Exploration of Brain Network Measures Across Three Meditation Traditions

  • Pankaj Pandey Indian Institute of Technology Gandhinagar
  • Pragati Gupta
  • Krishna Prasad Miyapuram
Keywords: Meditation, Functional Connectivity, EEG signals, graph measures, support vector machine, machine learning, brainwaves, Himalayan Yoga, Isha Shoonya, Vipassana

Abstract

Research into the similarities and differences between various forms of meditation practice is still in its early stages. Here, utilizing functional connectivity and graph measures, we present our work examining three meditation traditions: Himalayan Yoga (HT), Isha Shoonya (SNY), and Vipassana (VIP). EEG activity of the meditative block is used to build functional brain connections to exploit the resulting networks between various meditation traditions and a control group. Support vector machine is employed for binary classification, and models are built with features generated via graph theory measures. We obtain maximum accuracy of 84.76% with gamma1, 90% with alpha, and 84.76% with theta in HT, SNY, and VIP, respectively. Our key findings involve (a) higher delta connectivity in Vipassana meditators, (b) synchronization of theta networks in the left hemisphere inspected to be stronger in the anterior frontal area across meditators, (c) greater involvement of gamma2 processing observed among Himalayan and Vipassana meditators, (d) increased left frontal activity contribution for all meditators in theta and gamma bands, and (e) modularity engaged extensively in gamma processing across all meditation traditions. Furthermore, we discuss the implication of this research for neurotechnology products to enable guided meditation among naive practitioners.

References

Amihai, I., & Kozhevnikov, M. (2015). The influence of Buddhist meditation traditions on the autonomic system and attention. BioMed Research International, 2015. https://doi.org/10.1155/2015/731579

Banquet, J. P. (1973). Spectral analysis of the EEG in meditation. Electroencephalography and Clinical Neurophysiology, 35(2), 143–151. https://doi.org/10.1016/0013-4694(73)90170-3

Braboszcz, C., Cahn, B. R., Levy, J., Fernandez, M., & Delorme, A. (2017). Increased gamma brainwave amplitude compared to control in three different meditation traditions. PLoS ONE, 12(1), Article e0170647. https://doi.org/10.1371/journal.pone.0170647

Brandmeyer, T., & Delorme, A. (2018). Reduced mind wandering in experienced meditators and associated EEG correlates. Experimental Brain Research, 236(9), 2519–2528. https://doi.org/10.1007/s00221-016-4811-5

Brandmeyer, T., Delorme, A., & Wahbeh, H. (2019). The neuroscience of meditation: Classification, phenomenology, correlates, and mechanisms. Progress in Brain Research, 244, 1–29. https://doi.org/10.1016/bs.pbr.2018.10.020

Bruña, R., Maestú, F., & Pereda, E. (2018). Phase locking value revisited: Teaching new tricks to an old dog. Journal of Neural Engineering, 15(5), Article 056011. https://doi.org/10.1088/1741-2552/aacfe4

Cahn, B. R., Delorme, A., & Polich, J. (2010). Occipital gamma activation during Vipassana meditation. Cognitive Processing, 11(1), 39–56. https://doi.org/10.1007/s10339-009-0352-1

Cahn, B. R., Delorme, A., & Polich, J. (2013). Event-related delta, theta, alpha and gamma correlates to auditory oddball processing during Vipassana meditation. Social Cognitive and Affective Neuroscience, 8(1), 100–111. https://doi.org/10.1093/scan/nss060

Cahn, B. R., & Polich, J. (2009). Meditation (Vipassana) and the P3a event-related brain potential. International Journal of Psychophysiology, 72(1), 51–60. https://doi.org/10.1016/j.ijpsycho.2008.03.013

Cavanagh, J. F., & Frank, M. J. (2014). Frontal theta as a mechanism for cognitive control. Trends in Cognitive Sciences, 18(8), 414–421. https://doi.org/10.1016/j.tics.2014.04.012

Cavanagh, J. F., & Shackman, A. J. (2015). Frontal midline theta reflects anxiety and cognitive control: Meta-analytic evidence. Journal of Physiology-Paris, 109(1–3), 3–15. https://doi.org/10.1016/j.jphysparis.2014.04.003

Chaudhary, S., Pandey, P., Miyapuram, K. P., & Lomas, D. (2022). Classifying EEG signals of

mind-wandering across different styles of meditation. In M. Mahmud, J. He, S. Vassanelli, A. van Zundert, & N. Zhong (Eds.), Brain Informatics. BI 2022. Lecture Notes in Computer Science (vol. 13406, pp. 152–163). Springer, Cham. https://doi.org/10.1007/978-3-031-15037-1_13

Dahl, C. J., Wilson-Mendenhall, C. D., & Davidson, R. J. (2020). The plasticity of well-being: A training-based framework for the cultivation of human flourishing. Proceedings of the National Academy of Sciences of the United States of America, 117(51), 32197–32206. https://doi.org/10.1073/pnas.2014859117

De Vico Fallani, F., Latora, V., & Chavez, M. (2017). A topological criterion for filtering information in complex brain networks. PLoS Computational Biology, 13(1), Article e1005305. https://doi.org/10.1371/journal.pcbi.1005305

Faber, P. L., Steiner, M. E., Lehmann, D., Pascual-Marqui, R. D., Jäncke, L., Esslen, M., & Gianotti, L. R. R. (2008). Deactivation of the medial prefrontal cortex in experienced Zen meditators. Brain Topography, 20, 172.

Ferrarelli, F., Smith, R., Dentico, D., Riedner, B. A., Zennig, C., Benca, R. M., Lutz, A., Davidson, R. J., & Tononi, G. (2013). Experienced mindfulness meditators exhibit higher parietal-occipital EEG gamma activity during NREM sleep. PLoS ONE, 8(8), Article e73417. https://doi.org/10.1371/journal.pone.0073417

Fries, P. (2009). Neuronal gamma-band synchronization as a fundamental process in cortical computation. Annual Review of Neuroscience, 32(1), 209–224. https://doi.org/10.1146/annurev.neuro.051508.135603

Fries, P., Nikolić, D., & Singer, W. (2007). The gamma cycle. Trends in Neurosciences, 30(7), 309–316. https://doi.org/10.1016/j.tins.2007.05.005

Friston, K. J. (1994). Functional and effective connectivity in neuroimaging: A synthesis. Human Brain Mapping, 2(1–2), 56–78. https://doi.org/10.1002/hbm.460020107

Hauswald, A., Übelacker, T., Leske, S., & Weisz, N. (2015). What it means to be Zen: Marked modulations of local and interareal synchronization during open monitoring meditation. NeuroImage, 108, 265–273. https://doi.org/10.1016/j.neuroimage.2014.12.065

He, Y., & Evans, A. (2010). Graph theoretical modeling of brain connectivity. Current Opinion in Neurology, 23(4), 341–350. https://doi.org/10.1097/wco.0b013e32833aa567

Hiroyasu, T., & Hiwa, S. (2017, March). Brain functional state analysis of mindfulness using graph theory and functional connectivity. In 2017 AAAI Spring Symposium on Wellbeing AI: From Machine Learning to Subjectivity Oriented Computing Technical Report SS-17-08. https://www.aaai.org/ocs/index.php/SSS/SSS17/paper/view/15333/14622

Jalili, M. (2016). Functional brain networks: Does the choice of dependency estimator and binarization method matter? Scientific Reports, 6(1), Article 29780. https://doi.org/10.1038/srep29780

Kora, P., Meenakshi, K., Swaraja, K., Rajani, A., & Raju, M. S. (2021). EEG based interpretation of human brain activity during yoga and meditation using machine learning: A systematic review. Complementary Therapies in Clinical Practice, 43, Article 101329. https://doi.org/10.1016/j.ctcp.2021.101329

Li, X.-J., & Yang, G.-H. (2016). Graph theory-based pinning synchronization of stochastic complex dynamical networks. In IEEE Transactions on Neural Networks and Learning Systems, 28(2), 427–437. https://doi.org/10.1109/tnnls.2016.2515080

Manna, A., Raffone, A., Perrucci, M. G., Nardo, D., Ferretti, A., Tartaro, A., Londei, A., Del Grattta, C., Belardinelli, M. O., & Romani, G. L. (2010). Neural correlates of focused attention and cognitive monitoring in meditation. Brain Research Bulletin, 82(1–2), 46–56. https://doi.org/10.1016/j.brainresbull.2010.03.001

Marzetti, L., Di Lanzo, C., Zappasodi, F., Chella, F., Raffone, A., & Pizzella, V. (2014). Magnetoencephalographic alpha band connectivity reveals differential default mode network interactions during focused attention and open monitoring meditation. Frontiers in Human Neuroscience, 8, Article 832. https://doi.org/10.3389/fnhum.2014.00832

Migala, J. (2021, May). These 7 apps will deepen your meditation practice. Very Well Mind. https://www.verywellmind.com/best-meditation-apps-4767322

MNE. (n.d.). mne.connectivity.spectralconnectivity. https://mne.tools

Muse. (n.d.) Meditation made easy. https://choosemuse.com

Neuphony. (n.d.) https://neuphony.com

Nikolić, D., Fries, P., & Singer, W. (2013). Gamma oscillations: Precise temporal coordination without a metronome. Trends in Cognitive Sciences, 17(2), 54–55. https://doi.org/10.1016/j.tics.2012.12.003

Nolte, G., Bai, O., Wheaton, L., Mari, Z., Vorbach, S., & Hallett, M. (2004). Identifying true brain interaction from EEG data using the imaginary part of coherency. Clinical Neurophysiology, 115(10), 2292–2307. https://doi.org/10.1016/j.clinph.2004.04.029

Ojala, M., & Garriga, G. C. (2009). Permutation tests for studying classifier performance. 2009 Ninth IEEE International Conference on Data Mining, 908–913. https://doi.org/10.1109/icdm.2009.108

Pandey, P., Gupta, P., Chaudhary, S., Miyapuram, K. P., & Lomas, D. (2022, July). Real-time sensing and

neurofeedback for practicing meditation using simultaneous EEG and eye tracking. In 2022 IEEE

Region 10 Symposium (TENSYMP; pp. 1–6). IEEE.

Pandey, P., Gupta, P., & Miyapuram, K. P. (2021, September). Brain connectivity based classification of meditation expertise. In M. Mahmud, M. S. Kaiser, S. Vassanelli, Q. Dai, and N. Zhong (Eds.), Brain Informatics. BI 2021. Lecture Notes in Computer Science (vol. 12960, pp. 89–98). Springer, Cham. https://doi.org/10.1007/978-3-030-86993-9_9

Pandey, P., & Miyapuram, K. P. (2020, July). Classifying oscillatory signatures of expert vs nonexpert meditators. 2020 International Joint Conference on Neural Networks (IJCNN), 1–7. https://doi.org/10.1109/ijcnn48605.2020.9207340

Pandey, P., & Miyapuram, K. P. (2021a, April). Non-linear analysis of expert and non-expert meditators using machine learning. https://doi.org/10.13140/RG.2.2.18323.60968

Pandey, P., & Miyapuram, K. P. (2021b, July). BRAIN2DEPTH: Lightweight CNN model for classification of cognitive states from EEG recordings. In Annual Conference on Medical Image Understanding and Analysis (pp. 394–407). Springer, Cham. https://doi.org/10.1007/978-3-030-80432-9_30

Pandey, P., & Miyapuram, K. P. (2021c, December). Nonlinear EEG analysis of mindfulness training using interpretable machine learning. 2021 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), 3051–3057. https://doi.org/10.1109/bibm52615.2021.9669457

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., & Duchesnay, E. (2011). Scikit-learn: Machine learning in Python. Journal of Machine Learning Research, 12, 2825–2830.

Rubinov, M., & Sporns, O. (2010). Complex network measures of brain connectivity: Uses and interpretations. NeuroImage, 52(3), 1059–1069. https://doi.org/10.1016/j.neuroimage.2009.10.003

Sporns, O. (2022). Graph theory methods: Applications in brain networks. Dialogues in Clinical Neuroscience, 20(2), 111–121. https://doi.org/10.31887/dcns.2018.20.2/osporns

Stam, C. J., Nolte, G., & Daffertshofer, A. (2007). Phase lag index: Assessment of functional connectivity from multi channel EEG and MEG with diminished bias from common sources. Human Brain Mapping, 28(11), 1178–1193. https://doi.org/10.1002/hbm.20346

Sun, S., Li, X., Zhu, J., Wang, Y., La, R., Zhang, X., Wei, L., & Hu, B. (2019). Graph theory analysis of functional connectivity in major depression disorder with high-density resting state EEG data. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 27(3), 429–439. https://doi.org/10.1109/tnsre.2019.2894423

Tei, S., Faber, P. L., Lehmann, D., Tsujiuchi, T., Kumano, H., Pascual-Marqui, R. D., Gianotti, L. R. R., & Kochi, K. (2009). Meditators and non-meditators: EEG source imaging during resting. Brain Topography, 22(3), 158–165. https://doi.org/10.1007/s10548-009-0107-4

van Lutterveld, R., van Dellen, E., Pal, P., Yang, H., Stam, C. J., & Brewer, J. (2017). Meditation is associated with increased brain network integration. NeuroImage, 158, 18–25. https://doi.org/10.1016/j.neuroimage.2017.06.071

Vinck, M., Oostenveld, R., van Wingerden, M., Battaglia, F., & Pennartz, C. M. A. (2011). An improved index of phase-synchronization for electrophysiological data in the presence of volume-conduction, noise and sample-size bias. NeuroImage, 55(4), 1548–1565. https://doi.org/10.1016/j.neuroimage.2011.01.055

Vivot, R. M., Pallavicini, C., Zamberlan, F., Vigo, D., & Tagliazucchi, E. (2020). Meditation increases the entropy of brain oscillatory activity. Neuroscience, 431, 40–51. https://doi.org/10.1016/j.neuroscience.2020.01.033

Wang, J., Zuo, X., & He, Y. (2010). Graph-based network analysis of resting-state functional MRI. Frontiers in Systems Neuroscience, 4, Article 16. https://doi.org/10.3389/fnsys.2010.00016

Yordanova, J., Kolev, V., Mauro, F., Nicolardi, V., Simione, L., Calabrese, L., Malinowski, P., & Raffone, A. (2020). Common and distinct lateralised patterns of neural coupling during focused attention, open monitoring and loving kindness meditation. Scientific Reports, 10(1), Article 7430. https://doi.org/10.1038/s41598-020-64324-6

Published
2022-09-29
Section
Research Papers