, J. (2017). Closed-loop brain training: The science of neurofeedback. Nature Reviews Neuroscience, 18(2), 86–100. https://doi.org/10.1038/nrn.2016.164

Spinnler, H., & Tognoni, G. (1987). Italian group on the neuropsychological study of ageing: Italian standardization and classification of neuropsychological tests. The Italian Journal of Neurological Sciences, 6, 1–120.

Telera, S., Carapella, C. M., Caroli, F., Crispo, F., Cristalli, G., Raus, L., Sperduti, I., & Pompili, A. (2012). Supraorbital keyhole approach for removal of midline anterior cranial fossa meningiomas: A series of 20 consecutive cases. Neurosurgical Review, 35(1), 67–83. https://doi.org/10.1007/s10143-011-0340-7

Trambaiolli, L. R., Cassani, R., Mehler, D. M. A., & Falk, T. H. (2021). Neurofeedback and the aging brain: A systematic review of training protocols for dementia and mild cognitive impairment. Frontiers in Aging Neuroscience, 13, 682683. https://doi.org/10.3389/fnagi.2021.682683

Tucha, O., Smely, C., Preier, M., & Lange, K. W. (2000). Cognitive deficits before treatment among patients with brain tumors. Neurosurgery, 47(2), 324–334. https://doi.org/10.1097/00006123-200008000-00011

van Dellen, E., Hillebrand, A., Douw, L., Heimans, J. J., Reijneveld, J. C., & Stam, C. J. (2013). Local polymorphic delta activity in cortical lesions causes global decreases in functional connectivity. NeuroImage, 83, 524–532. https://doi.org/10.1016/j.neuroimage.2013.06.009

Van Doren, J., Heinrich, H., Bezold, M., Reuter, N., Kratz, O., Horndasch, S., Berking, M., Ros, T., Gevensleben, H., Moll, G. H., & Studer, P. (2017). Theta/beta neurofeedback in children with ADHD: Feasibility of a short-term setting and plasticity effects. International Journal of Psychophysiology, 112, 80–88. https://doi.org/10.1016/j.ijpsycho.2016.11.004

van Son, D., de Rover, M., De Blasio, F. M., van der Does, W., Barry, R. J., & Putman, P. (2019). Electroencephalography theta/beta ratio covaries with mind wandering and functional connectivity in the executive control network. Annals of the New York Academy of Sciences, 1452(1), 52–64. https://doi.org/10.1111/nyas.14180

Viviani, G., & Vallesi, A. (2021). EEG‐neurofeedback and executive function enhancement in healthy adults: A systematic review. Psychophysiology, 58(9), e13874. https://doi.org/10.1111/psyp.13874

Yeh, W.-H., Hsueh, J.-J., & Shaw, F.-Z. (2020). Neurofeedback of alpha activity on memory in healthy participants: A systematic review and meta-analysis. Frontiers in Human Neuroscience, 14, 562360. https://doi.org/10.3389/fnhum.2020.562360

Zweckberger, K., Hallek, E., Vogt, L., Giese, H., Schick, U., & Unterberg, A. W. (2017). Prospective analysis of neuropsychological deficits following resection of benign skull base meningiomas. Journal of Neurosurgery, 127(6), 1242–1248. https://doi.org/10.3171/2016.10.JNS161936

Published
2021-09-30
Section
Research Papers