Investigating the Relationship Between Resting-state EEG Frontoparietal Coherence, Visuospatial Ability, and Motor Skill Acquisition: A Retrospective Analysis

  • Peiyuan Wang Arizona State University
  • Anupriya Pathania University of Utah
  • Matthew J Euler University of Utah
  • Kevin Duff University of Utah
  • Sydney Y Schaefer Arizona State University
Keywords: visuospatial function, EEG, imaginary coherence, motor learning


Introduction: Visuospatial ability may explain individual differences in the extent of motor skill learning. This study tested whether frontoparietal functional connectivity at rest, measured by resting-state electroencephalography (EEG) coherence, is related to both visuospatial performance and motor skill acquisition (an early stage of motor learning). Methods: Across 21 participants, the following data were retrospectively analyzed: 2-min eyes-closed resting-state EEG, the Visuospatial/Constructional Index score from the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS), and five practice trials of a functional motor task. Right frontoparietal coherence in the alpha band (8–12 Hz) was computed with imaginary coherence (IC) between electrodes F4 and P4, with ICs from left and midline electrodes included as negative controls. Results: F4–P4 alpha IC was highly correlated with the RBANS Visuospatial/Constructional Index, while left and midline alpha ICs were not. However, there was no correlation between right frontoparietal alpha IC with skill acquisition. Conclusion: This study supports that right frontoparietal IC is positively related with visuospatial function, yet the limited dose of motor practice (five trials) in the retrospective dataset was not inherently designed to investigate motor skill acquisition per se. However, results show proof of concept for developing right frontoparietal alpha IC-based neurofeedback applications for visuospatial training.


Brandes-Aitken, A., Anguera, J. A., Chang, Y.-S., Demopoulos, C., Owen, J. P., Gazzaley, A., Mukherjee, P., & Marco, E. J. (2019). White matter microstructure associations of cognitive and visuomotor control in children: A sensory processing perspective. Frontiers in Integrative Neuroscience, 12, 65.

Brooks, V., Hilperath, F., Brooks, M., Ross, H. G., & Freund, H. J. (1995). Learning “what” and “how” in a human motor task. Learning & Memory, 2(5), 225–242.

Caselli, R. J., Langlais, B. T., Dueck, A. C., Chen, Y., Su, Y., Locke, D. E. C., Woodruff, B. K., & Reiman, E. M. (2020). Neuropsychological decline up to 20 years before incident mild cognitive impairment. Alzheimer’s & Dementia, 16(3), 512–523.

Cohen, M. X. (2015). Comparison of different spatial transformations applied to EEG data: A case study of error processing. International Journal of Psychophysiology, 97(3), 245–257.

Cohen, M. X. (2014). Analyzing neural time series data: Theory and practice. Cambridge, MA: The MIT Press.

Corbetta, M., Kincade, J. M., Ollinger, J. M., McAvoy, M. P., & Shulman, G. L. (2000). Voluntary orienting is dissociated from target detection in human posterior parietal cortex. Nature Neuroscience, 3, 292–297.

de Cheveigné, A. (2020). ZapLine: A simple and effective method to remove power line artifacts. NeuroImage, 207, 116356.

Delorme, A., & Makeig, S. (2004). EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. Journal of Neuroscience Methods, 134(1), 9–21.

Delorme, A., Sejnowski, T., & Makeig, S. (2007). Enhanced detection of artifacts in EEG data using higher-order statistics and independent component analysis. NeuroImage, 34(4), 1443–1449.

Foxe, J. J., McCourt, M. E., & Javitt, D. C. (2003). Right hemisphere control of visuospatial attention: Line-bisection judgments evaluated with high-density electrical mapping and source analysis. NeuroImage, 19(3), 710–726.

Hari, R., & Salmelin, R. (1997). Human cortical oscillations: A neuromagnetic view through the skull. Trends in Neurosciences, 20(1), 44–49.

Hillebrand, A., Barnes, G. R., Bosboom, J. L., Berendse, H. W., & Stam, C. J. (2012). Frequency-dependent functional connectivity within resting-state networks: An atlas-based MEG beamformer solution. NeuroImage, 59(4), 3909–3921.

Hoffmann, S., & Falkenstein, M. (2008). The correction of eye blink artefacts in the EEG: A comparison of two prominent methods. PLoS ONE, 3(8), e3004.

Jensen, O., Goel, P., Kopell, N., Pohja, M., Hari, R., & Ermentrout, B. (2005). On the human sensorimotor-cortex beta rhythm: Sources and modeling. NeuroImage, 26(2), 347–355.

Johnson, D. K., Storandt, M., Morris, J. C., & Galvin, J. E. (2009). Longitudinal study of the transition from healthy aging to Alzheimer disease. Archives of Neurology, 66(10), 1254–1259.

Jokinen, H., Melkas, S., Ylikoski, R., Pohjasvaara, T., Kaste, M., Erkinjuntti, T., & Hietanen, M. (2015). Post-stroke cognitive impairment is common even after successful clinical recovery. European Journal of Neurology, 22(9), 1288–1294.

Jongbloed, L. (1986). Prediction of function after stroke: A critical review. Stroke, 17(4), 765–776.

Kayser, J., & Tenke, C. E. (2015). Issues and considerations for using the scalp surface Laplacian in EEG/ERP research: A tutorial review. International Journal of Psychophysiology, 97(3), 189–209.

Keil, A., Debener, S., Gratton, G., Junghöfer, M., Kappenman, E. S., Luck, S. J., Miller, G. A., & Yee, C. M. (2014). Committee report: Publication guidelines and recommendations for studies using electroencephalography and magnetoencephalography. Psychophysiology, 51(1), 1–21.

Kumar, A., Panthi, G., Divakar, R., & Mutha, P. K. (2020). Mechanistic determinants of effector-independent motor memory encoding. Proceedings of the National Academy of Sciences of the United States of America, 117(29), 17338–17347.

Lingo VanGilder, J., Hengge, C. R., Duff, K., & Schaefer, S. Y. (2018). Visuospatial function predicts one-week motor skill retention in cognitively intact older adults. Neuroscience Letters, 664, 139–143.

Lingo VanGilder, J., Lohse, K. R., Duff, K., Wang, P., & Schaefer, S. Y. (2021). Evidence for associations between Rey-Osterrieth Complex Figure test and motor skill learning in older adults. Acta Psychologica, 214, 103261.

Manuel, A. L., Guggisberg, A. G., Thézé, R., Turri, F., & Schnider, A. (2018). Resting-state connectivity predicts visuo-motor skill learning. NeuroImage, 176, 446–453.

Mottaz, A., Corbet, T., Doganci, N., Magnin, C., Nicolo, P., Schnider, A., & Guggisberg, A. G. (2018). Modulating functional connectivity after stroke with neurofeedback: Effect on motor deficits in a controlled cross-over study. NeuroImage: Clinical, 20, 336–346.

Mottaz, A., Solcà, M., Magnin, C., Corbet, T., Schnider, A., & Guggisberg, A. G. (2015). Neurofeedback training of alpha-band coherence enhances motor performance. Clinical Neurophysiology, 126(9), 1754–1760.

Nolte, G., Bai, O., Wheaton, L., Mari, Z., Vorbach, S., & Hallett, M. (2004). Identifying true brain interaction from EEG data using the imaginary part of coherency. Clinical Neurophysiology, 115(10), 2292–2307.

Nunez, P. L., & Srinivasan, R. (2009). Electric Fields of the Brain: The neurophysics of EEG. Oxford Scholarship Online.

Oostenveld, R., & Praamstra, P. (2001). The five percent electrode system for high-resolution EEG and ERP measurements. Clinical Neurophysiology, 112(4), 713–719.

Pathania, A., Euler, M. J., Clark, M., Cowan, R. L., Duff, K., & Lohse, K. R. (2022). Resting EEG spectral slopes are associated with age-related differences in information processing speed. Biological Psychology, 168, 108261.

Perrin, F., Pernier, J., Bertrand, O., & Echallier, J. F. (1989). Spherical splines for scalp potential and current density mapping. Electroencephalography and Clinical Neurophysiology, 72(2), 184–187.

Pion-Tonachini, L., Kreutz-Delgado, K., & Makeig, S. (2019). ICLabel: An automated electroencephalographic independent component classifier, dataset, and website. NeuroImage, 198, 181–197.

Plöchl, M., Ossandón, J., & König, P. (2012). Combining EEG and eye tracking: Identification, characterization, and correction of eye movement artifacts in electroencephalographic data. Frontiers in Human Neuroscience, 6, 278.

Randolph, C., Tierney, M. C., Mohr, E., & Chase, T. N. (1998). The repeatable battery for the assessment of neuropsychological status (RBANS): Preliminary clinical validity. Journal of Clinical and Experimental Neuropsychology, 20(3), 310–319.

Regan, E., Fridriksson, J., Schaefer, S. Y., Rorden, C., Bonilha, L., Lingo VanGilder, J., & Stewart, J. C. (2021). Neural correlates of within-session practice effects in mild motor impairment after stroke: A preliminary investigation. Experimental Brain Research, 239(1), 151–160.

Rizk, S., Ptak, R., Nyffeler, T., Schnider, A., & Guggisberg, A. G. (2013). Network mechanisms of responsiveness to continuous theta-burst stimulation. European Journal of Neuroscience, 38(8), 3230–3238.

Schaefer, S. Y., & Duff, K. (2017). Within-session and one-week practice effects on a motor task in amnestic mild cognitive impairment. Journal of Clinical and Experimental Neuropsychology, 39(5), 473–484.

Sitaram, R., Ros, T., Stoeckel, L., Haller, S., Scharnowski, F., Lewis-Peacock, J., Weiskopf, N., Blefari, M. L., Rana, M., Oblak, E., Birbaumer, N., & Sulzer, J. (2017). Closed-loop brain training: The science of neurofeedback. Nature Reviews Neuroscience, 18(2), 86–100.

Steele, C. J., Scholz, J., Douaud, G., Johansen-Berg, H., & Penhune, V. B. (2012). Structural correlates of skilled performance on a motor sequence task. Frontiers in Human Neuroscience, 6, 289.

Tenke, C. E., & Kayser, J. (2012). Generator localization by current source density (CSD): Implications of volume conduction and field closure at intracranial and scalp resolutions. Clinical Neurophysiology, 123(12), 2328–2345.

Wang, P., Infurna, F. J., & Schaefer, S. Y. (2020). Predicting motor skill learning in older adults using visuospatial performance. Journal of Motor Learning and Development, 8(1), 38–51.

Wu, J., Knapp, F., Cramer, S. C., & Srinivasan, R. (2018). Electroencephalographic connectivity measures predict learning of a motor sequencing task. Journal of Neurophysiology, 119(2), 490–498.

Wu, J., Srinivasan, R., Kaur, A., & Cramer, S. C. (2014). Resting-state cortical connectivity predicts motor skill acquisition. NeuroImage, 91, 84–90.

Zhou, R. J., Hondori, H. M., Khademi, M., Cassidy, J. M., Wu, K. M., Yang, D. Z., Kathuria, N., Erani, F. R., Dodakian, L., McKenzie, A., Lopes, C. V., Scacchi, W., Srinivasan, R., & Cramer, S. C. (2018). Predicting gains with visuospatial training after stroke using an EEG measure of frontoparietal circuit function. Frontiers in Neurology, 9, 597.

Zoefel, B., Huster, R. J., & Herrmann, C. S. (2011). Neurofeedback training of the upper alpha frequency band in EEG improves cognitive performance. NeuroImage, 54(2), 1427–1431.

Research Papers