Proceedings of the 2021 ISNR Annual Conference (Virtual): Keynote and Plenary Presentations

  • International Society of NeuroRegulation and Research (ISNR)
Keywords: neurofeedback, qeeg, neuroregulation, ISNR Annual Conference

Abstract

Selected Keynote and Plenary session Abstracts of Conference Presentations at the 2021 International Society for NeuroRegulation and Research (ISNR) 29th Conference, Miami, Florida, USA

References

--Music-Based Interventions for Cognitive and Brain Health

Loui, P. (2020). Neuroscientific insights for improved outcomes in music-based interventions. Music & Science, 3. https://doi.org/10.1177/2059204320965065

--Functional Neuromarkers for Psychiatry and Neurology: Applications for Diagnosis and Treatment

Kropotov, J. D. (2009). Quantitative EEG, event-related potentials and neurotherapy. London, UK: Elsevier Academic Press.

Kropotov, J. D., & Etlinger, S. C. (1999). Selection of actions in the basal ganglia-thalamocortical circuits: Review and model. International Journal of Psychophysiology, 31(3), 197–217. https://doi.org/10.1016/S0167-8760(98)00051-8

Kropotov, J. D., & Ponomarev, V. A. (2009). Decomposing N2 NOGO wave of event-related potentials into independent components. NeuroReport, 20, 1592–1596.

Kropotov, J. D., & Ponomarev, V. A. (2015). Differentiation of neuronal operations in latent components of event-related potentials in delayed match-to-sample tasks. Psychophysiology, 52(6), 826–838. https://doi.org/10.1111/psyp.12410

Kropotov, J. D., Ponomarev, V. A., Pronina, M., & Jäncke, L. (2017). Functional indexes of reactive cognitive control: ERPs in cued go/no-go tasks. Psychophysiology, 54(12), 1899–1915. https://doi.org/10.1111/psyp.12960

Kropotov, J., Ponomarev, V., Tereshchenko, E. P., Müller, A., & Jäncke, L. (2016). Effect of aging on ERP components of cognitive control. Frontiers in Aging Neuroscience, 8, 69. https://doi.org/10.3389/fnagi.2016.00069

Kropotov, J. D., Pronina, M. V., Ponomarev, V. A., Poliakov, Y. I., Plotnikova, I. V., & Mueller, A. (2019). Latent ERP components of cognitive dysfunctions in ADHD and schizophrenia. Clinical Neurophysiology, 130(4), 445–453. https://doi.org/10.1016/j.clinph.2019.01.015

Müller, A., Vetsch, S., Pershin, I., Candrian, G., Baschera, G.-M., Kropotov, J. D., Kasper, J., Rehim, H. A., & Eich, D. (2020). EEG/ERP-based biomarker/neuroalgorithms in adults with ADHD: Development, reliability, and application in clinical practice. The World Journal of Biological Psychiatry, 21(3), 172–182. https://doi.org/10.1080/15622975.2019.1605198

Ogrim, G., & Kropotov, J. D. (2020). Event related potentials (ERPs) and other EEG based methods for extracting biomarkers of brain dysfunction: Examples from pediatric attention deficit/hyperactivity disorder (ADHD). JoVE (Journal of Visualized Experiments), 12(157). https://doi.org/10.3791/60710

Ogrim, G., & Kropotov, J. D. (2019). Predicting clinical gains and side effects of stimulant medication in pediatric attention-deficit/hyperactivity disorder by combining measures from qEEG and ERPs in a cued go/nogo task. Clinical EEG and Neuroscience, 50(1), 34–43. https://doi.org/10.1177/1550059418782328

--Neurofeedback and Body Psychotherapy

Fotopoulou, A., & Tsakiris, M. (2017). Mentalizing homeostasis: The social origins of interoceptive inference. Neuropsychoanalysis, 19(1), 3–28. https://doi.org/10.1080/15294145.2017.1294031

Heller, M. C. (2012). Body psychotherapy: History, concepts, and methods. W. W. Norton & Company.

Hertenstein, M. J., Keltner, D., App, B., Bulleit, B. A., & Jaskolka, A. R. (2006). Touch communicates distinct emotions. Emotion, 6(3), 528–533. https://doi.org/10.1037/1528-3542.6.3.528

Krahé, C., Paloyelis, Y., Condon, H., Jenkinson, P. M., Williams, S. C., & Fotopoulou, A. (2015). Attachment style moderates partner presence effects on pain: A laser-evoked potentials study. Social Cognitive and Affective Neuroscience, 10(8), 1030–1037. https://doi.org/10.1093/scan/nsu156

Lane, R. D., & Nadel, L. (Eds.). (2020). Neuroscience of enduring change: Implication for psychotherapy. New York, NY: Oxford University Press. https://doi.org/10.1093/oso/9780190881511.001.0001

Marlock, G., Weiss, H., Young, C., & Soth, M. (2015). The handbook of body psychotherapy and somatic psychology. North Atlantic Books.

Mittelmark, M. B., Sagy, S., Eriksson, M., Bauer, G. F., Pelikan, J. M., Lindström, B., & Espnes, G. A. (Eds.). (2017). The handbook of salutogenesis. Springer International Publishing. https://doi.org/10.1007/978-3-319-04600-6

Nummenmaa, L., Glerean, E., Hari, R., & Hietanen, J. K. (2014). Bodily maps of emotions. Proceedings of the National Academy of Sciences, 111(2), 646–651. https://doi.org/10.1073/pnas.1321664111

Payne, P., Levine, P. A., & Crane-Godreau, M. A. (2015). Somatic experiencing: Using interoception and proprioception as core elements of trauma therapy. Frontiers in Psychology, 6, 93. https://doi.org/10.3389/fpsyg.2015.00093

Proffitt, L., Steinberg, E., Bach, S., Barker, L., Rosella, S., Deniflee, U., Southwell, C., Gad, G., van Heel, C., & Shahar, Y. (2016). Biodynamic body psychotherapy: Collective papers from the 2nd Biodynamic Conference London 2014. Lulu.com.

Stattman, J. (1987). Organic transference. Revue de Psychologie Biodynamique [Biodynamic Psychology Revue], 2–3, 179–198.

Steinberg, E. (2016). Transformative moments: Short stories from the Biodynamic Psychotherapy Room. Somatic Psychotherapy Today, 6(3), 26–34, 36-41, 99.

--Neurorehabilitation Program Using Biophoto/Electromagnetic Stimulation Wearable

Ibric, V. L., Dragomirescu, L. G., & Hudspeth, W. J. (2009). Real-time changes in connectivities during neurofeedback. Journal of Neurotherapy, 13(3),156–165. https://doi.org/10.1080/10874200903118378

Ibric, V. L, & Owes, M. (2015, November). Neuro-rehabilitation effectiveness: Study of the Neurodynamic-Activator™ as a standalone device. Course presented at the 41st BSC (WABN–Western Association for Biofeedback and Neuroscience) Annual Conference, Costa Mesa, CA.

Othmer, S. (2009). Neuromodulation technologies: An attempt at classification. In T. H. Budzynski, H. K. Budzynski, J. R. Evans, & A. Abarbanel (Eds.), Introduction to quantitative EEG and neurofeedback: Advanced theory and applications (2nd ed., pp. 3–27). Elsevier.

--Pilot Data on LORETA Neurofeedback for Improving Psychological and Neuroendocrine Status During Incarceration for Substance Abuse-related Offenders

Becker, W. C., Gordon, K. S., Edelman, E. J., Goulet, J. L., Kerns, R. D., Marshall, B. D. L., Fiellin, D. A., Justice, A. C., & Tate, J. P. (2020). Are we missing opioid-related deaths among people with HIV? Drug and Alcohol Dependence, 212, 108003. https://doi.org/10.1016/j.drugalcdep.2020.108003

Cannon, R. L., Baldwin, D. R., Diloreto, D. J., Phillips, S. T., Shaw, T. L., & Levy, J. J. (2014). LORETA neurofeedback in the Precuneus: Operant conditioning in basic mechanisms of self-regulation. Clinical EEG and Neuroscience, 45(4), 238–248. https://doi.org/10.1177/1550059413512796

Cannon, R., Congedo, M., Lubar, J., & Hutchens, T. (2009). Differentiating a network of executive attention: LORETA neurofeedback in anterior cingulate and dorsolateral prefrontal cortices. International Journal of Neuroscience, 119(3), 404–441. https://doi.org/10.1080/00207450802480325

Chandler, R. K., Fletcher, B. W., & Volkow, N. D. (2009). Treating drug abuse and addiction in the criminal justice system: Improving public health and safety. JAMA, 301(2), 183–190. https://doi.org/10.1001/jama.2008.976

Davis, G. G., Cadwallader, A. B., Fligner, C. L., Gilson, T. P., Hall, E. R., Harshbarger, K. E., Kronstrand, R., Mallak, C. T. McLemore, J. L., Middleberg, R. A., Middleton, O. L., Nelson, L. S., Rogalska, A., Tonsfeldt, E., Walterscheid, J. & Winecker, R. E. (2020). Position paper: Recommendations for the investigation, diagnosis, and certification of deaths related to opioid and other drugs. The American Journal of Forensic Medicine and Pathology, 41(3), 152–159. https://doi.org/10.1097/PAF.0000000000000550

Kim, H., & Yang, H. (2020, July). Statistical analysis of county-level contributing factors to opioid-related overdose deaths in the United States. Paper presented at Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Montreal, QC, Canada. https://doi.org/10.1109/EMBC44109.2020.9176465

Oluwoye, O., Kriegel, L. S., Alcover, K. C., Hirchak, K., & Amiri, S. (2020). Racial and ethnic differences in alcohol-, opioid-, and co-use-related deaths in Washington State from 2011 to 2017. Addictive Behaviors Reports, 12, 100316. https://doi.org/10.1016/j.abrep.2020.100316

Peters, R. H., Young, M. S., Rojas, E. C., & Gorey, C. M. (2017). Evidence-based treatment and supervision practices for co-occurring mental and substance use disorders in the criminal justice system. The American Journal of Drug and Alcohol Abuse, 43(4), 475–488. https://doi.org/10.1080/00952990.2017.1303838

Rushovich, T., Arwady, M. A., Salisbury-Afshar, E., Arunkumar, P., Aks, S., & Prachand, N. (2020). Opioid-related overdose deaths by race and neighborhood economic hardship in Chicago. Journal of Ethnicity in Substance Abuse, 1–14. https://doi.org/10.1080/15332640.2019.1704335

--Psychoneuroendocrinology of Aging: Implications for Neuroregulation

Cerqueira, J. J., Pêgo, J. M., Taipa, R., Bessa, J. M., Almeida, O. F. X., & Sousa, N. (2005). Morphological correlates of corticosteroid-induced changes in prefrontal cortex-dependent behaviors. The Journal of Neuroscience, 25(34), 7792–7800. https://doi.org/10.1523/jneurosci.1598-05.2005

Elgh, E., Åstot, A. L., Fagerlund, M., Eriksson, S., Olsson, T., & Näsman, B. (2006). Cognitive dysfunction, hippocampal atrophy and glucocorticoid feedback in Alzheimer’s disease. Biological Psychiatry, 59(2), 155–161. https://doi.org/10.1016/j.biopsych.2005.06.017

Epel, E. S., Burke, H. M., & Wolkowitz, O. M. (2007). The psychoneuroendocrinology of aging: Anabolic and catabolic hormones. In C. M. Aldwin, C. L. Park, & A. Spiro III (Eds.), Handbook of health psychology and aging (pp. 119–141). The Guilford Press.

Huang, C.-W., Lui, C.-C., Chang, W.-N., Lu, C.-H., Wang, Y.-L., & Chang, C.-C. (2009). Elevated basal cortisol level predicts lower hippocampal volume and cognitive decline in Alzheimer’s disease. Journal of Clinical Neuroscience, 16(10), 1283–1286. https://doi.org/10.1016/j.jocn.2008.12.026

Mizoguchi, K., Ikeda, R., Shoji, H., Tanaka, Y., Maruyama, W., & Tabira, T. (2009). Aging attenuates glucocorticoid negative feedback in rat brain. Neuroscience, 159(1), 259–270. https://doi.org/10.1016/j.neuroscience.2008.12.020

Otte, C., Hart, S., Neylan, T. C., Marmar, C. R., Yaffe, K., & Mohr, D. C. (2005). A meta-analysis of cortisol response to challenge in human aging: Importance of gender. Psychoneuroendocrinology, 30(1), 80–91. https://doi.org/10.1016/j.psyneuen.2004.06.002

Sapolsky, R. M., Krey, L. C., & McEwen, B. S. (1986). The neuroendocrinology of stress and aging: The glucocorticoid cascade hypothesis. Endocrine Reviews, 7(3), 284–301. https://doi.org/10.1210/edrv-7-3-284

Villada, C., González-López, M., Aguilar-Zavala, H., & Fernández, T. (2020). Resting EEG, hair cortisol and cognitive performance in healthy older people with different perceived socioeconomic status. Brain Sciences, 10(9), 635. https://doi.org/10.3390/brainsci10090635

--Advances in Photobiomodulation Using a Closed-Loop Design

Ando, T., Xuan, W., Xu, T., Dai, T., Sharma, S. K., Kharkwal, G. B., Huang, Y.-Y., Wu, Q., Whalen, M. J., Sato, S., Obara, M., & Hamblin, M. R. (2011). Comparison of therapeutic effects between pulsed and continuous wave 810-nm wavelength laser irradiation for traumatic brain injury in mice. PLoS ONE, 6(10), e26212. http://doi.org/10.1371/journal.pone.0026212

Barrett, D. W., & Gonzalez-Lima, F. (2013). Transcranial infrared laser stimulation produces beneficial cognitive and emotional effects in humans. Neuroscience, 230, 13–23. https://doi.org/10.1016/j.neuroscience.2012.11.016

Cassano, P., Cusin, C., Mischoulon, D., Hamblin, M. R., De Taboada, L., Pisoni, A., Chang, T., Yeung, A., Ionescu, D. F., Petrie, S. R., Nierenberg, A. A., Fava, M., & Iosifescu D.V. (2015). Near-infrared transcranial radiation for major depressive disorder: Proof of concept study. Psychiatry Journal, 2015, 352979. https://doi.org/10.1155/2015/352979

Cassano, P., Petrie, S. R., Hamblin, M. R., Henderson, T. A., & Iosifescu, D. V. (2016). Review of transcranial photobiomodulation for major depressive disorder: Targeting brain metabolism, inflammation, oxidative stress, and neurogenesis. Neurophotonics, 3(3), 031404. https://doi.org/10.1117/1.nph.3.3.031404

Collura, T. F. (2008). Towards a coherent view of brain connectivity. Journal of Neurotherapy, 12(2–3), 99–110. https://doi.org/10.1080/10874200802433274

Hamblin, M. R. (2016). Shining light on the head: Photobiomodulation for brain disorders. BBA Clinical, 6, 113–124. http://doi.org/10.1016/j.bbacli.2016.09.002

Henderson, T. A. (2016). Multi-watt near-infrared light therapy as a neuroregenerative treatment for traumatic brain injury. Neural Regeneration Research, 11(4), 563–565. https://doi.org/10.4103/1673-5374.180737

Hennessy, M., & Hamblin, M. R. (2017). Photobiomodulation and the brain: A new paradigm. Journal of Optics, 19(1), 013003. http://doi.org/10.1088/2040-8986/19/1/013003

Johnstone, D. M., Moro, C., Stone, J., Benabid, A. L., & Mitrofanis, J. (2015). Turning on lights to stop neurodegeneration: The potential of near infrared light therapy in Alzheimer's and Parkinson's disease. Frontiers in Neuroscience, 9, 500. https://doi.org/10.3389/fnins.2015.00500

Rojas, J. C., & Gonzalez-Lima, F. (2013). Neurological and psychological applications of transcranial lasers and LEDs. Biochemical Pharmacology, 86(4), 447–457. https://doi.org/10.1016/j.bcp.2013.06.012

--Integrating Neurofeedback into Trauma Therapy: Insights from a Qualitative Study

Fisher, S. (2014). Neurofeedback in the treatment of developmental trauma: Calming the fear-driven brain. New York, NY: W. W. Norton & Company.

Frick, M. H., Rainey, H. T., Curtis, R., Li, Y., & Simpson, M. (2018). Working with developmental trauma: Results of neurofeedback training with adolescent females and counseling implications. Journal of Behavioral and Social Sciences, 5(2), 96–106.

Hamlin, E. (2018). Growing the evidence base for neurofeedback in clinical practice. In J. J. Magnavita (Ed.), Using technology in mental health practice (pp. 101–122). Washington, DC: American Psychological Association.

Smith, J. A. (1996). Beyond the divide between cognition and discourse: Using interpretative phenomenological analysis in health psychology. Psychology & Health, 11(2), 261–271. https://doi.org/10.1080/08870449608400256

Thomason, M. E., & Marusak, H. A. (2017). Toward understanding the impact of trauma on the early developing human brain. Neuroscience, 342, 55–67. https://doi.org/10.1016/j.neuroscience.2016.02.022

van der Kolk, B. A., Hodgdon, H., Gapen, M., Musicaro, R., Suvak, M. K., Hamlin, E., & Spinazzola, J. (2016). A randomized controlled study of neurofeedback for chronic PTSD. PLoS ONE, 11(12), e0166752. https://doi.org/10.1371/journal.pone.0166752

Weiner, G. (2016). Evolving as a neurotherapist: Integrating psychotherapy and neurofeedback. In T. F. Collura & J. A. Frederick (Eds.), Handbook of clinical QEEG and neurotherapy (pp. 45–54). New York, NY: Routledge.

--Demystifying Independent Component Analysis (ICA)

Debener, S., Thorne, J., Schneider, T. R., & Viola, F. C. (2010). Using ICA for the analysis of multi-channel EEG data. In M. Ullsperger & S. Debener, Simultaneous EEG and FMRI: Recording, Analysis, and Application (pp. 121–133). Oxford University Press, USA. https://doi.org/10.1093/acprof:oso/9780195372731.003.0008

Delorme, A. (2018, May 22). EEGLAB preprocessing #1: Importing raw data. https://www.youtube.com/watch?v=gEk33jWB0MY

Friston, K. J. (1998). Modes or models: A critique on independent component analysis for fMRI. Trends in Cognitive Sciences, 2(10), 373–375. https://doi.org/10.1016/S1364-6613(98)01227-3

Hsu, S.-H., Pion-Tonachini, L., Palmer, J., Miyakoshi, M., Makeig, S., & Jung, T.-P. (2018). Modeling brain dynamic state changes with adaptive mixture independent component analysis. NeuroImage, 183, 47–61. https://doi.org/10.1016/j.neuroimage.2018.08.001

Langlois, D., Chartier, S., & Gosselin, D. (2010). An introduction to independent component analysis: InfoMax and FastICA algorithms. Tutorials in Quantitative Methods for Psychology, 6. https://doi.org/10.20982/tqmp.06.1.p031

Onton, J., & Makeig, S. (2006). Information-based modeling of event-related brain dynamics. In C. Neuper & W. Klimesch (Eds.), Progress in Brain Research (Vol. 159, pp. 99–120). Elsevier. https://doi.org/10.1016/S0079-6123(06)59007-7

Palmer, J. A., Kreutz-Delgado, K., & Makeig, S. (2011). AMICA: An adaptive mixture of independent component analyzers with shared components. 15.

--Normal EEG

Chang, B., Schomer, D., & Niedermeyer, E. (2011). Normal EEG and sleep: Adults and elderly. In D. L. Schomer & F. H. L. da Silva, Niedermeyer’s electroencephalography: Basic principles, clinical applications, and related fields (6th ed., pp. 183–214). Lippencott Williams & Wilkins.

Kropotov, J. (n.d.). Functional neuromarkers for psychiatry applications for diagnosis and treatment. Elsevier.

Kropotov, J. (2009). Quantitative EEG, event-related potentials and neurotherapy (1st ed.). Elsevier.

Libenson, M. (2010). Practical approach to electroencephalography (1st ed.). Saunders.

Niedermeyer, E. (1997). Alpha rhythms as physiological and abnormal phenomena. International Journal of Psychophysiology, 26(1–3), 31–49. https://doi.org/10.1016/S0167-8760(97)00754-X

Thompson, M., & Thompson, L. (2015). The neurofeedback book an introduction to basic concepts in applied psychophysiology (2nd ed.). Association for Applied Psychophysiology and Biofeedback. www.addcentre.com

Ulrich, G., & Frick, K. (1986). A new quantitative approach to the assessment of stages of vigilance as defined by spatiotemporal EEG patterning. Perceptual and Motor Skills, 62(2), 567–576. https://doi.org/10.2466/pms.1986.62.2.567

--Nurturing Awareness: Neurofeedback and Psychedelic Therapies

Alamia, A., Timmermann, C., Nutt, D. J., VanRullen, R., & Carhart-Harris, R. L. (2020). DMT alters cortical travelling waves. Elife, 9, e59784. https://doi.org/10.7554/elife.59784

Hargraves, H. K. (2017). Therapeutic induction of altered states of consciousness: Investigation of 1–20 Hz neurofeedback. Electronic Thesis and Dissertation Repository, 4517. https://ir.lib.uwo.ca/etd/4517

Ros, T., Théberge, J., Frewen, P. A., Kluetsch, R., Densmore, M., Calhoun, V. D., & Lanius, R. A. (2013). Mind over chatter: Plastic up-regulation of the fMRI salience network directly after EEG neurofeedback. NeuroImage, 65, 324–335. https://doi.org/10.1016/j.neuroimage.2012.09.046

--Treating COVID-19 with Photobiomodulation – Short-term Recovery and Long-Haul NeuroRegulation

Costa, S., G., Barioni, E. D., Ignácio, A., Albuquerque, J., Câmara, N. O. S., Pavani, C., Vitoretti, L. B., Damazo, A. S., Farsky, S. H. P. & Lino-Dos-Santos-Franco, A. (2017). Beneficial effects of red light-emitting diode treatment in experimental model of acute lung injury induced by sepsis. Scientific Reports, 7(1), 12670. https://doi.org/10.1038/s41598-017-13117-5

Hamblin, M. R. (2017). Mechanisms and applications of the anti-inflammatory effects of photobiomodulation. AIMS Biophysics, 4(3), 337–361. https://doi.org/10.3934/biophy.2017.3.337

Liu, T. C.-Y., Zeng, C.-C., Jiao, J.-L. & Liu, S.-H. (2003). The mechanism of low-intensity laser irradiation effects on virus. Proceedings Volume 5254, Third International Conference on Photonics and Imaging in Biology and Medicine. https://doi.org/10.1117/12.546134

Soheilifar, S., Fathi, H. & Naghdi, N. (2020). Photobiomodulation therapy as a high potential treatment modality for COVID-19. Lasers in Medical Science, 36, 935–938. https://doi.org/10.1007/s10103-020-03206-9

--The State of NeuroMeditation: Historical Perspectives, Current Research, and Future Directions

Brandmeyer, T. & Delorme, A. (2020). Closed-loop frontal midline θ neurofeedback: A novel approach for training focused-attention meditation. Frontiers in Human Neuroscience, 14, 246. https://doi.org/10.3389/fnhum.2020.00246

Brandmeyer, T., & Delorme, A. (2013). Meditation and neurofeedback. Frontiers in Psychology, 4, 688. https://doi.org/10.3389/fpsyg.2013.00688

Brandmeyer, T., Delorme, A., & Wahbeh, H. (2019). The neuroscience of meditation: Classification, phenomenology, correlates, and mechanisms. Progress in Brain Research, 244, 1–29. https://doi.org/10.1016/bs.pbr.2018.10.020

Cahn, B. R., & Polich, J. (2006). Meditation states and traits: EEG, ERP, and neuroimaging studies. Psychological Bulletin, 132(2), 180–211. https://doi.org/10.1037/0033-2909.132.2.180

Fox, K., Dixon, M., Nijeboer, M., Girn, M., Floman, J. L., Lifshitz, M., Ellamil, M., Sedlmeier, P., & Cristoff, K. (2016). Functional neuroanatomy of meditation: A review and meta-analysis of 78 functional neuroimaging investigations. Neuroscience & Biobehavioral Reviews, 65, 208–228. https://doi.org/10.1016/j.neubiorev.2016.03.021

Tarrant, J. (2017a). Meditation interventions to rewire the brain: Integrating neuroscience strategies for ADHD, anxiety, depression and PTSD. Eau Claire, WI: PESI Publishing and Media.

Tarrant, J. (2017b). NeuroMeditation: An introduction and overview. In T. F. Collura & J. A. Frederick (Ed.), Clinician’s companion to QEEG and neurofeedback (annotated and with an introduction by J. Kiffer). New York, NY: Taylor & Francis.

Tarrant, J. (2020). Neuromeditation: The science and practice of combining neurofeedback and meditation for improved mental health. [Online First], IntechOpen. https://doi.org/10.5772/intechopen.93781

Travis, F., & Shear, J. (2010). Focused attention, open monitoring and automatic self-transcending: Categories to organize meditations from Vedic, Buddhist and Chinese traditions. Consciousness and Cognition, 19(4), 1110–1118. https://doi.org/10.1016/j.concog.2010.01.007

van Lutterveld, R., Houlihan, S. D., Pal, P., Sacchet, M. D., McFarlane-Blake, C., Patel, P. R., Sullivan, J. S., Ossadtchi, A., Druker, S., Bauer, C., & Brewer, J. A. (2016). Source-space EEG neurofeedback links subjective experience with brain activity duringeffortless awareness meditation. NeuroImage, 151, 117–127. https://doi.org/10.1016/j.neuroimage.2016.02.047

--QEEG and LORETA Monitoring of Repetitive Transcranial Magnetic Stimulation for Medication Resistant Depression

Bailey, N. W., Hoy, K. E., Rogasch, N. C., Thomson, R. H., McQueen, S., Elliot, D., Sullivan, C. M., Fulcher, B. D., Daskalakis, Z. J., & Fitzgerald, P. B. (2019). Differentiating responders and non-responders to rTMS treatment for depression after one week using resting EEG connectivity measures. Journal of Affective Disorders, 242, 68–79. https://doi.org/10.1016/j.jad.2018.08.058

Boes, A. D., Uitermarkt, B. D., Albazron, F. M., Lan, M. J., Liston, C., Pascual-Leone, A., Dubin, M. J., & Fox, M. D. (2018). Rostral anterior cingulate cortex is a structural correlate of repetitive TMS treatment response in depression. Brain Stimulation, 11(3), 575–581. https://doi.org/10.1016/j.brs.2018.01.029

Esposito, R., Bortoletto, M., & Miniussi, C. (2020). Integrating TMS, EEG, and MRI as an approach for studying brain connectivity. Neuroscientist, 26(5–6), 471–486. https://doi.org/10.1177/1073858420916452

Ge, R., Downar, J., Blumberger, D. M., Daskalakis, Z. J., & Vila-Rodriguez, F. (2020). Functional connectivity of the anterior cingulate cortex predicts treatment outcome for rTMS in treatment-resistant depression at 3-month follow-up. Brain Stimulation, 13(1), 206–214. https://doi.org/10.1016./j.brs.2019.10.012

Keuper, K., Terrighena, E. L., Chan, C. C. H., Junghoefer, M., & Lee, T. M. C. (2018). How the dorsolateral prefrontal cortex controls affective processing in absence of visual awareness - insights from a combined EEG-rTMS study. Frontiers in Human Neuroscience, 12, 412. https://doi.org/10.3389/fnhum.2018.00412

Noda, Y., Zomorrodi, R., Saeki, T., Rajji, T. K., Blumberger, D. M., Daskalakis, Z. J., & Nakamura, M. (2017). Resting-state EEG gamma power and theta-gamma coupling enhancement following high-frequency left dorsolateral prefrontal rTMS in patients with depression. Clinical Neurophysiology, 128(3), 424–432. https://doi.org/10.1016/j.clinph.2016.12.023

Song, P., Lin, H., Li, S., Wang, L., Liu, J., Li, N., & Wang, Y. (2019). Repetitive transcranial magnetic stimulation (rTMS) modulates time-varying electroencephalography (EEG) network in primary insomnia patients: a TMS-EEG study. Sleep Medicine, 56, 157–163. https://doi.org/10.1016/j.sleep.2019.01.007

Trapp, N. T., Bruss, J., King Johnson, M., Uitermarkt, B. D., Garrett, L., Heinzerling, A., Wu, C., Koscik, T. R., Eyck, P. T., & Boes, A. D. (2020). Reliability of targeting methods in TMS for depression: Beam F3 vs. 5.5 cm. Brain Stimulation, 13(3), 578–581. https://doi.org/10.1016/j.brs.2020.01.010

Wu, G.-R., Wang, X., & Baeken, C. (2020). Baseline functional connectivity may predict placebo responses to accelerated rTMS treatment in major depression. Human Brain Mapping, 41(3), 632–639. https://doi.org/10.1002/hbm.24828

--Infraslow Neurofeedback Update

Aladjalova, N. A. (1957). Infra-slow rhythmic oscillations of the steady potential of the cerebral cortex. Nature, 179(4567), 957–959. https://dx.doi.org/10.1038/179957a0

Balt, K., Preet, D. T., Smith, M. L., & Janse, C. (2020). The effect of infraslow frequency neurofeedback on autonomic nervous system function in adults with anxiety and related diseases. NeuroRegulation, 7(2), 64–74. https://doi.org/10.15540/nr.7.2.64

Leong, S. L., Vanneste, S., Lim, J., Smith, M., Manning, P., & De Ridder, D. (2018). A randomised, double-blind, placebo-controlled parallel trial of closed-loop infraslow brain training in food addiction. Scientific Reports, 8, 11659. https://doi.org/10.1038/s41598-018-30181-7

Matthew, J., Adhia, D. B., Smith, M. L., De Ridder, D., & Mani, R. (2020). Protocol for a pilot randomized sham-controlled clinical trial evaluating the feasibility, safety, and acceptability of infraslow electroencephalography neurofeedback training on experimental and clinical pain outcomes in people with chronic painful knee osteoarthritis. NeuroRegulation, 7(1), 30–44. https://doi.org/10.15540/nr.7.1.30

Menon, B. (2019). Towards a new model of understanding – The triple network, psychopathology and the structure of the mind. Medical Hypotheses, 133, 109385. https://doi.org/10.1016/j.mehy.2019.109385

Palva, J. M., & Palva, S. (2012). Infra-slow fluctuations in electrophysiological recordings, blood-oxygenation-level-dependent signals, and psychophysical time series. NeuroImage, 62(4), 2201–2211. https://doi.org/10.1016/j.neuroimage.2012.02.060

Perez, T. M., Glue, P., Adhia, D. B., Mathew, J., & De Ridder, D. (2021). Is there evidence for EEG-neurofeedback specificity in the treatment of internalizing disorders? A protocol for a systematic review and meta-analysis. NeuroRegulation, 8(1), 22–28. https://doi.org/10.15540/nr.8.1.22

--COVID-19: Effects on Brain, Behavior, and QEEG Correlates

Cani, I., Barone, V., D’Angelo, R., Pisani, L., Allegri, V., Spinardi, L., Malpassi, P., Fasano, L., Rinaldi, R., Fanti, S., Cortelli, P., & Guarino, M. (2020). Frontal encephalopathy related to hyperinflammation in COVID-19. Journal of Neurology. 268(1), 16–19. https://doi.org/10.1007/s00415-020-10057-5

De Santis, G. (2020). SARS-CoV-2: A new virus but a familiar inflammation brain pattern. Brain, Behavior, and Immunity, 87, 95–96. https://doi.org/10.1016/j.bbi.2020.04.066

Desfordes, M., Le Coupanec, A., Dubeau, P., Bourgouin, A., Lajoie, L., Dubé, M., & Talbot, P. J. (2020). Human coronaviruses and other respiratory viruses: Underestimated opportunistic pathogens of the central nervous system? Viruses, 12(1), 14. https://doi.org/10.3390/v12010014

Dubé, M., Le Coupanec, A., Wong, A. H., M., Rini, J. M., Desforges, M., & Talbot, P. J. (2018). Axonal transport enables neuron-to-neuron propagation of human coronavirus OC43. Journal of Virology, 92(17), e00404-18.

Gandhi, S., Srivastava, A. K., Ray, U., & Tripathi, P. P. (2020). Is the collapse of the respiratory center in the brain responsible for respiratory breakdown in COVID-19 patients? ACS Chemical Neuroscience. 11(10), 1379–1381. https://doi.org/10.1021/acschemneuro.0c00217

Huang, C., Huang, L., Wang, Y., Li, X., Ren, L., Gu, X., Kang, L., Guo, L., Liu, M., Zhou, X., Luo, J., Huang, Z., Tu, S., Zhao, Y., Chen, L., Xu, D., Li, Y., Li, C., Peng, L., Li, Y. … Cao, B. (2021). 6-month consequences of COVID-19 in patients discharged from hospital: A cohort study. Lancet, 397(10270), 220–232. https://doi.org/10.1016/s0140-6736(20)32656-8

Kandemirli, S. G., Dogan, L., Sarikaya, Z. T., Kara. S., Akinci, C., Kaya, D., Kaya, Y., Yildirim, D., Tuzuner, F., Yildirim, M., S., Ozluk, E., Gucyetmez, B., Karaarslan, E., Koyluoglu, I., Kaya, H. S., D., Mammadov, O., Ozdemir, I. K., Afsar, N., Yalcinkaya, B. C., Rasimoglu, S., … Kocer, N. (2020). Brain MRI findings in patients in the intensive care unit with COVID-19 infection. Radiology, 297(1), E232–E235. https://doi.org/10.1148/radiol.2020201697

Kramer, S., Lersy, F., de Sèze, J., Ferré, J.-C., Maamar, A., Carsin-Nicol, B., Collange, O., Bonneville, F., Adam, G., Martin-Blondel, G., Rafiq, M., Geeraerts, T., Delamarre, L., Grand, S., Krainik, A., Caillard, S., Constans, J. M., Metanbou, S., Heintz, A., Helms, … Cotton, F. (2020) Brain MRI findings in severe COVID-19: A retrospective observational study. Radiology, 297(2), E242–E251. https://doi.org/10.1148/radiol.2020202222

Narula, N., Joseph, R., Katyal, N., Daouk, A., Acharya, S., Avula, A., & Maroun, R. (2020). Seizure and COVID-19: Association and review of potential mechanism. Neurology, Psychiatry and Brain Research, 38, 49–53. https://doi.org/10.1016/j.npbr.2020.10.001

Pasini, E., Bisulli, F., Volpi, L., Minardi, I., Tappatá, M., Muccioli, L., Pensato, U., Riguzzi, P., Tinuper, P., & Michelucci, R. (2020). EEG findings in COVID-19 related encephalopathy. Clinical Neurophysiology, 131(9), 2265–2267. https://doi.org/10.1016/j.clinph.2020.07.003

Paterson, R. W., Brown, R. L., Benjamin, L., Nortley, R., Wiethoff, S., Bharucha, T., Jayaseelan, D. L., Kumar, G., Raftopoulos, R. E., Zambreanu, L., Vivekanandam, V., Khoo, A., Geraldes, R., Chinthapalli, K., Boyd, E., Tuzlali, H., Price, G., Christofi, G., Morrow, J., McNamara, P., … McLoughlin, B. (2020). The emerging spectrum of COVID-19 neurology: Clinical, radiological and laboratory findings. Brain, 143(10), 3104–3120. https://doi.org/10.1093/brain/awaa240

Zanin, L., Saraceno, G., Panciani, P. P., Renisi, G., Signorini, L., Migliorati, K., & Fontanella, M. M. (2020). SARS-CoV-2 can induce brain and spine demyelinating lesions. Acta Neurochirurgica, 162(7), 1491–1494. https://doi.org/10.1007/s00701-020-04374-x

Zubair, A. S., McAlpine, L. S., Gardin, T., Farhadian, S., Kuruvilla, D. E., & Spudich, S. (2020). Neuropathogenesis and neurologic manifestations of the coronaviruses in the age of coronavirus disease 2019: A review. JAMA Neurology, 77(8), 1018–1027. https://doi.org/10.1001/jamaneurol.2020.2065

--Integrating Neurofeedback and Mindfulness Techniques in Sports Psychology for Enhancement of Athletic Performance

Crivelli, C., Fronda, G., & Balconi, M. (2019). Neurocognitive enhancement effects of combined mindfulness—Neurofeedback training in sport. Neuroscience, 412, 83–93. https://doi.org/10.1016/j.neuroscience.2019.05.066

Mirifar, A., Beckmann, J., & Ehrlenspiel, F. (2017). Neurofeedback as supplemental training for optimizing athletes' performance: A systematic review with implications for future research. Neuroscience & Biobehavioral Reviews, 75, 419–432. https://doi.org/10.1016/j.neubiorev.2017.02.005

Strack, B. W., Linden, M. K., & Wilson, V. S. (2011). Biofeedback & neurofeedback applications in sport psychology. Wheatridge, CO: Association for Applied Psychophysiology and Biofeedback

--Impact of Neurofeedback on Executive Functions of Children and Adults with Developmental Trauma: Results of Two Randomized Control Studies

Brewin, C. R., Kleiner, J. S., Vasterling, J. J., & Field A. P. (2007). Memory for emotionally neutral information in posttraumatic stress disorder: A meta-analytic investigation. Journal of Abnormal Psychology, 116(3), 448–463. https://doi.org/10.1037/0021-843x.116.3.448

Cook, A., Spinazzola, J., Ford, J. D., Lanktree, C., Blaustein, M., Cloitre, M., DeRosa, R., Hubbard, R., Kagan, R., Liautaud, J., Mallah, K., Olafson E., & van der Kolk, B. (2005). Complex trauma in children and adolescents. Psychiatric Annals, 35, 390–398.

Flaks, M. K., Malta, S. M., Almeida, P. P., Bueno O. F. A., Pupo, M. C., Andreoli, S. B., Mello, M. F., Lacerda A. L. T., Mari, J. J., & Bressan R. A. (2014). Attentional and executive functions are differentially affected by post-traumatic stress disorder and trauma. Journal of Psychiatric Research, 48(1), 32–39. https://doi.org/10.1016/j.jpsychires.2013.10.009

Gapen, M., van der Kolk, B. A., Hamlin, E., Hirshberg, L., Suvak, M., & Spinazzola, J. A. (2016). Pilot study of neurofeedback for chronic PTSD. Applied Psychophysiology and Biofeedback, 41(3), 251–261. https://doi.org/10.1007/s10484-015-9326-5

Gioia, G. A., Isquith, P. K., Retzlaff, P. D., & Espy, K. A. (2002). Confirmatory factor analysis of the Behavior Rating Inventory of Executive Function (BRIEF) in a clinical sample. Child Neuropsychology, 8(4), 249–257. https://doi.org/10.1076/chin.8.4.249.13513

Henry, K. L., Fulco, C. J., & Merrick, M. T. (2018). The harmful effect of child maltreatment on economic outcomes in adulthood. American Journal of Public Health, 108(9), 1134–1141. https://doi.org/10.2105/AJPH.2018.304635

Mohlman, J., & Gorman, J. M. (2005). The role of executive functioning in CBT: A pilot study with anxious older adults. Behaviour Research and Therapy, 43(4), 447–465. https://doi.org/10.1016/j.brat.2004.03.007

Rogel, A., Loomis, A. M., Hamlin, E., Hodgdon, H., Spinazzola, J., & van der Kolk B. (2020). The impact of neurofeedback training on children with developmental trauma: A randomized controlled study. Psychological Trauma: Theory, Research, Practice, and Policy, 12(8), 918–929. https://doi.org/10.1037/tra0000648

van der Kolk, B. A., Hodgdon, H., Gapen, M., Musicaro, R., Suvak, M. K., Hamlin, E., & Spinazzola, J. (2016). A randomized controlled study of neurofeedback for chronic PTSD. PLoS ONE, 11(12), e0166752. https://doi.org/10.1371/journal.pone.0166752

Vasterling, J., & Verfaellie, M. (2009). Introduction—posttraumatic stress disorder: A neurocognitive perspective. Journal of the International Neuropsychological Society, 15, 826–829. https://doi.org/10.1017/S1355617709990683

--Correlations Between Quantitative EEG Volumetric Analysis and Computerized Cognitive Testing Shortly After Sport Concussion Injury in High School Athletes, Part 2

Barr, W. B., Prichep, L. S., Chabot, R., Powell, M. R., & McCrea, M., (2012). Measuring brain electrical activity to track recovery from sport-related concussion. Brain Injury, 26(1), 58–66. https://doi.org/10.3109/02699052.2011.608216

Kerasidis, H., & Ims, D. (2017). sLORETA quantitative EEG analysis demonstrates persistent EEG changes beyond clinical recovery from sport concussion in high school athletes: A volumetric study. Poster session presented at the 4th Annual American Academy of Neurology Sports Concussion Conference, Jacksonville, FL.

Kerasidis, H., Ims, D., & Rector, S. (2018). Gender differences in quantitative volumetric analysis shortly after sport concussion in high school athletes. Poster session presented at the 4th Annual American Academy of Neurology Sports Concussion Conference, Jacksonville, FL.

Pascual-Marqui, R. (1999). Review of methods for solving the EEG inverse problem. International Journal of Bioelectromagnetism, 1(1), 75–86.

Pascual-Marqui, R. (2002). Standardized low resolution brain electromagnetic tomography (sLORETA): Technical details. Methods & Findings in Experimental & Clinical Pharmacology, 24(Suppl. D:5–12).

Thompson, M., Thompson, L., & Reid-Chung, A. (2015). Treating postconcussion syndrome with LORETA Z-score neurofeedback and heart rate variability biofeedback: Neuroanatomical/Neurophysiological rationale, methods, and case examples. Biofeedback, 43(1), 15–26. https://doi.org/10.5298/1081-5937-43.1.07

Vitacco, D., Brandeis, D., Pascual-Marqui, R., & Martin, E. (2002). Correspondence of event-related potential tomography and functional magnetic resonance imaging during language processing. Human Brain Mapping, 17(1), 4–12. https://doi.org/10.1002/hbm.10038

--Clinical Applications of 10-Channel qEEG Analysis: The Goldilocks Array

Burgess, N., Maguire, E. A., Spiers, H. J., & O'Keefe, J. (2001). A temporoparietal and prefrontal network for retrieving the spatial context of lifelike events. NeuroImage, 14(2), 439–453. https://doi.org/10.1006/nimg.2001.0806

Buzsáki G., & Draguhn A. (2004). Neuronal oscillations in cortical networks. Science, 304(5679), 1926–1929. https://doi.org/10.1126/science.1099745

Cohen, M. X., Elger, C. E., & Ranganath, C. (2007). Reward expectation modulates feedback-related negativity and EEG spectra. NeuroImage, 35(2), 968–978. https://doi.org/10.1016/j.neuroimage.2006.11.056

Collura, T. F. (2008). Towards a coherent view of brain connectivity. Journal of Neurotherapy, 12(2–3), 99–110. https://doi.org/10.1080/10874200802433274

Delorme, A., & Makeig, S. (2004). EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. Journal of Neuroscience Methods, 134(1), 9–21. https://doi.org/10.1016/j.jneumeth.2003.10.009

Fox, M. D., Snyder, A. Z., Vincent, J. L., Corbetta, M., Van Essen, D. C., & Raichle, M. E. (2005). The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proceedings of the National Academy of Sciences, 102(27), 9673–9678. https://doi.org/10.1073/pnas.0504136102

Gracefire, P. (2016). Introduction to the concepts and clinical applications of multivariate live Z-score training, PZOK and sLORETA feedback. In T. F. Collura, & J. A. Frederick (Eds.), Handbook of clinical QEEG and neurotherapy (pp. 326–383). New York, NY: Routledge.

Papousek, I., & Schulter, G. (2002). Covariations of EEG asymmetries and emotional states indicate that activity at frontopolar locations is particularly affected by state factors. Psychophysiology, 39(3), 350–360. https://doi.org/10.1017/s0048577201393083

Pascual-Marqui, R. (2002). Standardized low resolution brain electromagnetic tomography (sLORETA): Technical details. Methods & Findings in Experimental & Clinical Pharmacology, 24(Suppl. D), 5–12.

Wolbers, T., Wiener, J. M., Mallot, H. A., & Buchel, C. (2007). Differential recruitment of the hippocampus, medial prefrontal cortex, and the human motion complex during path integration in humans. Journal of Neuroscience, 27(35), 9408–9416. https://doi.org/10.1523/JNEUROSCI.2146-07.2007

--A Possibility of qEEG-Centered Mental Healthcare Platform as a Mainstream Practice in Mental Health

Baik, K., Kim, S. M., Jung, J. H., Lee, Y. H., Chung, S. J., Yoo, H. S., Ye, B. S., Lee, P. H., Sohn, Y. H., Kang, S. W., & Kang, S. Y. (2021). Donepezil for mild cognitive impairment in Parkinson’s disease. Scientific Reports, 11(1), 4734. https://doi.org/10.1038/s41598-021-84243-4

Han, S.-H., Pyun, J.-M., Yeo, S., Kang, D. W., Jeong, H. T., Kang, S. W., Kim, S., & Youn, Y. C. (2021). Differences between memory encoding and retrieval failure in mild cognitive impairment: Results from quantitative electroencephalography and magnetic resonance volumetry. Alzheimer's Research & Therapy, 13, 3. https://doi.org/10.1186/s13195-020-00739-7

Kang, G., Jin, S.-H., Keun Kim, D., & Kang, S. W. (2018). T59. EEG artifacts removal using machine learning algorithms and independent component analysis. Clinical Neurophysiology, 129(Suppl. 1), e24. https://doi.org/10.1016/j.clinph.2018.04.060

Kim, H. L., Kim, D.-K., Kang, S. W., & Park, Y. K. (2018). Association of nutrient intakes with cognitive function in Koreans aged 50 years and older. Clinical Nutrition Research, 7(3), 199–212. https://doi.org/10.7762/cnr.2018.7.3.199

Lee, D., Kang, D.-H., Ha, N.-H., Oh, C.-Y., Lee, U., & Kang, S. W. (2018). Effects of an online mind-body training program on the default mode network: An EEG functional connectivity study. Scientific Reports, 8, 16935. https://doi.org/10.1038/s41598-018-34947-x

Lee, S. H., Ahn, H. S., Kim, Y. H., Lee, H. W., & Lee, J. H. (2020). Neurologic prognostication by qEEG in post cardiac arrest patients with therapeutic hypothermia. Journal of the Korean Neurological Association, 38(4), 260–271. https://doi.org/10.17340/jkna.2020.4.2

Maestú, F., Cuesta, P., Hasan, O., Fernandéz, A., Funke, M., & Schulz, P. E. (2019). The importance of the validation of M/EEG with current biomarkers in Alzheimer's disease. Frontiers in Human Neuroscience, 13, 17. https://doi.org/10.3389/fnhum.2019.00017

Min, K., Suh, M. R., Cho, K. H., Park, W., Kang, M. S., Jang, S. J., Kim, S. H., Rhie, S., Choi, J. I., Kim, H.-J., Cha, K. Y., & Kim, M. (2020). Potentiation of cord blood cell therapy with erythropoietin for children with CP: A 2 x 2 factorial randomized placebo-controlled trial. Stem Cell Research & Therapy, 11(1), 509. https://doi.org/10.1186/s13287-020-02020-y

Shim, Y. S., & Shin, H. E. (2020). Analysis of Neuropsychiatric symptoms in patients with Alzheimer’s Disease using quantitative EEG and sLORETA. Neurodegenerative Diseases, 20(1), 12–19. https://doi.org/10.1159/000508130

Thapa, N., Park, H. J., Yang, J. G., Son, H., Jang, M., Lee, J., Kang, S. W., Park, K. W., & Park, H. (2020). The effect of a virtual reality-based intervention program on cognition in older adults with mild cognitive impairment: A randomized control trial. Journal of Clinical Medicine, 9(5), 1283. https://doi.org/10.3390/jcm9051283

--Good Vibrations

Cvetkovic, D., & Cosic, I. (2011). States of consciousness. Springer. https://doi.org/10.1007/978-3-642-18047-7

Goss, C., & Miller, E. B. (2014). Your brain on flute. Flutopedia. https://www.Flutopedia.com/ybof.htm, June 16, 2014.

Kunikullaya, K. U. (2020). EEG spectral changes with passive listening to Indian melodic scales. https://doi.org/10.17605/OSF.IO/37F6B

McTaggart, L. (2001). The field: The quest for the secret force of the universe. London, England: HarperCollins.

Miller, E. B., & Goss, C. F. (2014). An exploration of physiological responses to the Native American flute. Interdisciplinary Society for Quantitative Research in Music and Medicine, 95–143.

Miller, E. B., & Goss, C. F. (2015). Trends in physiological metrics during Native American flute playing. Nordic Journal of Music Therapy, 24(2), 176–178, https://doi.org/10.1080/08098131.2014.908944

Pantev, C., Oostenvel, R., Engelien, A., Ross, B., Roberts, L. E. & Hoke, M. (1998). Increased auditory cortical representation in musicians. Nature, 392(6678), 811–814. https://doi.org/10.1038/33918

Peretz, I., & Zatorre, R. J. (2005). Brain organization for music processing. Annual Review of Psychology, 56(1), 89–114. https://doi.org/10.1146/annurev.psych.56.091103.070225

Trimble, M., & Hesdorffer, D. (2017). Music and the brain: The neuroscience of music and musical appreciation. BJPsych International, 14(2), 28–31. https://doi.org/10.1192/s2056474000001720

Zatorre, R. J., Chen, J. L., & Penhune, V. B. (2007). When the brain plays music: auditory- motor interactions in music perception and production. Nature Reviews Neuroscience, 8(7), 547–558. https://doi.org/10.1038/nrn2152

Pantev, C., Oostenvel, R., Engelien, A., Ross, B., Roberts, L. E. & Hoke, M. (1998). Increased auditory cortical representation in musicians. Nature, 392(6678), 811–814. https://doi.org/10.1038/33918

Peretz, I., & Zatorre, R. J. (2005). Brain organization for music processing. Annual Review of Psychology, 56(1), 89–114. https://doi.org/10.1146/annurev.psych.56.091103.070225

Trimble, M., & Hesdorffer, D. (2017). Music and the brain: The neuroscience of music and musical appreciation. BJPsych International, 14(2), 28–31. https://doi.org/10.1192/s2056474000001720

Zatorre, R. J., Chen, J. L., & Penhune, V. B. (2007). When the brain plays music: auditory- motor interactions in music perception and production. Nature Reviews Neuroscience, 8(7), 547–558. https://doi.org/10.1038/nrn2152

--Pilot Data Examining Induction of Suboxone and Monitoring with Quantitative EEG and LORETA methods

Cannon, R. L., Baldwin, D. R., Shaw, T. L., Diloreto, D. J., Phillips, S. M., Scruggs, A. M., & Riehl, T. C. (2012). Reliability of quantitative EEG (qEEG) measures and LORETA current source density at 30 days. Neuroscience Letters, 518(1), 27–31. https://doi.org/10.1016/j.neulet.2012.04.035

Cannon, R., Lubar, J., & Baldwin, D. (2008). Self-perception and experiential schemata in the addicted brain. Applied Psychophysiology and Biofeedback, 33(4), 223–238. https://doi.org/10.1007/s10484-008-9067-9

Chang, Y. P., & Raynor, T. (2021). Factors associated with relapse in individuals with opioid use disorder receiving suboxone in rural areas. Journal of Addictions Nursing, 32(1), 20–26. https://doi.org/10.1097/JAN.0000000000000381

Demetrovics, Z., Farkas, J., Csorba, J., Németh, A., Mervó, B., Szemelyácz, J., Fleischmann, E., Kassai-Farkas, A., Petke, Z., Oroján, T., Rózsa, S., Rigó, P., Funk, S., Kapitány, M., Kollár, A., & Rácz, J. (2009). Early experience with Suboxone maintenance therapy in Hungary. Neuropsychopharmacologia Hungarica, 11(4), 249–257.

Elarabi, H., Elrasheed, A., Ali, A., Shawky, M., Hasan, N., Gawad, T. A., Adem, A., & Marsden, J. (2019). Suboxone treatment and recovery trial (STAR-T): Study protocol for a randomised controlled trial of opioid medication assisted treatment with adjunctive medication management using therapeutic drug monitoring and contingency management. Journal of Addiction, 2019, 2491063. https://doi.org/10.1155/2019/2491063

Finch, J. W., Kamien, J. B., & Amass, L. (2007). Two-year experience with Buprenorphine-naloxone (Suboxone) for maintenance treatment of opioid dependence within a private practice setting. Journal of Addiction Medicine, 1(2), 104–110. https://doi.org/10.1097/ADM.0b013e31809b5df2

Furst, R. T. (2013). Suboxone misuse along the opiate maintenance treatment pathway. Journal of Addictive Diseases, 32(1), 53–67. https://doi.org/10.1080/10550887.2012.759860

Sokhadze, T. M., Cannon, R. L., & Trudeau, D. L. (2008). EEG biofeedback as a treatment for substance use disorders: Review, rating of efficacy, and recommendations for further research. Applied Psychophysiology and Biofeedback, 33(1), 1-28. https://doi.org/10.1007/s10484-007-9047-5

Towns, C., Mee, H., & McBride, S. (2020). Opioid dependence with successful transition to suboxone (buprenorphine/naloxone) in a young woman with hereditary Coproporphyria. The New Zealand Medical Journal, 133(1518), 81–83.

Velander, J. R. (2018). Suboxone: Rationale, science, misconceptions. The Ochsner Journal, 18(1), 23–29.

--The Use of ERP/EEG Guided tACS/tRNS Neurostimulation Methods in Clinical Practice

Antal, A., & Herrmann, C. S. (2016). Transcranial alternating current and random noise stimulation: Possible mechanisms. Neural Plasticity, 2016, 1–12. https://doi.org/10.1155/2016/3616807

Antonenko, D., Faxel, M., Grittner, U., Lavidor, M., & Flöel, A. (2016). Effects of transcranial alternating current stimulation on cognitive functions in healthy young and older adults. Neural Plasticity, 2016, 1–13. https://doi.org/10.1155/2016/4274127

Bikson, M., Grossman, P., Thomas, C., Zannou, A. L., Jiang, J., Adnan, T., Mourdoukoutas, A. P., Kronberg, G., Truong, D., Boggio, P., Brunoni, A. R., Charvet, L., Fregni, F., Fritsch, B., Gillick, B., Hamilton, R. H., Hampstead, B. M., Jankord, R., Kirton, A., Knotkova, H., … Liebetanz, D. (2016). Safety of transcranial direct current stimulation: Evidence based update 2016. Brain Stimulation, 9(5), 641–661. https://doi.org/10.1016/j.brs.2016.06.004

Brunoni, A. R., Moffa, A. H., Fregni, F., Palm, U., Padberg, F., Blumberger, D. M., Daskalakis, Z. J., Bennabi, D., Haffen, E., Alonzo, A., & Loo, C. K. (2016). Transcranial direct current stimulation for acute major depressive episodes: Meta-analysis of individual patient data. British Journal of Psychiatry, 208(6), 522–531. https://doi.org/10.1192/bjp.bp.115.164715

Camilleri, R., Pavan, A., Ghin, F., Battaglini, L., & Campana, G. (2014). Improvement of uncorrected visual acuity and contrast sensitivity with perceptual learning and transcranial random noise stimulation in individuals with mild myopia. Frontiers in Psychology, 5. https://doi.org/10.3389/fpsyg.2014.01234

Chaieb, L., Antal, A., & Paulus, W. (2015). Transcranial random noise stimulation-induced plasticity is NMDA-receptor independent but sodium-channel blocker and benzodiazepines sensitive. Frontiers in Neuroscience, 9. https://doi.org/10.3389/fnins.2015.00125

Delorme, A., & Makeig, S. (2004). EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. Journal of Neuroscience Methods, 134(1), 9–21. https://doi.org/10.1016/j.jneumeth.2003.10.009

Kunze, T., Hunold, A., Haueisen, J., Jirsa, V., & Spiegler, A. (2016). Transcranial direct current stimulation changes resting state functional connectivity: A large-scale brain network modeling study. NeuroImage, 140, 174–187. https://doi.org/10.1016/j.neuroimage.2016.02.015

Pion-Tonachini, L., Kreutz-Delgado, K., & Makeig, S. (2019). The ICLabel dataset of electroencephalographic (EEG) independent component (IC) features. Data in Brief, 25, 104101. https://doi.org/10.1016/j.dib.2019.104101

Published
2021-12-30
Section
Proceedings