The Confluence of Genetic Factors and Neurotransmitter Dysregulation in Schizophrenia: A Comprehensive Review


  • Maithilee Chaudhary GN Ramachandran Protein Centre, CSIR – IMTECH, Chandigarh, 160036 140413, India
  • Dr. Preeti Solanki Chandigarh University, Mohali
  • Dr. Varshika Singh University Institute of Biotechnology, Chandigarh University Mohali, Punjab 140413, India



Schizophrenia, Neurotransmitters, cognitive neuroscience


Schizophrenia is a psychiatric condition characterized by a profound mental illness that impairs an individual's capacity to function in both social and cognitive domains. Individuals diagnosed with schizophrenia display psychopathological symptoms that are categorized as positive, negative, and cognitive. According to some estimates, nearly 98% of people with schizophrenia have cognitive deficits and perform below their expected cognitive capacity, which depends on their premorbid intelligence and parental educational attainment. Schizophrenia affects approximately 24 million individuals worldwide, which translates to a prevalence rate of 0.32%, or 1 in 300 people. In the interim, the prevalence of the condition among adults is 0.45% or 1 in 222 individuals. The heritability of schizophrenia is widely recognized to be significant, ranging from 60% to 90%. As a result, identifying specific risk genes is crucial for comprehending this disorder's underlying causes and physiological mechanisms. The pathophysiology of schizophrenia involves the dysregulation of various neurotransmitters and the pathways associated with it, various environmental factors, and heredity are also associated with it. Dopamine and other neurotransmitters associated with it like serotonin, glutamine et cetera have been the main drug targets of schizophrenia. The purpose of this review is to offer a comprehensive understanding of the etiology, pathophysiological mechanisms, and manifestations of schizophrenia. Overall, there is still insufficient evidence to prove the underlying cause of the pathogenesis of schizophrenia. Nonetheless, it is important to recognize the unknown and unidentified reasons underlying schizophrenia.

Author Biographies

Maithilee Chaudhary, GN Ramachandran Protein Centre, CSIR – IMTECH, Chandigarh, 160036 140413, India

Dissertation student

Dr. Preeti Solanki, Chandigarh University, Mohali

Associate Professor

University Center for Research and Development

University Institute of Biotechnology

Chandigarh University, Mohali

Punjab - 140413, India

Dr. Varshika Singh, University Institute of Biotechnology, Chandigarh University Mohali, Punjab 140413, India

Assistant Professor


Adell, A. (2020). Brain NMDA receptors in schizophrenia and depression. Biomolecules, 10(6), 947.

Andreasen, N. C., Nopoulos, P., Schultz, S. K., Miller, D. D., Gupta, S., Swayze, V. W., & Flaum, M. (1994). Positive and negative symptoms of schizophrenia: past, present, and future. Acta Psychiatrica Scandinavica, 90(s384), 51–59.

Amin, H., Parikh, P. K., & Ghate, M. (2021). Medicinal chemistry strategies for the development of phosphodiesterase 10A (PDE10A) inhibitors - An update of recent progress. European Journal of Medicinal Chemistry, 214, 113155.

Ashton, A., & Jagannath, A. (2020). Disrupted sleep and circadian rhythms in schizophrenia and their interaction with dopamine signaling. Frontiers in Neuroscience, 14, 636.

Balu, D. T. (2016). The NMDA receptor and schizophrenia: from pathophysiology to treatment. In Advances in Pharmacology 76, 351–382.

Bansal, V., & Chatterjee, I. (2021). Role of neurotransmitters in schizophrenia: a comprehensive study. Kuwait Journal of Science, 48(2).

Beck, A., Baker, A., & Todd, J. (2015). Smoking in schizophrenia: cognitive impact of nicotine and relationship to smoking motivators. Schizophrenia Research: Cognition, 2(1), 26–32.

Benros, M. E., & Mortensen, P. B. (2019). Role of Infection, Autoimmunity, Atopic Disorders, and the Immune System in Schizophrenia: Evidence from Epidemiological and Genetic Studies. In Current topics in behavioral neurosciences (pp. 141–159).

Best, M. W., & Bowie, C. R. (2017). A review of cognitive remediation approaches for schizophrenia: from top-down to bottom-up, brain training to psychotherapy. Expert Review of Neurotherapeutics, 17(7), 713–723.

Bhat, L., Cantillon, M., & Ings, R. M. J. (2018). Brilaroxazine (RP5063) Clinical Experience in Schizophrenia: “A New Option to Address Unmet Needs.” Journal of Neurology & Neuromedicine, 3(5), 39–50.

Biedermann, F., & Fleischhacker, W. W. (2016). Psychotic disorders in DSM-5 and ICD-11. CNS Spectrums, 21(4), 349–354.

Bitter, I., Groc, M., Delsol, C., Fabre, C., Fagard, M., Barthe, L., Gaudoux, F., Brunner, V., Brackman, F., & Tonner, F. (2017). Efficacy of F17464, a new preferential D3 antagonist in a placebo-controlled phase 2 study of patients with an acute exacerbation of schizophrenia. European Psychiatry, 41(S1), S387.

Blackwood, D., Fordyce, A., Walker, M., St Clair, D. M., Porteous, D. J., & Muir, W. (2001). Schizophrenia and Affective Disorders—Co-segregation with a Translocation at Chromosome 1q42 That Directly Disrupts Brain-Expressed Genes: Clinical and P300 Findings in a Family. American Journal of Human Genetics, 69(2), 428–433.

Blay, M., Adam, O., Bation, R., Galvao, F., Brunelin, J., & Mondino, M. (2021). Improvement of Insight with Non-Invasive Brain Stimulation in Patients with Schizophrenia: A Systematic Review. Journal of Clinical Medicine, 11(1), 40.

Boyd-Kimball, D., Gonczy, K., Lewis, B. F., Mason, T. J., Siliko, N., & Wolfe, J. (2018). Classics in chemical neuroscience: Chlorpromazine. ACS Chemical Neuroscience, 10(1), 79–88.

Bruijnzeel, D., Suryadevara, U., & Tandon, R. (2014). Antipsychotic treatment of schizophrenia: An update. Asian Journal of Psychiatry, 11, 3–7.

Castner, S. A., Murthy, N. V., Ridler, K., Herdon, H. J., Roberts, B. M., Weinzimmer, D., Huang, Y., Zheng, M., Rabiner, E. A., Gunn, R. N., Carson, R. E., Williams, G. V., & Laruelle, M. (2014). Relationship Between Glycine Transporter 1 Inhibition as Measured with Positron Emission Tomography and Changes in Cognitive Performances in Nonhuman Primates. Neuropsychopharmacology, 39(12), 2742–2749.

Cho, S., Lee, J., & Kang, S. (2016). Low d-serine levels in schizophrenia: A systematic review and meta-analysis. Neuroscience Letters, 634, 42–51.

Citrome, L. (2011). Lurasidone for schizophrenia: A Brief Review of a New Second-Generation Antipsychotic. Clinical Schizophrenia & Related Psychoses, 4(4), 251–257.

Citrome, L. (2016). Cariprazine for the Treatment of Schizophrenia: A Review of this Dopamine D3-Preferring D3/D2 Receptor Partial Agonist. Clinical Schizophrenia & Related Psychoses, 10(2), 109–119.

Clelland, J. D., Read, L. L., Drouet, V., Kaon, A., Kelly, A., Duff, K., Nadrich, R. H., Rajparia, A., & Clelland, C. L. (2014). Vitamin D insufficiency and schizophrenia risk: Evaluation of hyperprolinemia as a mediator of association. Schizophrenia Research, 156(1), 15–22.

Cosi, C., Martel, J., Auclair, A., Collo, G., Cavalleri, L., Heusler, P., Leriche, L., Gaudoux, F., Sokoloff, P., Moser, P., & Gatti-McArthur, S. (2021). Pharmacology profile of F17464, a dopamine D3 receptor preferential antagonist. European Journal of Pharmacology, 890, 173635.

Cosi, C., Nguyen, V., Consul-Denjean, N., Auclair, A., Heusler, P., Martel, J., Leriche, L., Sokoloff, P., & Gatti-McArthur, S. (2017). F17464 a new antipsychotic with preferential D3 antagonist, 5-HT1A partial agonist properties. Neurochemical studies. European Psychiatry, 41(S1), s807.

Correll, C. U., & Schooler, N. R. (2020).

Negative Symptoms in Schizophrenia: A Review and Clinical Guide for Recognition, Assessment, and Treatment

Neuropsychiatric Disease and Treatment, Volume 16, 519–534.

Dahoun, T., Trossbach, S. V., Brandon, N. J., Korth, C., & Howes, O. (2017). The impact of Disrupted-in-Schizophrenia 1 (DISC1) on the dopaminergic system: a systematic review. Translational Psychiatry, 7(1), e1015.

Degenhardt, F. (2020). Update on the genetic architecture of schizophrenia. Medizinische Genetik, 32(1), 19–24.

Devoe, D., Liu, L., Cadenhead, K., Cannon, T. D., Cornblatt, B. A., McGlashan, T. H., Perkins, D. O., Seidman, L. J., Tsuang, M. T., Walker, E. F., Woods, S. W., Bearden, C. E., Mathalon, D. H., & Addington, J. (2019). S21. The impact of persistent negative symptoms on functioning and defeatist beliefs in youth at clinical high risk for psychosis. Schizophrenia Bulletin. 45(Suppl 2), S313-S313.

Dollfus, S., & Lyne, J. (2017). Negative symptoms: History of the concept and their position in diagnosis of schizophrenia. Schizophrenia Research, 186, 3–7.

Domschke, K., Lawford, B. R., Young, R. M., Voisey, J., Morris, C. P., Roehrs, T., Hohoff, C., Birosova, E., Arolt, V., & Baune, B. T. (2011). Dysbindin (DTNBP1) – A role in psychotic depression? Journal of Psychiatric Research, 45(5), 588–595.

Egerton, A., Grace, A. A., Stone, J., Bossong, M. G., Sand, M., & McGuire, P. (2020). Glutamate in schizophrenia: Neurodevelopmental perspectives and drug development. Schizophrenia Research, 223, 59–70.

Eggers, A. E. (2013). A serotonin hypothesis of schizophrenia. Medical Hypotheses, 80(6), 791–794.

Fellner, C. (2017). New schizophrenia treatments address unmet clinical needs. PubMed, 42(2), 130–134.

Frohlich, J., & Van Horn, J. D. (2013). Reviewing the ketamine model for schizophrenia. Journal of Psychopharmacology, 28(4), 287–302.

Fulford, D., & Holt, D. J. (2023). Social withdrawal, loneliness, and health in schizophrenia: Psychological and neural mechanisms. Schizophrenia Bulletin, 49(5), 1138–1149.

Gaebel, W., Kerst, A., & Stricker, J. (2020). Classification and diagnosis of schizophrenia or other primary psychotic disorders: changes from icd-10 to icd-11 and implementation in clinical practice. Psychiatria Danubina, 32(3–4), 320–324.

Gainsford, K., Fitzgibbon, B. M., Fitzgerald, P. B., & Hoy, K. E. (2020). Transforming treatments for schizophrenia: Virtual reality, brain stimulation and social cognition. Psychiatry Research-neuroimaging, 288, 112974.

Garnock-Jones, K. P. (2017). Cariprazine: A review in schizophrenia. CNS Drugs, 31(6), 513–525.

Ghasemvand, F., Omidinia, E., Salehi, Z., & Rahmanzadeh, S. (2015). Relationship between polymorphisms in the proline dehydrogenase gene and schizophrenia risk. Genetics and Molecular Research, 14(4), 11681–11691.

Giusti-Rodríguez, P., & Sullivan, P. F. (2013). The genomics of schizophrenia: update and implications. Journal of Clinical Investigation, 123(11), 4557–4563.

González-Castro, T. B., Hernandez-Diaz, Y., Juárez-Rojop, I. E., López-Narváez, M. L., Tovilla-Zárate, C. A., Genis-Mendoza, A., & Alpuin-Reyes, M. (2016). The role of C957T, TaqI and Ser311Cys polymorphisms of the DRD2 gene in schizophrenia: systematic review and meta-analysis. Behavioral and Brain Functions, 12(1), 1-14.

Gozzi, A., Large, C. H., Schwarz, A. J., Bertani, S., Crestan, V., & Bifone, A. (2007). Differential effects of antipsychotic and glutamatergic agents on the PHMRI response to phencyclidine. Neuropsychopharmacology, 33(7), 1690–1703.

Guan, F., Ni, T., Zhu, W., Williams, L. K., Cui, L., Li, M., Tubbs, J. D., Sham, P., & Gui, H. (2021). Integrative omics of schizophrenia: from genetic determinants to clinical classification and risk prediction. Molecular Psychiatry, 27(1), 113–126.

Hany, M. (2023, March 20). Schizophrenia. StatPearls - NCBI Bookshelf.

Hashimoto, K. (2011). Glycine transporter-1: a new potential therapeutic target for schizophrenia. Current Pharmaceutical Design, 17(2), 112–120.

Homayoun, H., & Moghaddam, B. (2007). NMDA receptor hypofunction produces opposite effects on prefrontal cortex interneurons and pyramidal neurons. The Journal of Neuroscience, 27(43), 11496–11500.

Horikoshi, S., Shiga, T., Hoshino, H., Ochiai, H., Kanno-Nozaki, K., Kanno, K., ... & Yabe, H. (2019). The Relationship between Mismatch Negativity and the COMT Val108/158Met Genotype in Schizophrenia. Neuropsychobiology, 77(4), 192-196.

Howes, O., & Kapur, S. (2009a). The Dopamine Hypothesis of Schizophrenia: Version III--The Final common Pathway. Schizophrenia Bulletin, 35(3), 549–562.

Howes, O., & Kapur, S. (2009b). The Dopamine Hypothesis of Schizophrenia: Version III--The Final common Pathway. Schizophrenia Bulletin, 35(3), 549–562.

Hsu, W., Lane, H., & Lin, C. (2017). Brexpiprazole for the treatment of schizophrenia. Expert Opinion on Pharmacotherapy, 18(2), 217–223.

ICD-11. (n.d.).

Jones, C. K., Byun, N., & Bubser, M. (2011). Muscarinic and nicotinic acetylcholine receptor agonists and allosteric modulators for the treatment of schizophrenia. Neuropsychopharmacology, 37(1), 16–42.

Kantrowitz, J. T. (2020). Targeting serotonin 5-HT2A receptors to better treat schizophrenia: Rationale and current approaches. CNS Drugs, 34(9), 947–959.

Kaur, G., Chavan, B., Gupta, D., Sinhmar, V., Prasad, R., Tripathi, A., Garg, P. D., Gupta, R. K., Khurana, H., Gautam, S., Margoob, M. A., & Aneja, J. (2019). An association study of dopaminergic (DRD2) and serotoninergic (5-HT2) gene polymorphism and schizophrenia in a North Indian population. Asian Journal of Psychiatry, 39, 178–184.

Kesby, J. P., Eyles, D. W., McGrath, J. J., & Scott, J. G. (2018). Dopamine, psychosis and schizophrenia: the widening gap between basic and clinical neuroscience. Translational Psychiatry, 8(1), 30.

Khan, Z. U., Martín-Montañez, E., & Muly, E. C. (2013). Schizophrenia: causes and treatments. Current Pharmaceutical Design, 19(36), 6451–6461.

Khokhar, J. Y., Dwiel, L. L., Henricks, A. M., Doucette, W., & Green, A. I. (2018). The link between schizophrenia and substance use disorder: A unifying hypothesis. Schizophrenia Research, 194, 78–85.

Kikuchi, T. (2020). Is memantine effective as an NMDA receptor antagonist in adjunctive therapy for schizophrenia? Biomolecules, 10(8), 1134.

Kruse, A., & Bustillo, J. (2022). Glutamatergic dysfunction in Schizophrenia. Translational Psychiatry, 12(1), 500.

Kuo, C., Lin, C., & Lane, H. (2022). Targeting D-Amino acid oxidase (DAAO) for the treatment of schizophrenia: Rationale and current status of research. CNS Drugs, 36(11), 1143–1153.

Laszlovszky, I., Born, C., & Németh, G. (2021). Cariprazine, A Broad-Spectrum Antipsychotic for the Treatment of Schizophrenia: Pharmacology, Efficacy, and Safety. Advances in Therapy, 38(7), 3652–3673.

Laursen, T. M., Nordentoft, M., & Mortensen, P. B. (2014). Excess early mortality in schizophrenia. Annual Review of Clinical Psychology, 10(1), 425–448.

Layton, M. E., Kern, J. C., Hartingh, T. J., Shipe, W. D., Raheem, I. T., Kandebo, M., Hayes, R., Huszar, S. L., Eddins, D., Ma, B., Fuerst, J., Wollenberg, G. K., Li, J., Fritzen, J., McGaughey, G. B., Uslaner, J. M., Smith, S. M., Coleman, P. J., & Cox, C. D. (2023). Discovery of MK-8189, a highly potent and selective PDE10A inhibitor for the treatment of schizophrenia. Journal of Medicinal Chemistry, 66(2), 1157–1171.

Leucht, S., Tardy, M., Komossa, K., Heres, S., Kissling, W., Salanti, G., & Davis, J. M. (2012). Antipsychotic drugs versus placebo for relapse prevention in schizophrenia: a systematic review and meta-analysis. The Lancet, 379(9831), 2063–2071.

Liu, C., Liu, Y. L., Hwu, H., Fann, C. S., Yang, U. C., Hsu, P. C., Chang, C., Chen, W., Hwang, T., Hsieh, M. H., Liu, C., Chien, Y., Lin, Y., & Tsuang, M. T. (2019). Genetic associations and expression of extra-short isoforms of disrupted-in-schizophrenia 1 in a neurocognitive subgroup of schizophrenia. Journal of Human Genetics, 64(7), 653–663.

Liu, Q. Q., Yao, X. X., Gao, S. H., Li, R., Li, B. J., Yang, W., & Cui, R. (2020). Role of 5-HT receptors in neuropathic pain: potential therapeutic implications. Pharmacological Research, 159, 104949.

Llorca, P., Pereira, B., Jardri, R., Chereau-Boudet, I., Brousse, G., Misdrahi, D., Fénelon, G., Tronche, A., Schwan, R., Lançon, C., Marques, A., Ulla, M., Derost, P., Debilly, B., Durif, F., & De Chazeron, I. (2016). Hallucinations in schizophrenia and Parkinson’s disease: an analysis of sensory modalities involved and the repercussion on patients. Scientific Reports, 6(1), 38152.

Lobo, M. C., Whitehurst, T., Kaar, S., & Howes, O. (2022). New and emerging treatments for schizophrenia: a narrative review of their pharmacology, efficacy and side effect profile relative to established antipsychotics. Neuroscience & Biobehavioral Reviews, 132, 324–361.

Luykx, J. J., Broersen, J. L., & De Leeuw, M. (2017). The DRD2 rs1076560 polymorphism and schizophrenia-related intermediate phenotypes: A systematic review and meta-analysis. Neuroscience & Biobehavioral Reviews, 74, 214–224.

MacKay, M. B., Kravtsenyuk, M., Thomas, R. K., Mitchell, N., Dursun, S., & Baker, G. B. (2019). D-Serine: potential therapeutic agent and/or biomarker in schizophrenia and depression? Frontiers in Psychiatry, 10, 25.

Massoud, S., Salmanian, M., Tabibian, M., Ghamari, R., Ghavami, T. S. T., & Alizadeh, F. (2023). The contribution of the 5-hydroxytryptamine receptor 2 A gene polymorphisms rs6311 and rs6313 to Schizophrenia in Iran. Molecular Biology Reports, 50(3), 2633–2639.

McCutcheon, R., Keefe, R. S., & McGuire, P. (2023). Cognitive impairment in schizophrenia: aetiology, pathophysiology, and treatment. Molecular Psychiatry.

McCutcheon, R., Krystal, J. H., & Howes, O. (2020). Dopamine and glutamate in schizophrenia: biology, symptoms and treatment. World Psychiatry, 19(1), 15–33.

McCutcheon, R., Marques, T. R., & Howes, O. (2020). Schizophrenia—An overview. JAMA Psychiatry, 77(2), 201.

Mei, Y. Y., Wu, D. C., & Zhou, N. (2018). Astrocytic regulation of glutamate transmission in schizophrenia. Frontiers in Psychiatry, 9, 544.

Meli, G., Öttl, B., Paladini, A., & Cataldi, L. (2012). Prenatal and perinatal risk factors of schizophrenia. Journal of Maternal-fetal & Neonatal Medicine, 25(12), 2559–2563.

Meltzer, H. Y., Li, Z., Kaneda, Y., & Ichikawa, J. (2003). Serotonin receptors: their key role in drugs to treat schizophrenia. Progress in Neuro-psychopharmacology & Biological Psychiatry, 27(7), 1159–1172.

Menniti, F. S., Chappie, T. A., Humphrey, J. M., & Schmidt, C. J. (2007). Phosphodiesterase 10A inhibitors: a novel approach to the treatment of the symptoms of schizophrenia. PubMed, 8(1), 54–59.

Molitch, M. E. (2020). Dopamine agonists and antipsychotics. European Journal of Endocrinology, 183(3), C11–C13.

Mondino, M., Bennabi, D., Poulet, E., Galvao, F., Brunelin, J., & Haffen, E. (2014). Can transcranial direct current stimulation (tDCS) alleviate symptoms and improve cognition in psychiatric disorders? World Journal of Biological Psychiatry, 15(4), 261–275.

Mosolov, S., & Yaltonskaya, P. A. (2022). Primary and secondary negative symptoms in schizophrenia. Frontiers in Psychiatry, 12.

Nair, P. C., Chalker, J. M., McKinnon, R. A., Langmead, C. J., Gregory, K. J., & Bastiampillai, T. (2022). Trace Amine-Associated Receptor 1 (TAAR1): Molecular and clinical insights for the treatment of schizophrenia and related comorbidities. ACS Pharmacology & Translational Science, 5(3), 183–188.

Năstase, M. G., Vlaicu, I., & Trifu, S. C. (2022). Genetic polymorphism and neuroanatomical changes in schizophrenia. Romanian Journal of Morphology and Embryology, 63(2), 307–322.

Negrete-Díaz, J. V., Falcón-Moya, R., & Rodríguez-Moreno, A. (2021). Kainate receptors: from synaptic activity to disease. FEBS Journal, 289(17), 5074–5088.

Ni, P., & Chung, S. (2020). Mitochondrial dysfunction in schizophrenia. BioEssays, 42(6), 1900202.

O’Donovan, M. C., Craddock, N., Norton, N., Williams, H., Peirce, T., Moskvina, V., Nikolov, I., Hamshere, M. L., Carroll, L., Georgieva, L., Dwyer, S., Holmans, P. A., Marchini, J., Spencer, C. C. A., Howie, B., Leung, H. T., Hartmann, A. M., Möller, H., Morris, D., . . . Kirov, G. (2008). Identification of loci associated with schizophrenia by genome-wide association and follow-up. Nature Genetics, 40(9), 1053–1055.

Padmanabhan, J., & Keshavan, M. S. (2014). Pathophysiology of Schizophrenia. In Schizophrenia: Recent Advances in Diagnosis and Treatment, 35-57. New York, NY: Springer New York.

Patel, K. R., Cherian, J., Gohil, K., & Atkinson, D. (2014). Schizophrenia: overview and treatment options. Pharmacy and Therapeutics, 39(9), 638.

Patel, S., Khan, S., Saipavankumar, M., & Hamid, P. (2020). The Association between cannabis use and schizophrenia: Causative or curative? A systematic review. Cureus.

Pawlak, J., & Zakowicz, P. (2022). Glycine transporters in schizophrenia. a new hope or informational noise? Psychiatria Polska, 56(2), 217–228.

Peiser-Oliver, J. M., Evans, S., Adams, D. J., Christie, M. J., Vandenberg, R. J., & Mohammadi, S. A. (2022). Glycinergic modulation of pain in behavioral animal models. Frontiers in Pharmacology, 13, 860903.

Popovic, D., Schmitt, A., Kaurani, L., Senner, F., Papiol, S., Malchow, B., Fischer, A., Schulze, T. G., Koutsouleris, N., & Falkai, P. (2019). Childhood trauma in Schizophrenia: Current findings and research perspectives. Frontiers in Neuroscience, 13.

Pourhamzeh, M., Moravej, F. G., Arabi, M., Shahriari, E., Mehrabi, S., Ward, R. T., Ahadi, R., & Joghataei, M. T. (2021). The roles of serotonin in neuropsychiatric disorders. Cellular and Molecular Neurobiology, 42(6), 1671–1692.

Quednow, B. B., Geyer, M. A., & Halberstadt, A. L. (2020). Serotonin and schizophrenia. In Handbook of Behavioral Neuroscience, 31, 711–743.

Recio-Barbero, M., Segarra, R., Zabala, A., Gonzalez-Fraile, E., Gonzalez-Pinto, A., & Ballesteros, J. (2021). Cognitive enhancers in schizophrenia: a systematic review and meta-analysis of alpha-7 nicotinic acetylcholine receptor agonists for cognitive deficits and negative symptoms. Frontiers in Psychiatry, 12, 631589.

Rogers, R. D. (2010). The Roles of Dopamine and Serotonin in Decision Making: Evidence from Pharmacological Experiments in Humans. Neuropsychopharmacology, 36(1), 114–132.

Rosenbrock, H., Desch, M., Kleiner, O., Dorner-Ciossek, C., Schmid, B., Keller, S., Schlecker, C., Moschetti, V., Goetz, S., Liesenfeld, K., Fillon, G., Giovannini, R., Ramael, S., Wunderlich, G., & Wind, S. (2018). Evaluation of Pharmacokinetics and Pharmacodynamics of BI 425809, a novel GLYT1 inhibitor: translational studies. Clinical and Translational Science, 11(6), 616–623.

Ross, C. A., Margolis, R. L., Reading, S., Pletnikov, M. V., & Coyle, J. T. (2006). Neurobiology of schizophrenia. Neuron, 52(1), 139–153.

Satiamurthy, R., Yaakob, N. S., Shahb, N. M., Azmi, N., & Omar, M. S. (2023). Potential roles of 5-HT3 receptor antagonists in reducing chemotherapy-induced peripheral neuropathy (CIPN). Current Molecular Medicine, 23(4), 341–349.

Schizophrenia spectrum and other psychotic disorders. (2022). In American Psychiatric Association Publishing eBooks.

Schoonover, K. E., Dienel, S., & Lewis, D. A. (2020). Prefrontal cortical alterations of glutamate and GABA neurotransmission in schizophrenia: Insights for rational biomarker development. Biomarkers in Neuropsychiatry, 3, 100015.

Seeman, P. (2013). Schizophrenia and dopamine receptors. European Neuropsychopharmacology, 23(9), 999–1009.

Shahsavar, A., Stohler, P., Bourenkov, G., Zimmermann, I., Siegrist, M. S., Guba, W., Pinard, E., Sinning, S., Seeger, M. A., Schneider, T. R., Dawson, R., & Nissen, P. (2021). Structural insights into the inhibition of glycine reuptake. Nature, 591(7851), 677–681.

Simpson, E. H., Gallo, E. F., Balsam, P. D., Javitch, J. A., & Kellendonk, C. (2021a). How changes in dopamine D2 receptor levels alter striatal circuit function and motivation. Molecular Psychiatry, 27(1), 436–444.

Simpson, E. H., Gallo, E. F., Balsam, P. D., Javitch, J. A., & Kellendonk, C. (2021b). How changes in dopamine D2 receptor levels alter striatal circuit function and motivation. Molecular Psychiatry, 27(1), 436–444.

Siskind, D., McCartney, L., Goldschlager, R., & Kisely, S. (2016). Clozapine v. first- and second-generation antipsychotics in treatment-refractory schizophrenia: systematic review and meta-analysis. British Journal of Psychiatry, 209(5), 385–392.

Sparacino, G., Verdolini, N., Vieta, E., & Pacchiarotti, I. (2022). Existing and emerging pharmacological approaches to the treatment of mania: A critical overview. Translational Psychiatry, 12(1), 169.

Stahl, S. M. (2018). Beyond the dopamine hypothesis of schizophrenia to three neural networks of psychosis: dopamine, serotonin, and glutamate. CNS Spectrums, 23(3), 187–191.

Stępnicki, P., Kondej, M., & Kaczor, A. A. (2018). Current concepts and treatments of schizophrenia. Molecules, 23(8), 2087.

Stilo, S. A., Di Forti, M., & Murray, R. M. (2011). Environmental risk factors for schizophrenia: implications for prevention. Neuropsychiatry, 1(5), 457–466.

Strange, P. G. (2008). Antipsychotic drug action: antagonism, inverse agonism or partial agonism. Trends in Pharmacological Sciences, 29(6), 314–321.

Sushilkumar, S., Allen, A. C., & Osier, N. S. (2022). Chlorpromazine: Paving the Way for a Better Understanding of Schizophrenia. Frontiers for Young Minds, 10.

Takano, T., & Hansen, A. J. (2002). Beyond the role of glutamate as a neurotransmitter. Nature Reviews Neuroscience, 3(9), 748–755.

Tang, R., Zhao, X., Shi, Y., Tang, W., Gu, N., Gao, F., Yang, X., Zhu, S., Sang, H., Liang, P., & He, L. (2006). Family-based association study of Epsin 4 and Schizophrenia. Molecular Psychiatry, 11(4), 395–399.

Taylor, W. D., Zald, D. H., Felger, J. C., Christman, S. T., Claassen, D. O., Horga, G., Miller, J. M., Gifford, K. A., Rogers, B. P., Szymkowicz, S. M., & Rutherford, B. R. (2021). Influences of dopaminergic system dysfunction on late-life depression. Molecular Psychiatry, 27(1), 180–191.

Thompson, J., Rosell, D. R., Slifstein, M., Xu, X., Rothstein, E., Modiano, Y. A., Kegeles, L. S., Koenigsberg, H. W., New, A. S., Hazlett, E. A., McClure, M. M., Perez-Rodriguez, M. M., Siever, L. J., & Abi-Dargham, A. (2020). Amphetamine-induced striatal dopamine release in schizotypal personality disorder. Psychopharmacology, 237(9), 2649–2659.

Trifu, S. C., Kohn, B., Vlasie, A., & Patrichi, B. E. (2020). Genetics of schizophrenia. Experimental and Therapeutic Medicine, 20(4), 3462-3468.

Tripathi, A., Kar, S. K., & Shukla, R. (2018). Cognitive Deficits in Schizophrenia: Understanding the biological correlates and remediation strategies. Clinical Psychopharmacology and Neuroscience: The Official Scientific Journal of the Korean College of Neuropsychopharmacology, 16(1), 7–17.

Tsitsipa, E., Rogers, J., Casalotti, S., Belessiotis-Richards, C., Zubko, O., Weil, R. S., Howard, R., Bisby, J., & Reeves, S. (2022). Selective 5HT3 antagonists and sensory processing: a systematic review. Neuropsychopharmacology, 47(4), 880–890.

Uher, R., Pallaskorpi, S., Suominen, K., Mantere, O., Pavlova, B., & Isometsä, E. (2018). Clinical course predicts long-term outcomes in bipolar disorder. Psychological Medicine, 49(07), 1109–1117.

Umbricht, D., Alberati, D., Martin-Facklam, M., Borroni, E., Youssef, E., Ostland, M., Wallace, T. L., Knoflach, F., Dorflinger, E., Wettstein, J. G., Bausch, A., Garibaldi, G., & Santarelli, L. (2014). Effect of bitopertin, a glycine reuptake inhibitor, on negative symptoms of schizophrenia. JAMA Psychiatry, 71(6), 637.

Uno, Y., & Coyle, J. T. (2019). Glutamate hypothesis in schizophrenia. Psychiatry and Clinical Neurosciences, 73(5), 204–215.

Vaht, M., Laas, K., Kiive, E., Parik, J., Veidebaum, T., & Harro, J. (2016). A functional neuregulin-1 gene variant and stressful life events: Effect on drug use in a longitudinal population-representative cohort study. Journal of Psychopharmacology, 31(1), 54–61.

Wang, H., Xu, J., Lazarovici, P., & Zheng, W. (2017). Dysbindin-1 involvement in the etiology of schizophrenia. International Journal of Molecular Sciences, 18(10), 2044.

Wang, Y., Zhao, B., Wu, M., Zheng, X., Lin, L., & Yin, D. (2021). Overexpression of neuregulin 1 in GABAergic interneurons results in reversible cortical disinhibition. Nature Communications, 12(1), 278.

Wang, Z., Zhang, T., Liu, J., Wang, H., Lu, T., Jia, M., Zhang, D., Wang, L., & Li, J. (2019). Family-based association study of ZNF804A polymorphisms and autism in a Han Chinese population. BMC Psychiatry, 19(1).

Wawrzczak-Bargiela, A., Bilecki, W., & Maćkowiak, M. (2023). Epigenetic targets in schizophrenia development and therapy. Brain Sciences, 13(3), 426.

Werner, F., & Coveñas, R. (2010). Classical Neurotransmitters and Neuropeptides Involved in Major Depression: a Review. International Journal of Neuroscience, 120(7), 455–470.

White, C. M. (2019). A review of human studies assessing cannabidiol’s (CBD) therapeutic actions and potential. The Journal of Clinical Pharmacology, 59(7), 923–934.

Wójciak, P., & Rybakowski, J. (2018). Clinical picture, pathogenesis and psychometric assessment of negative symptoms of schizophrenia. Psychiatria Polska, 52(2), 185–197.

Wu, Y., Yang, Z., & Cui, S. (2022). Update Research Advances in the Application of Transcranial Magnetic Stimulation in the Treatment of Schizophrenia. Scanning, 2022, 1–5.

Yang, A. C., & Tsai, S. (2017). New Targets for Schizophrenia Treatment beyond the Dopamine Hypothesis. International Journal of Molecular Sciences, 18(8), 1689.

Yao, Y., & Han, W. (2022). Proline metabolism in neurological and psychiatric disorders. Molecules and Cells, 45(11), 781–788.

Yang, Y., Zhang, L., Dong, G., Zhang, L., Yu, H., Liu, Q., Su, X., Shao, M., Song, M., Zhang, Y., Ding, M., Lu, Y., Liu, B., Li, W., Yue, W., Fan, X., Yang, G., & Lv, L. (2020). Association of DTNBP1 with schizophrenia: findings from two independent samples of Han Chinese population. Frontiers in Psychiatry, 11.






Review Articles