Resting-State EEG Alteration Over the Loreta Z-Score Neurofeedback in Aphasia


  • Farnaz Faridi Mrs
  • Sobhan Bamdad Department of Biomedical Engineering, Faculty of Engineering, Shahed University, Tehran, Iran



aphasia, phase-amplitude coupling, complexity, neurofeedback, loreta


Objectives. Aphasia is an acquired language disorder resulting from a brain injury which affects the brain’s electrical activity. Neurofeedback (NFB) is known to synchronize neural oscillations and normalize brain wave abnormalities in several disorders. In this study, we aimed to investigate EEG signals in aphasia and the possible positive effect of Loreta z-score neurofeedback (LZNFB) treatment on improving EEG disturbances and symptoms in aphasia. Methods. Thirteen chronic aphasics and 10 unimpaired nonaphasic subjects were investigated in this study. Clinical assessments were used for the aphasic group at baseline and after 15 sessions of LZNFB to illustrate behavioral improvement. To estimate signal disruption and its alteration over the treatment, EEG signals were acquired referred to as resting-state eyes-closed condition in aphasic group during pretreatment and posttreatment as well as in the nonaphasic control group. We then investigated brain complexity and phase-amplitude coupling (PAC) in groups and compared the results. Results. Our EEG findings were congruent with clinical improvement and showed that after treatment, complexity and PAC changed to a normal level. Conclusion. We conclude that LZNFB treatment was effective in decreasing EEG disturbances and symptoms in aphasia. We think that our findings in complexity and PAC could provide important insights into the electrophysiological profile in aphasia and its alterations after treatment.


Bichsel, O., Stieglitz, L. H., Oertel, M. F., Baumann, C. R., Gassert, R., & Imbach, L. L. (2021). Deep brain electrical neurofeedback allows Parkinson patients to control pathological oscillations and quicken movements. Scientific Reports, 11(1), Article 7973.

Bonnefond, M., & Jensen, O. (2015). Gamma activity coupled to alpha phase as a mechanism for top-down controlled gating. PLoS One, 10(6), Article e0128667.

Canolty, R. T., Edwards, E., Dalal, S. S., Soltani, M., Nagarajan, S. S., Kirsch, H. E., Berger, M. S., Barbaro, N. M., & Knight, R. T. (2006). High gamma power is phase-locked to theta oscillations in human neocortex. Science, 313(5793), 1626–1628.

Canolty, R. T., & Knight, R. T. (2010). The functional role of cross-frequency coupling. Trends in Cognitive Sciences, 14(11), 506–515.

Cohen, M. X., Elger, C. E., & Fell, J. (2008). Oscillatory activity and phase–amplitude coupling in the human medial frontal cortex during decision making. Journal of cognitive neuroscience, 21(2), 390–402.

Conway, A. R. A., Kane, M. J., Bunting, M. F., Hambrick, D. Z., Wilhelm, O., & Engle, R. W. (2005). Working memory span tasks: A methodological review and user’s guide. Psychonomic Bulletin & Review, 12(5), 769–786.

Cortese, A., Amano, K., Koizumi, A., Lau, H., & Kawato, M. (2017). Decoded fMRI neurofeedback can induce bidirectional confidence changes within single participants. NeuroImage, 149, 323–337.

de Hemptinne, C., Ryapolova-Webb, E. S., Air, E. L., Garcia, P. A., Miller, K. J., Ojemann, J. G., Ostrem, J. L., Galifianakis, N. B., & Starr, P. A. (2013). Exaggerated phase–amplitude coupling in the primary motor cortex in Parkinson disease. Proceedings of the National Academy of Sciences, 110(12), 4780¬–4785.

Delgado-Bonal, A., & Marshak, A. (2019). Approximate entropy and sample entropy: A comprehensive tutorial. Entropy, 21(6), 541.

Edakawa, K., Yanagisawa, T., Kishima, H., Fukuma, R., Oshino, S., Khoo, H. M., Kobayashi, M., Tanaka, M., & Yoshimine, T. (2016). Detection of epileptic seizures using phase–amplitude coupling in intracranial electroencephalography. Scientific Reports, 6(1), Article 25422.

Enriquez-Geppert, S., Smit, D., Pimenta, M. G., & Arns, M. (2019). Neurofeedback as a treatment intervention in ADHD: Current evidence and practice. Current Psychiatry Reports, 21, Article 46.

Faridi, A., Taremian, F., Thatcher, R. W., Dadashi, M., & Moloodi, R. (2022). Comparison of LORETA Z score neurofeedback and cognitive rehabilitation in terms of their effectiveness in reducing craving in opioid addicts. Basic and Clinical Neuroscience, 13(1), 81–96. ‎

Faridi, F., Ameri, H., Nosratabadi, M., Hejazi, S. M. A., & Thatcher, R. (2021). Language rehabilitation of TBI patient by LORETA Z score neurofeedback. NeuroRegulation, 8(2), 121–121.

Frey, L. C., & Koberda, J. L. (2015). LORETA Z-score neurofeedback in patients with medically refractory epilepsy. Journal of Neurology and Neurobiology, 1(1).

Grin-Yatsenko, V. A., Othmer, S., Ponomarev, V. A., Evdokimov, S. A., Konoplev, Y. Y., & Kropotov, J. D. (2018). Infra-low frequency neurofeedback in depression: Three case studies. NeuroRegulation, 5(1), 30–42.

Händel, B., & Haarmeier, T. (2009). Cross-frequency coupling of brain oscillations indicates the success in visual motion discrimination. NeuroImage, 45(3), 1040–1046.

Helfrich, R. F., Herrmann, C. S., Engel, A. K., & Schneider, T. R. (2016). Different coupling modes mediate cortical cross-frequency interactions. NeuroImage, 140, 76–82.

Hirano, Y., & Tamura, S. (2021). Recent findings on neurofeedback training for auditory hallucinations in schizophrenia. Current Opinion in Psychiatry, 34(3), 245–252.

Katz, M. J. (1988). Fractals and the analysis of waveforms. Computers in Biology and Medicine, 18(3), 145–156.

Khan, S., Gramfort, A., Shetty, N. R., Kitzbichler, M. G., Ganesan, S., Moran, J. M., Lee, S. M., Gabrieli, J. D. E., Tager-Flusberg, H. B., Joseph, R. M., Herbert, M. R., Hämäläinen, M. S., & Kenet, T. (2013). Local and long-range functional connectivity is reduced in concert in autism spectrum disorders. Proceedings of the National Academy of Sciences, 110(8), 3107–3112.

Klonowski, W. (2009). Everything you wanted to ask about EEG but were afraid to get the right answer. Nonlinear Biomedical Physics, 3(1), Article 2.

Koberda, J. L. (2014). Z-score LORETA neurofeedback as a potential therapy in cognitive dysfunction and dementia. Journal of Psychology & Clinical Psychiatry, 1(6), Article 00037.

Koberda, J. L. (2015). LORETA Z-score neurofeedback-effectiveness in rehabilitation of patients suffering from traumatic brain injury. Journal of Neurology and Neurobiology, 1(4), 1–9.

Koberda, J. L., Moses, A., Koberda, L., & Koberda, P. (2012). Cognitive enhancement using 19-electrode z-score neurofeedback. Journal of Neurotherapy, 16(3), 224–230.

Koush, Y., Meskaldji, D.-E., Pichon, S., Rey, G., Rieger, S. W., Linden, D. E. J., Van De Ville, D., Vuilleumier, P., & Scharnowski, F. (2017). Learning control over emotion networks through connectivity-based neurofeedback. Cerebral Cortex, 27(2), 1193–1202.

Lakatos, P., Shah, A. S., Knuth, K. H., Ulbert, I., Karmos, G., & Schroeder, C. E. (2005). An oscillatory hierarchy controlling neuronal excitability and stimulus processing in the auditory cortex. Journal of Neurophysiology, 94(3), 1904–1911.

Lam, J. M., & Wodchis, W. P. (2010). The relationship of 60 disease diagnoses and 15 conditions to preference-based health-related quality of life in Ontario hospital-based long-term care residents. Medical Care, 48(4), 380–387.

Liu, X., Pu, Y., Wu, D., Zhang, Z., Hu, X., & Liu, L. (2019). Cross-frequency coupling between cerebral blood flow velocity and EEG in ischemic stroke patients with large vessel occlusion. Frontiers in Neurology, 10, Article 194.

Lizarazu, M., Lallier, M., & Molinaro, N. (2019). Phase−amplitude coupling between theta and gamma oscillations adapts to speech rate. Annals of the New York Academy of Sciences, 1453(1), 140–152.

Marebwa, B. K., Fridriksson, J., Yourganov, G., Feenaughty, L., Rorden, C., & Bonilha, L. (2017). Chronic post-stroke aphasia severity is determined by fragmentation of residual white matter networks. Scientific Reports, 7(1), Article 8188.

McBride, J. C., Zhao, X., Munro, N. B., Smith, C. D., Jicha, G. A., Hively, L., Broster, L. S., Schmitt, F. A., Kryscio, R., J., & Jiang, Y. (2014). Spectral and complexity analysis of scalp EEG characteristics for mild cognitive impairment and early Alzheimer's disease. Computer Methods and Programs in Biomedicine, 114(2), 153–163.

Mohammadi, M. R., Khaleghi, A., Nasrabadi, A. M., Rafieivand, S., Begol, M., & Zarafshan, H. (2016). EEG classification of ADHD and normal children using non-linear features and neural network. Biomedical Engineering Letters, 6(2), 66–73.

Mottaz, A., Corbet, T., Doganci, N., Magnin, C., Nicolo, P., Schnider, A., & Guggisberg, A. G. (2018). Modulating functional connectivity after stroke with neurofeedback: Effect on motor deficits in a controlled cross-over study. NeuroImage: Clinical, 20, 336–346.

Mroczkowska, D., Białkowska, J., & Rakowska, A. (2014). Neurofeedback as supportive therapy after stroke. Case report. Postępy Psychiatrii i Neurologii, 23(4), 190–201.

Nan, W., Dias, A. P. B., & Rosa, A. C. (2019). Neurofeedback training for cognitive and motor function rehabilitation in chronic stroke: two case reports. Frontiers in Neurology, 10, 800.

Nicholson, A. A., Ros, T., Frewen, P. A., Densmore, M., Théberge, J., Kluetsch, R. C., Jetly, R., & Lanius, R. A. (2016). Alpha oscillation neurofeedback modulates amygdala complex connectivity and arousal in posttraumatic stress disorder. NeuroImage: Clinical, 12, 506–516.

Nicolo, P., Rizk, S., Magnin, C., Di Pietro, M., Schnider, A., & Guggisberg, A. G. (2015). Coherent neural oscillations predict future motor and language improvement after stroke. Brain, 138(10), 3048–3060.

Nilipour, R., Pour Shahbaz, A., Ghoreishi, Z. S., & Yousefi, A. (2016). Reliability and validity of Persian aphasia battery test. Iranian Journal of Ageing, 10(4), 182–191.

Noda, Y., Zomorrodi, R., Saeki, T., Rajji, T. K., Blumberger, D. M., Daskalakis, Z. J., & Nakamura, M. (2017). Resting-state EEG gamma power and theta–gamma coupling enhancement following high-frequency left dorsolateral prefrontal rTMS in patients with depression. Clinical Neurophysiology, 128(3), 424–432.

Okazaki, R., Takahashi, T., Ueno, K., Takahashi, K., Higashima, M., & Wada, Y. (2013). Effects of electroconvulsive therapy on neural complexity in patients with depression: Report of three cases. Journal of Affective Disorders, 150(2), 389–392.

Okazaki, R., Takahashi, T., Ueno, K., Takahashi, K., Ishitobi, M., Kikuchi, M., Higashima, M., & Wada, Y. (2015). Changes in EEG complexity with electroconvulsive therapy in a patient with autism spectrum disorders: A multiscale entropy approach. Frontiers in Human Neuroscience, 9, 106.

Özkurt, T. E., & Schnitzler, A. (2011). A critical note on the definition of phase–amplitude cross-frequency coupling. Journal of Neuroscience Methods, 201(2), 438–443.

Prinsloo, S., Rosenthal, D. I., Lyle, R., Garcia, S. M., Gabel-Zepeda, S., Cannon, R., Bruera, E., & Cohen, L. (2019). Exploratory study of low resolution electromagnetic tomography (LORETA) real-time Z-score feedback in the treatment of pain in patients with head and neck cancer. Brain Topography, 32, 283–285.

Ramot, M., Kimmich, S., Gonzalez-Castillo, J., Roopchansingh, V., Popal, H., White, E., Gotts, S. J., & Martin, A. (2017). Direct modulation of aberrant brain network connectivity through real-time NeuroFeedback. eLife, 6, Article e28974.

Ros, T., Baars, B. J., Lanius, R. A., & Vuilleumier, P. (2014). Tuning pathological brain oscillations with neurofeedback: A systems neuroscience framework. Frontiers in Human Neuroscience, 8, 1008.

Rozelle, G. R., & Budzynski, T. H. (1995). Neurotherapy for stroke rehabilitation: A single case study. Biofeedback and Self-regulation, 20(3), 211–228.

Salimi, M., Javadi, A.-H., Nazari, M., Bamdad, S., Tabasi, F., Parsazadegan, T., Ayene, F., Karimian, M., Gholami-Mahtaj, L., Shadnia, S., Jamaati, H., Salimi, A., & Raoufy, M. R. (2022). Nasal air puff promotes default mode network activity in mechanically ventilated comatose patients: A noninvasive brain stimulation approach. Neuromodulation, 25(8), 1351–1363.

Sevcik, C. (2010). A procedure to estimate the fractal dimension of waveforms. arXiv preprint arXiv:1003.5266.

Shah-Basak, P. P., Sivaratnam, G., Teti, S., Francois-Nienaber, A., Yossofzai, M., Armstrong, S., Nayar, S., Jokel, R., & Meltzer, J. (2020). High definition transcranial direct current stimulation modulates abnormal neurophysiological activity in post-stroke aphasia. Scientific Reports, 10(1), 1–18.

Sho'ouri, N., Firoozabadi, M., & Badie, K. (2019). Neurofeedback training protocols based on selecting distinctive features and identifying appropriate channels to enhance performance in novice visual artists. Biomedical Signal Processing and Control, 49, 308–321.

Siegrist, M. (1997). Test-retest reliability of different versions of the Stroop test. The Journal of Psychology, 131(3), 299–306.

Sun, R., Wong, W.-w., Wang, J., & Tong, R. K.-y. (2017). Changes in electroencephalography complexity using a brain computer interface-motor observation training in chronic stroke patients: a fuzzy approximate entropy analysis. Frontiers in Human Neuroscience, 11, 444.

Szelies, B., Mielke, R., Kessler, J., & Heiss, W.-D. (2002). Prognostic relevance of quantitative topographical EEG in patients with poststroke aphasia. Brain and Language, 82(1), 87–94.

Takahashi, T., Cho, R. Y., Mizuno, T., Kikuchi, M., Murata, T., Takahashi, K., & Wada, Y. (2010). Antipsychotics reverse abnormal EEG complexity in drug-naive schizophrenia: A multiscale entropy analysis. NeuroImage, 51(1), 173–182.

Thatcher, R. W. (2010). LORETA Z score biofeedback. Neuroconnections, December, 9–13.

Tian, Y., Zhang, H., Xu, W., Zhang, H., Yang, L., Zheng, S., & Shi, Y. (2017). Spectral entropy can predict changes of working memory performance reduced by short-time training in the delayed-match-to-sample task. Frontiers in Human Neuroscience, 11, 437.

Tononi, G. (2010). Information integration: Its relevance to brain function and consciousness. Archives Italiennes de Biologie, 148(3), 299–322.

Tort, A. B. L., Komorowski, R. W., Manns, J. R., Kopell, N. J., & Eichenbaum, H. (2009). Theta–gamma coupling increases during the learning of item–context associations. Proceedings of the National Academy of Sciences, 106(49), 20942–20947.

Tzvi, E., Verleger, R., Münte, T. F., & Krämer, U. M. (2016). Reduced alpha-gamma phase amplitude coupling over right parietal cortex is associated with implicit visuomotor sequence learning. NeuroImage, 141, 60–70.

Vivekananda, U., Bush, D., Bisby, J. A., Baxendale, S., Rodionov, R., Diehl, B., Chowdhury, F. A., McEvoy, A. W., Miserocchi, A., Walker, M. C., & Burgess, N. (2021). Theta power and theta‐gamma coupling support long‐term spatial memory retrieval. Hippocampus, 31(2), 213–220.

Warren, J. E., Crinion, J. T., Lambon Ralph, M. A., & Wise, R. J. S. (2009). Anterior temporal lobe connectivity correlates with functional outcome after aphasic stroke. Brain, 132(12), 3428–3442.

Wu, D., Wang, J., & Yuan, Y. (2015). Effects of transcranial direct current stimulation on naming and cortical excitability in stroke patients with aphasia. Neuroscience Letters, 589, 115–120.

Yang, M., Yang, P., Fan, Y.-S., Li, J., Yao, D., Liao, W., & Chen, H. (2018). Altered structure and intrinsic functional connectivity in post-stroke aphasia. Brain Topography, 31(2), 300–310.






Research Papers