Neural Network Improvements Induced by REST Flotation in Chronic Lower Back Pain Patients: An Exploratory Investigation


  • Tyler A. McGaughey WVU
  • Mary K. Gregg
  • Victor S. Finomore



Electroencephalogram (EEG), Chronic lower back pain, REST flotation, Neural Networks, Default mode network


Thalamocortical dysrhythmia is a shared hallmark of numerous neurodivergent conditions. Restricted environment stimulation therapy (REST) flotation causes desirable neural shifts in anxious or depressed populations towards classically defined healthy spectra. In this exploratory investigation, chronic lower back pain patients were randomly assigned to the experimental condition, six 1-hr REST flotation sessions, or the control condition, six 1-hr nap pod sessions. Participants underwent quantitative electroencephalograms (qEEG) before and after their six sessions. Chronic lower back pain patients were chosen because of the high prevalence of the disease condition and the known network changes that contribute to the transition of pain from acute to chronic. Results showed traditional qEEG pain-associated signatures shift to reflect more regulated, healthy activity across the pain and default mode networks in our experimental condition. Dysregulation in neural oscillations can be indicative of symptomology, and the changes observed in the experimental group reflect healthier activity in all frequency bands, while the control group showed no significant changes in any 1 Hz bin. These significant cross-spectral improvements show promise for REST flotation as a supplemental nonpharmacological treatment for chronic pain.


Al Zoubi, O., Misaki, M., Bodurka, J., Kuplicki, R., Wohlrab, C., Schoenhals, W. A., Refai, H. H., Khalsa, S. S., Stein, M. B., Paulus, M. P., & Feinstein, J. S. (2021). Taking the body off the mind: Decreased functional connectivity between somatomotor and default-mode networks following Floatation-REST. Human Brain Mapping, 42(10), 3216–3227.

Alshelh, Z., Marciszewski, K. K., Akhter, R., Di Pietro, F., Mills, E. P., Vickers, E. R., Peck, C. C., Murray, G. M., & Henderson, L. A. (2018). Disruption of default mode network dynamics in acute and chronic pain states. NeuroImage: Clinical, 17, 222–231.

Applied Neuroscience, Inc. (n.d.). NeuroGuide (Version 3.2.7) [Computer software].

Babiloni, C., Lizio, R., Marzano, N., Capotosto, P., Soricelli, A., Triggiani, A. I., Cordone, S., Gesualdo, L., & Del Percio, C. (2016). Brain neural synchronization and functional coupling in Alzheimer's disease as revealed by resting state EEG rhythms. International Journal of Psychophysiology, 103, 88-102.

Baenninger, A., Palzes, V. A., Roach, B. J., Mathalon, D. H., Ford, J. M., & Koenig, T. (2017). Abnormal coupling between default mode network and delta and beta band brain electric activity in psychotic patients. Brain Connectivity, 7(1), 34–44.

Betti, V., Della Penna, S., De Pasquale, F., & Corbetta, M. (2021). Spontaneous beta band rhythms in the predictive coding of natural stimuli. Neuroscientist, 27(2), 184–201.

Cecchetti, G., Agosta, F., Basaia, S., Cividini, C., Cursi, M., Santangelo, R., Caso, C., Minicucci, F., Magnani, G., & Filippi, M. (2021). Resting-state electroencephalographic biomarkers of Alzheimer's disease. NeuroImage: Clinical, 31, 102711.

Chen, S., Chen, M., Wu, X., Lin, S., Tao, C., Cao, H., Shao, Z., & Xiao, G. (2022). Global, regional and national burden of low back pain 1990–2019: A systematic analysis of the Global Burden of Disease study 2019. Journal of Orthopaedic Translation, 32, 49–58.

Cognionics. (n.d.). CGX Quick-20m wireless 20-channel EEG headset. [Apparatus].

de Pasquale, F., Della Penna, S., Snyder, A. Z., Marzetti, L., Pizzella, V., Romani, G. L., & Corbetta, M. (2012). A cortical core for dynamic integration of functional networks in the resting human brain. Neuron, 74(4), 753–764.

Díaz, H., Cid, F. M., Otárola, J., Rojas, R., Alarcón, O., & Cañete, L. (2019). EEG Beta band frequency domain evaluation for assessing stress and anxiety in resting, eyes closed, basal conditions. Procedia Computer Science, 162, 974–981.

Diaz-Piedra, C., Sebastián, M. V., & Di Stasi, L. L. (2020). EEG theta power activity reflects workload among army combat drivers: an experimental study. Brain Sciences, 10(4), 199.

Engel, A. K., & Fries, P. (2010). Beta-band oscillations—signalling the status quo? Current Opinion in Neurobiology, 20(2), 156–165.

Fallon, N., Chiu, Y., Nurmikko, T., & Stancak, A. (2018). Altered theta oscillations in resting EEG of fibromyalgia syndrome patients. European Journal of Pain, 22(1), 49–57.

Foxe, J. J., & Snyder, A. C. (2011). The role of alpha-band brain oscillations as a sensory suppression mechanism during selective attention. Frontiers in Psychology, 2, 154.

Furman, A. J., Prokhorenko, M., Keaser, M. L., Zhang, J., Chen, S., Mazaheri, A., & Seminowicz, D. A. (2020). Sensorimotor peak alpha frequency is a reliable biomarker of prolonged pain sensitivity. Cerebral Cortex, 30(12), 6069–6082.

Gollan, J. K., Hoxha, D., Chihade, D., Pflieger, M. E., Rosebrock, L., & Cacioppo, J. (2014). Frontal alpha EEG asymmetry before and after behavioral activation treatment for depression. Biological Psychology, 99, 198–208.

Gore, M., Sadosky, A., Stacey, B. R., Tai, K.-S., & Leslie, D. (2012). The burden of chronic low back pain: Clinical comorbidities, treatment patterns, and health care costs in usual care settings. Spine, 37(11), E668–E677.

Harmony, T. (2013). The functional significance of delta oscillations in cognitive processing. Frontiers in Integrative Neuroscience, 7, 83.

Hassan, M. A., Fraser, M., Conway, B. A., Allan, D. B., & Vuckovic, A. (2015). The mechanism of neurofeedback training for treatment of central neuropathic pain in paraplegia: A pilot study. BMC Neurology, 15, Article 200.

Jafari, Z., Kolb, B. E., & Mohajerani, M. H. (2020). Neural oscillations and brain stimulation in Alzheimer's disease. Progress in Neurobiology, 194, 101878.

Jonsson, K., & Kjellgren, A. (2016). Promising effects of treatment with flotation-REST (restricted environmental stimulation technique) as an intervention for generalized anxiety disorder (GAD): A randomized controlled pilot trial. BMC Complementary and Alternative Medicine, 16, Article 108.

Kisler, L. B., Kim, J. A., Hemington, K. S., Rogachov, A., Cheng, J. C., Bosma, R. L., Osborne, N. R., Dunkley, B. T., Inman, R. D., & Davis, K. D. (2020). Abnormal alpha band power in the dynamic pain connectome is a marker of chronic pain with a neuropathic component. NeuroImage: Clinical, 26, 102241.

Klimesch, W., Freunberger, R., Sauseng, P., & Gruber, W. (2008). A short review of slow phase synchronization and memory: Evidence for control processes in different memory systems? Brain Research, 1235, 31–44.

Knyazev, G. G., Slobodskoj-Plusnin, J. Y., Bocharov, A. V., & Pylkova, L. V. (2011). The default mode network and EEG alpha oscillations: An independent component analysis. Brain Research, 1402, 67–79.

Koo, P. C., Thome, J., Berger, C., Foley, P., & Hoeppner, J. (2017). Current source density analysis of resting state EEG in depression: A review. Journal of Neural Transmission (Vienna), 124(Suppl. 1), 109–118.

Kucyi, A., Moayedi, M., Weissman-Fogel, I., Goldberg, M. B., Freeman, B. V., Tenenbaum, H. C., & Davis, K. D. (2014). Enhanced medial prefrontal-default mode network functional connectivity in chronic pain and its association with pain rumination. The Journal of Neuroscience, 34(11), 3969–3975.

Lee, S.-H., Yoon, S., Kim, J.-I., Jin, S.-H., & Chung, C. K. (2014). Functional connectivity of resting state EEG and symptom severity in patients with post-traumatic stress disorder. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 51, 51–57.

Li, Y.-D., Ge, J., Luo, Y.-J., Xu, W., Wang, J., Lazarus, M., Hong, Z.-Y., Qu, W.-M., & Huang, Z.-L. (2020). High cortical delta power correlates with aggravated allodynia by activating anterior cingulate cortex GABAergic neurons in neuropathic pain mice. Pain, 161(2), 288–299.

Li, L., Pagnotta, M. F., Arakaki, X., Tran, T., Strickland, D., Harrington, M., & Zouridakis, G. (2015). Brain activation profiles in mTBI: Evidence from combined resting-state EEG and MEG activity. 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) (pp. 6963–6966) Milan, Italy

Lindsay, N. M., Chen, C., Gilam, G., Mackey, S., & Scherrer, G. (2021). Brain circuits for pain and its treatment. Science Translational Medicine, 13(619), eabj7360.

Loggia, M. L., Kim, J., Gollub, R. L., Vangel, M. G., Kirsch, I., Kong, J., Wasan, A. D., & Napadow, V. (2013). Default mode network connectivity encodes clinical pain: An arterial spin labeling study. Pain, 154(1), 24–33.

MetroNaps. (n.d.). EnergyPod nap pod. [Apparatus].

Mohan, A., Roberto, A. J., Mohan, A., Lorenzo, A., Jones, K., Carney, M. J., Liogier-Weyback, L., Hwang, S., & Lapidus, K. A. (2016). The significance of the default mode network (DMN) in neurological and neuropsychiatric disorders: A review. Yale Journal of Biology and Medicine, 89(1), 49–57.

Moon, S.-Y., Choi, Y. B., Jung, H. K., Lee, Y. I., & Choi, S.-H. (2018). Increased frontal gamma and posterior delta powers as potential neurophysiological correlates differentiating posttraumatic stress disorder from anxiety disorders. Psychiatry Investigation, 15(11), 1087–1093.

Neuner, I., Arrubla, J., Werner, C. J., Hitz, K., Boers, F., Kawohl, W., & Shah, N. J. (2014). The default mode network and EEG regional spectral power: A simultaneous fMRI-EEG study. PLoS ONE, 9(2), Article e88214.

Özbek, Y., Fide, E., & Yener, G. G. (2021). Resting-state EEG alpha/theta power ratio discriminates early-onset Alzheimer's disease from healthy controls. Clinical Neurophysiology, 132(9), 2019–2031.

Palmero-Soler, E., Dolan, K., Hadamschek, V., & Tass, P. A. (2007). swLORETA: A novel approach to robust source localization and synchronization tomography. Physics in Medicine & Biology, 52(7), 1783–1800.

Pinheiro, E. S. D. S., De Queirós, F. C., Montoya, P., Santos, C. L., Do Nascimento, M. A., Ito, C. H., Silva, M., Santos, D. B. N., Benevides, S., Miranda, J. G. V., Sá, K. N., & Bapista A. F. (2016). Electroencephalographic patterns in chronic pain: A systematic review of the literature. PLoS ONE, 11(2), Article e0149085.

Prichep, L. S., Shah, J., Merkin, H., & Hiesiger, E. M. (2018). Exploration of the pathophysiology of chronic pain using quantitative EEG source localization. Clinical EEG and Neuroscience, 49(2), 103-113.

Qualtrics. (2023). Online intake survey. [Software].

Scheeringa, R., Bastiaansen, M. C., Petersson, K. M., Oostenveld, R., Norris, D. G., & Hagoort, P. (2008). Frontal theta EEG activity correlates negatively with the default mode network in resting state. International Journal of Psychophysiology, 67(3), 242–251.

Schuurman, B. B., Vossen, C. J., Van Amelsvoort, T. A. M. J., & Lousberg, R. L. (2023). Does baseline EEG activity differ in the transition to or from a chronic pain state? A longitudinal study. Pain Practice, 23(5), 479–492.

Smallwood, J., Bernhardt, B. C., Leech, R., Bzdok, D., Jefferies, E., & Margulies, D. S. (2021). The default mode network in cognition: A topographical perspective. Nature Reviews Neuroscience, 22(8), 503–513.

Sterman, M. B., Mann, C. A., Kaiser, D. A., & Suyenobu, B. Y. (1994). Multiband topographic EEG analysis of a simulated visuomotor aviation task. International Journal of Psychophysiology, 16(1), 49–56.

Superior Float Tanks. (n.d.). Deluxe Quest Flotation Suite. [Apparatus].

Teixeira, P. E. P., Pacheco-Barrios, K., Uygur-Kucukseymen, E., Machado, R. M., Balbuena-Pareja, A., Giannoni-Luza, S., Luna-Cuadros, M. A., Cardenas-Rojas A., Gonzalez-Mego P., Mejia-Pando, P.F., Wagner, T., Dipietro., & Fregni, F. (2022). Electroencephalography signatures for conditioned pain modulation and pain perception in nonspecific chronic low back pain-an exploratory study. Pain Medicine, 23(3), 558–570.

Thatcher, R. (2008). NeuroGuide manual and tutorial. St. Petersburg, FL: Applied Neuroscience.

Trammell, J. P., MacRae, P. G., Davis, G., Bergstedt, D., & Anderson, A. E. (2017). The relationship of cognitive performance and the theta-alpha power ratio is age-dependent: An EEG study of short term memory and reasoning during task and resting-state in healthy young and old adults. Frontiers in Aging Neuroscience, 9, 364.

Tu, Y., Fu, Z., Mao, C., Falahpour, M., Gollub, R. L., Park, J., Wilson, G., Napadow, V., Gerber, J., Chan, S.-T., Edwards, R. R., Kaptchuk, T. J., Liu, T., Calhoun, V., Rosen, B., & Kong, J. (2020). Distinct thalamocortical network dynamics are associated with the pathophysiology of chronic low back pain. Nature Communications, 11(1), Article 3948.

Vanneste, S., Song, J.-J., & De Ridder, D. (2018). Thalamocortical dysrhythmia detected by machine learning. Nature Communications, 9(1), Article 1103.

Vučković, A., Altaleb, M. K. H., Fraser, M., McGeady, C., & Purcell, M. (2019). EEG correlates of self-managed neurofeedback treatment of central neuropathic pain in chronic spinal cord injury. Frontiers in Neuroscience, 13, 762.

Wang, S.-Y., Lin, I.-M., Fan, S.-Y., Tsai, Y.-C., Yen, C.-F., Yeh, Y.-C., Huang, M.-F., Lee, Y., Chiu, N.-M., Hung, C.-F., Wang, P.-W., Liu, T.-L., & Lin, H.-C. (2019). The effects of alpha asymmetry and high-beta down-training neurofeedback for patients with the major depressive disorder and anxiety symptoms. Journal of Affective Disorders, 257, 287–296.

White, T. P., Jansen, M., Doege, K., Mullinger, K. J., Park, S. B., Liddle, E. B., Gowland, P. A., Francis, S. T., Bowtell, R., & Liddle, P. F. (2013). Theta power during encoding predicts subsequent-memory performance and default mode network deactivation. Human Brain Mapping, 34(11), 2929–2943.

Zolezzi, D. M., Alonso-Valerdi, L. M., & Ibarra-Zarate, D. I. (2023). EEG frequency band analysis in chronic neuropathic pain: A linear and nonlinear approach to classify pain severity. Computer Methods and Programs in Biomedicine, 230, 107349.






Research Papers