In Neurofeedback Training, Harder is Not Necessarily Better: The Power of Positive Feedback in Facilitating Brainwave Self-Regulation


  • Revital Yonah BetterFly Neurofeedback



neurofeedback, EEG-Biofeedback, implicit learning, basal-ganglia, threshold, reward, positive feedback


Neurofeedback is gaining recognition as an efficient, effective treatment for a variety of different psychological and neuropsychiatric disorders. Its value has been shown in robust clinical studies. However, a certain percentage of clients do not respond to this treatment modality. We suggest performing easier sessions so that clients receive an increased rate of positive feedback. This may encourage positive response to neurofeedback. Research has shown that implicit learning, the type of learning involved in neurofeedback, is better achieved with high levels of positive feedback. In addition, psychological factors related to attention, motivation, cooperation, and positive affect may also be contributing to this facilitatory effect. The relevant theoretical background and supporting evidence are provided.


Alkoby, O., Abu-Rmileh, A., Shriki, O., & Todder, D. (2018). Can we predict who will respond to neurofeedback? A review of the inefficacy problem and existing predictors for successful EEG neurofeedback learning. Neuroscience, 378, 155–164.

Argyelan, M., Herzallah, M., Sako, W., DeLucia, I., Sarpal, D., Vo, A, Fitzpatrick, T., Moustafa, A. A., Eidelberg, D., & Gluck, M. (2018). Dopamine modulates striatal response to reward and punishment in patients with Parkinson’s disease: A pharmacological challenge fMRI study. NeuroReport, 29(7), 532–540.

Ayers, M. E., Sams, M. W., & Sterman, M. B. (2000). When to inhibit EEG activity instead of reinforcing and inhibiting simultaneously. Journal of Neurotherapy, 4(1), 83–93.

Barabasz, A. F., & Barabasz, M. (1999). Treating ADHD with hypnosis and neurotherapy. Paper presented at the 1999 Annual Convention of the American Psychological Association. Boston, MA.

Barbero, Á., & Grosse-Wentrup, M. (2010). Biased feedback in brain-computer interfaces. Journal of NeuroEngineering and Rehabilitation, 7, Article 34.

Birbaumer, N., Ruiz, S., & Sitaram, R. (2013). Learned regulation of brain metabolism. Trends in Cognitive Sciences, 17(6), 295–302.

Boddy, J., Carver, A., & Rowley, K. (1986). Effects of positive and negative verbal reinforcement on performance as a function of extraversion-introversion: Some tests of Gray's theory. Personality and Individual Differences, 7(1), 81–88.

Bromberg-Martin, E. S., Matsumoto, M., & Hikosaka, O. (2010). Dopamine in motivational control: Rewarding, aversive, and alerting. Neuron, 68(5), 815–834.

Chafee, M. V., & Crowe, D. A. (2017). Implicit and explicit learning mechanisms meet in monkey prefrontal cortex. Neuron, 96(2), 256–258.

Chib, V. S., De Martino, B., Shimojo, S., & O'Doherty, J. P. (2012). Neural mechanisms underlying paradoxical performance for monetary incentives are driven by loss aversion. Neuron, 74(3), 582–594.

Clemente, C. D., Sterman, M. B., & Wyrwicka, W. (1964). Post-reinforcement EEG synchronization during alimentary behavior. Electroencephalography and Clinical Neurophysiology, 16(4), 355–365.

Cohen Kadosh, K., & Staunton, G. (2019). A systematic review of the psychological factors that influence neurofeedback learning outcomes. NeuroImage, 185, 545–555,

Collura, T. F. (2014). Technical foundations of neurofeedback (pp. 16–17). Routledge.

Curran, E. A., & Stokes, M. J. (2003). Learning to control brain activity: A review of the production and control of EEG components for driving brain–computer interface (BCI) systems. Brain and Cognition, 51(3), 326–336.

Daffertshofer, A., & van Wijk, B. C. M. (2011). On the influence of amplitude on the connectivity between phases. Frontiers in Neuroinformatics, 5, 6.

Davelaar, E. J. (2017). A computational approach to developing cost-efficient adaptive-threshold algorithms for EEG neuro feedback. International Journal of Structural and Computational Biology, 1(2), 1–4.

Davelaar, E. J. (2018). Mechanisms of neurofeedback: A computation-theoretic approach. Neuroscience, 378, 175–188.

Egner, T., Zech, T. F., & Gruzelier, J. H. (2004). The effects of neurofeedback training on the spectral topography of the electroencephalogram. Clinical Neurophysiology, 115(11), 2452–2460.

Elliott, R., Agnew, Z., & Deakin, J. F. W. (2010). Hedonic and informational functions of the human orbitofrontal cortex. Cerebral Cortex, 20(1), 198–204.

Emmert, K., Kopel, R., Sulzer, J., Brühl, A. B., Berman, B. D., Linden, D. E. J., Horovitz, S. G., Breimhorst, M., Caria, A., Frank, S., Johnston, S., Long, Z., Paret., C., Robineau, F., Veit, R., Bartsch, A., Beckmann, C. F., Van De Ville, D., & Haller, S. (2016). Meta-analysis of real-time fMRI neurofeedback studies using individual participant data: How is brain regulation mediated? NeuroImage, 124(Part A), 806–812.

Evans, J. J., Wilson, B. A., Schuri, U., Andrade, J., Baddeley, A., Bruna, O., Canavan, T., Del Sala, S., Green, R., Laaksonen, R., Lorenzi, L., & Taussik, I. (2000). A comparison of ''errorless'' and ''trial-and-error'' learning methods for teaching individuals with acquired memory deficits. Neuropsychological Rehabilitation, 10(1), 67–101.

Fehmi, L. G., & Robbins, J. (2008). The open-focus brain: harnessing the power of attention to heal mind and body (pp. 29–40). Boulder, CO: Shambhala Publications.

Fisher, S. F. (2014). Neurofeedback in the treatment of developmental trauma: Calming the fear-driven brain (pp. 277–324). W.W. Norton & Company.

Frank, M., Woroch, B. S., & Curran, T. (2005). Error-related negativity predicts reinforcement learning and conflict biases. Neuron, 47(4), 495–501.

Gastaldi, F. (2023, February). Neurofeedback, tutto sulla tecnica scelta da Marco Mengoni per liberarsi dallo stress. Vanity Fair.

Gruzelier, J. H. (2014). EEG-neurofeedback for optimising performance. III: A review of methodological and theoretical considerations. Neuroscience & Biobehavioral Reviews, 44, 159–182.

Hardt, J. V., & Kamiya, J. (1976). Conflicting results in EEG alpha feedback studies. Biofeedback and Self-Regulation, 1(1), 63–75.

Heindel, W. C., Salmon, D. P., Shults, C. W., Walicke, P. A., & Butters, N. (1989). Neuropsychological evidence for multiple implicit memory systems: A comparison of Alzheimer's, Huntington's, and Parkinson's disease patients. The Journal of Neuroscience, 9(2), 582–587.

Johnson, M. L., & Bodenhamer-Davis, E. (2009). QEEG-based protocol selection: A study of level of agreement on sites, sequences, and rationales among a group of experienced QEEG-based neurofeedback practitioners. Journal of Neurotherapy, 13(1), 41–66.

Klöbl, M., Michenthaler, P., Godbersen, G. M., Robinson, S., Hahn, A., & Lanzenberger, R. (2020). Reinforcement and punishment shape the learning dynamics in fMRI neurofeedback. Frontiers in Human Neuroscience, 14, 304.

Knox, S. S. (1980). Distribution of ‘criterion’ alpha in the resting EEG: Further argument against the use of an amplitude threshold in alpha biofeedback training. Biological Psychology, 11(1), 1–6.

Kober, S. E., Witte, M., Ninaus, M., Neuper, C., & Wood, G. (2013). Learning to modulate one's own brain activity: The effect of spontaneous mental strategies. Frontiers in Human Neuroscience, 7, 695.

Koralek, A. C., Jin, X., Long II, J. D., Costa, R. M., & Carmena, J. M. (2012). Corticostriatal plasticity is necessary for learning intentional neuroprosthetic skills. Nature, 483(7389), 331–335.

Lam, S.-L., Criaud, M., Alegria, A., Barker, G. J., Giampietro, V., & Rubia, K. (2020). Neurofunctional and behavioural measures associated with fMRI-neurofeedback learning in adolescents with Attention-Deficit/Hyperactivity Disorder. NeuroImage Clinical, 27, 102291.

Lansbergen, M. M., van Dongen-Boomsma, M., Buitelaar, J. K., & Slaats-Willemse, D. (2011). ADHD and EEG-neurofeedback: A double-blind randomized placebo-controlled feasibility study. Journal of Neural Transmission, 118, 275–284.

Lin, J. J., Mamykina, L., Lindtner, S., Delajoux, G., & Strub, H. B. (2006). Fish’n’Steps: Encouraging physical activity with an interactive computer game. In P. Dourish, & A. Friday (Eds.), UbiComp 2006: Ubiquitous computing. Lecture Notes in Computer Science, vol. 4206. Springer, Berlin, Heidelberg.

Logemann, H. N. A., Lansbergen, M. M., Van Os, T. W. D. P., Böcker, K. B. E., & Kenemans, J. L. (2010). The effectiveness of EEG-feedback on attention, impulsivity and EEG: A sham feedback controlled study. Neuroscience Letters, 479(1), 49–53.

Loonis, R. F., Brincat, S. L., Antzoulatos, E. G., & Miller, E. K. (2017). A meta-analysis suggests different neural correlates for implicit and explicit learning. Neuron, 96(2), 521–534.e7.

Marczynski, T. J., Harris, C. M., & Livezey, G. T. (1981). The magnitude of post-reinforcement EEG synchronization (PRS) in cats reflects learning ability. Brain Research, 204(1), 214–219.

Maxwell, J. P., Masters, R. S. W., Kerr, E., & Weedon, E. (2001). The implicit benefit of learning without errors. The Quarterly Journal of Experimental Psychology: A Human Experimental Psychology, 54A(4), 1049–1068.

Mobbs, D., Hassabis, D., Seymour, B., Marchant, J. L., Weiskopf, N., Dolan, R. J., & Frith, C. D. (2009). Choking on the money: Reward-based performance decrements are associated with midbrain activity. Psychology Science, 20(8), 955–962.

Mohammadi, H. S., Pirbabaei, E., Sisi, M. J., & Sekhavat, Y. A. (2018). ExerBrain: A comparison of positive and negative reinforcement in attention training using BCI based computer games. In 2018 2nd National and 1st International Digital Games Research Conference: Trends, Technologies, and Applications (DGRC), 11, 167–171. Tehran, Iran.

Nam, S., & Choi, S. (2020). Effect of threshold setting on neurofeedback training. NeuroRegulation, 7(3), 107–117.

Nijboer, F., Birbaumer, N., & Kübler, A. (2010). The influence of psychological state and motivation on brain–computer interface performance in patients with amyotrophic lateral sclerosis–a longitudinal study. Frontiers in Neuropharmacology, 4, 55.

Niv, S. (2013). Clinical efficacy and potential mechanisms of neurofeedback. Personality and Individual Differences, 54(6), 676–686.

Oblak, E. F., Sulzer, J. S., & Lewis-Peacock, J. A. (2019). A simulation-based approach to improve decoded neurofeedback performance. NeuroImage, 195, 300–310.

O'Doherty, J., Kringelbach, M. L., Rolls, E. T., Hornak, J., & Andrews, C. (2001). Abstract reward and punishment representations in the human orbitofrontal cortex. Nature Neuroscience, 4(1), 95–102.

Othmer, S. (2009). In J. R. Evans, T. H. Budzynski, H. K. Budzynski, & A. Abarbanel (Eds.), Introduction to quantitative EEG and neurofeedback: Advanced theory and applications (pp. 3–26). Academic Press.

Poldrack, R. A., Clark, J., Paré-Blagoev, E. J., Shohamy, D., Moyano, J. C., Myers, C., & Gluck, M. A. (2001). Interactive memory systems in the human brain. Nature, 414, 546–550.

Poolton, J. M., Masters, R. S. W., & Maxwell, J. P. (2005). The relationship between initial errorless learning conditions and subsequent performance. Human Movement Science, 24(3), 362–378.

Radua, J., Stoica, T., Scheinost, D., Pittenger, C., & Hampson, M. (2018). Neural correlates of success and failure signals during neurofeedback learning. Neuroscience, 378, 11–21.

Ramot, M., Grossman, S., Friedman, D., & Malach, R. (2016). Covert neurofeedback without awareness shapes cortical network spontaneous connectivity. PNAS Proceedings of the National Academy of Sciences of the United States of America, 113(17), E2413–E2420.

Reinschluessel, A. V., & Mandryk, R. L. (2016). Using positive or negative reinforcement in neurofeedback games for training self-regulation. In Proceedings of the 2016 Annual Symposium on Computer-Human Interaction in Play (pp. 186–198).

Rogala, J., Jurewicz, K., Paluch, K., Kublik, E., Cetnarski, R., & Wróbel, A. (2016). The do's and don'ts of neurofeedback training: A review of the controlled studies using healthy adults. Frontiers in Human Neuroscience, 10, 301.

Ros, T., Moseley, M. J., Bloom, P. A., Benjamin, L., Parkinson, L. A., & Gruzelier, J. H. (2009). Optimizing microsurgical skills with EEG neurofeedback. BMC Neuroscience, 10(1), Article 87.

Ros, T., Frewen, P., Théberge, J., Michela, A., Kluetsch, R., Mueller, A., Candrian, G., Jetly, R., Vuilleumier, P., & Lanius, R. A. (2017). Neurofeedback tunes scale-free dynamics in spontaneous brain activity. Cerebral Cortex, 27(10), 4911–4922.

Sasaki, Y., Nanez, J. & Watanabe, T. (2010). Advances in visual perceptual learning and plasticity. Nature Reviews Neuroscience, 11, 53–60.

Schafer, R. J., & Moore, T. (2011). Selective attention from voluntary control of neurons in prefrontal cortex. Science, 332(6037), 1568–1571.

Sherlin, L. H., Arns, M., Lubar, J., Heinrich, H., Kerson, C., Strehl, U., & Sterman, M. B. (2011). Neurofeedback and basic learning theory: Implications for research and practice. Journal of Neurotherapy, 15(4), 292–304.

Shibata, K., Yamagishi, N., Ishii, S., & Kawato, M. (2009). Boosting perceptual learning by fake feedback. Vision Research, 49(21), 2574–2585.

Shourie, N., Firoozabadi, M., & Badie, K. (2018). Fuzzy adaptive neurofeedback training: An efficient neurofeedback training procedure providing a more accurate progress rate for trainee. Biomedical Signal Processing and Control, 44, 75–81.

Siniatchkin, M., Kropp, P., & Gerber, W.-D. (2000). Neurofeedback–The significance of reinforcement and the search for an appropriate strategy for the success of self-regulation. Applied Psychophysiology and Biofeedback 25(3), 167–175.

Sitaram, R., Ros, T., Stoeckel, L., Haller, S., Scharnowski, F., Lewis-Peacock, J., Weiskopf, N., Blefari, M. L., Rana, M., Oblak, E., Birbaumer, N., & Sulzer, J. (2017). Closed-loop brain training: The science of neurofeedback. Nature Reviews Neuroscience, 18(2), 86–100.

Skinner, B. F. (1945). The operational analysis of psychological terms. Psychological Review, 52(5), 270–277.

Skottnik, L., Sorger, B., Kamp, T., Linden, D., & Goebel, R. (2019). Success and failure of controlling the real‐time functional magnetic resonance imaging neurofeedback signal are reflected in the striatum. Brain and Behavior, 9(3), Article e01240.

Sterman, M. B., & Egner, T. (2006). Foundation and practice of neurofeedback for the treatment of epilepsy. Applied Psychophysiology and Biofeedback, 31(1), 21–35.

Sterman, M. B., Mann, C. A., & Kaiser, D. A. (1993, February). Quantitative EEG patterns of differential in-flight workload. In NASA. Johnson Space Center, Sixth Annual Workshop on Space Operations Applications and Research (SOAR 1992), Volume 2.

Strehl, U. (2014). What learning theories can teach us in designing neurofeedback treatments. Frontiers in Human Neuroscience, 8, 894.

Sulzer, J., Sitaram, R., Blefari, M. L., Kollias, S., Birbaumer, N., Stephan, K. E., Luft, A., & Gassert, R. (2013). Neurofeedbackmediated self-regulation of the dopaminergic midbrain. NeuroImage, 83, 817–825.

Thompson, L., & Thompson, M. (1998). Neurofeedback combined with training in metacognitive strategies: Effectiveness in students with ADD. Applied Psychophysiology and Biofeedback, 23(4), 243–263.

Thorndike, E. L. (1999). Animal intelligence (p. v). Bristol, UK: Thoemmes. (Original work published 1911).

Tsushima, Y., Seitz, A. R., & Watanabe, T. (2008). Task-irrelevant learning occurs only when the irrelevant feature is weak. Current Biology, 18(12), R516–R517.

Van der Kolk, B. (2014). The body keeps the score: Brain, mind, and body in the healing of trauma (pp. 309–329). Penguin Publishing Group.

Van Doren, J., Heinrich, H., Bezold, M., Reuter, N., Kratz, O., Horndasch, S., Berking, M., Ros, T., Gevensleben, H., Moll, G. H., & Studer, P. (2017). Theta/beta neurofeedback in children with ADHD: Feasibility of a short-term setting and plasticity effects. International Journal of Psychophysiology, 112, 80–88.

Vernon, D., Dempster, T., Bazanova, O. M., Rutterford, N., Pasqualini, M., & Andersen, S. (2009). Alpha neurofeedback training for performance enhancement: Reviewing the methodology. Journal of Neurotherapy, 13(4), 214–227.

Wächter, T., Lungu, O. V., Liu, T., Willingham, D. T., & Ashe, J. (2009). Differential effect of reward and punishment on procedural learning. Journal of Neuroscience, 29(2), 436–443.

White, N. E., & Richards, L. M. (2009). Alpha–theta neurotherapy and the neurobehavioral treatment of addictions, mood disorders and trauma. In J. R. Evans, T. H. Budzynski, H. K. Budzynski, & A. Abarbanel (Eds.). Introduction to quantitative EEG and neurofeedback: Advanced theory and applications (pp. 143–164). Academic Press.

Zuberer, A., Brandeis, D., & Drechsler, R. (2015). Are treatment effects of neurofeedback training in children with ADHD related to the successful regulation of brain activity? A review on the learning of regulation of brain activity and a contribution to the discussion on specificity. Frontiers in Human Neuroscience, 9, 135.






Clinical Corner