Exploring Alpha and Theta Activity in Depression: A Combined Surface EEG and LORETA Study of Cortical and Subcortical Networks

Authors

  • Ahmad Poormohammad Elumind Centres for Brain Excellence
  • Helia Pournasr Elumind Centres for Brain Excellence, Vancouver, Canada
  • Mehrsa Soltani Miri
  • Arman Samimi
  • Kourosh Edalati

DOI:

https://doi.org/10.15540/nr.12.2.89

Keywords:

depression, qEEG, alpha and theta oscillations, hippocampus-amygdala network, frontotemporal area

Abstract

Introduction. Depression is a common mental health condition characterized by disrupted neural activity in cortical and subcortical networks involved in emotion and memory. While alpha and theta oscillations have been linked to depression, their specific roles in symptom domains remain unclear. This study examines these relationships using quantitative EEG (qEEG) and low-resolution electromagnetic tomography analysis (LORETA). Methods. Fifty-eight adults with depression underwent resting-state, eyes-closed qEEG. Absolute power and coherence of alpha (8–12 Hz) and theta (4–8 Hz) bands were analyzed across 19 scalp electrodes and hippocampal and amygdala regions using LORETA. Depressive symptom severity was assessed using the Beck Depression Inventory-II (BDI-II). Statistical analyses evaluated associations between EEG parameters and symptom scores. Results. Alpha coherence between the left hippocampus and amygdala negatively correlated with somatic symptoms (r = −0.298, p = .027), explaining 26% of variance in total BDI-II scores. Increased theta coherence in the right frontotemporal network was associated with reductions in affective and somatic symptoms. Conclusions. The findings identify neural oscillatory patterns within hippocampal-amygdala and frontotemporal networks as potential biomarkers for depressive symptoms, providing insights into novel therapeutic targets.

References

American Psychiatric Association. (2022). Diagnostic and statistical manual of mental disorders (5th ed., text rev.). https://doi.org/10.1176/appi.books.9780890425787

Blankenship, T. L., & Bell, M. A. (2015). Frontotemporal coherence and executive functions contribute to episodic memory during middle childhood. Developmental Neuropsychology, 40(7–8), 430–444. https://doi.org/10.1080 /87565641.2016.1153099

Bokhan, N. A., Galkin, S. A., & Vasilyeva, S. N. (2023). EEG alpha band characteristics in patients with a depressive episode within recurrent and bipolar depression. Consortium Psychiatricum, 4(3), 5–12. https://doi.org/10.17816/CP6140

Cornwell, B. R., Salvadore, G., Colon-Rosario, V., Latov, D. R., Holroyd, T., Carver, F. W., Coppola, R., Manji, H. K., Zarate, C. A., & Grillon, C. (2010). Abnormal hippocampal functioning and impaired spatial navigation in depressed individuals: Evidence from whole-head magnetoencephalography. American Journal of Psychiatry, 167(7), 836–844. https://doi.org/10.1176/appi.ajp.2009.09050614

Cui, L., Li, S., Wang, S., Wu, X., Liu, Y., Yu, W., Wang, Y., Tang, Y., Xia, M., & Li, B. (2024). Major depressive disorder: Hypothesis, mechanism, prevention and treatment. Signal Transduction and Targeted Therapy, 9(1), Article 30. https://doi.org/10.1038/s41392-024-01738-y

Damborská, A., Honzírková, E., Barteček, R., Hořínková, J., Fedorová, S., Ondruš, Š., Michel, C. M., & Rubega, M. (2020). Altered directed functional connectivity of the right amygdala in depression: High-density EEG study. Scientific Reports, 10(1), Article 4398. https://doi.org/10.1038/s41598-020-61264-z

Dev, A., Roy, N., Islam, Md. K., Biswas, C., Ahmed, H. U., Amin, Md. A., Sarker, F., Vaidyanathan, R., & Mamun, K. A. (2022). Exploration of EEG-based depression biomarkers identification techniques and their applications: A systematic review. IEEE Access, 10, 16756–16781. https://doi.org /10.1109/ACCESS.2022.3146711

Devinsky, O. (2000). Right cerebral hemisphere dominance for a sense of corporeal and emotional self. Epilepsy & Behavior, 1(1), 60–73. https://doi.org/10.1006/ebeh.2000.0025

Dong, D., Jiang, Y., Gao, Y., Ming, Q., Wang, X., & Yao, S. (2019). Atypical frontotemporal connectivity of cognitive empathy in male adolescents with conduct disorder. Frontiers in Psychology, 9, Article 2778. https://doi.org/10.3389 /fpsyg.2018.02778

Dum, M., Pickren, J., Sobell, L. C., & Sobell, M. B. (2008). Comparing the BDI-II and the PHQ-9 with outpatient substance abusers. Addictive Behaviors, 33(2), 381–387. https://doi.org/10.1016/j.addbeh.2007.09.017

Friedrich, M. J. (2017). Depression is the leading cause of disability around the world. JAMA, 317(15), Article 1517. https://doi.org/10.1001/jama.2017.3826

García-Batista, Z. E., Guerra-Peña, K., Cano-Vindel, A., Herrera-Martínez, S. X., & Medrano, L. A. (2018). Validity and reliability of the Beck Depression Inventory (BDI-II) in general and hospital population of Dominican Republic. PLoS ONE, 13(6), Article e0199750. https://doi.org/10.1371 /journal.pone.0199750

Gould, N. F., Holmes, M. K., Fantie, B. D., Luckenbaugh, D. A., Pine, D. S., Gould, T. D., Burgess, N., Manji, H. K., & Zarate, C. A. (2007). Performance on a virtual reality spatial memory navigation task in depressed patients. The American Journal of Psychiatry, 164(3), 516–519. https://doi.org/10.1176 /ajp.2007.164.3.516

LaVarco, A., Ahmad, N., Archer, Q., Pardillo, M., Nunez Castaneda, R., Minervini, A., & Keenan, J. P. (2022). Self-conscious emotions and the right fronto-temporal and right temporal parietal junction. Brain Sciences, 12(2), Article 138. https://doi.org/10.3390/brainsci12020138

Leuchter, A. F., Cook, I. A., Hunter, A. M., Cai, C., & Horvath, S. (2012). Resting-state quantitative electroencephalography reveals increased neurophysiologic connectivity in depression. PLoS ONE, 7(2), Article e32508. https://doi.org /10.1371/journal.pone.0032508

Liu, X., Zhang, H., Cui, Y., Zhao, T., Wang, B., Xie, X., Liang, S., Sha, S., Yan, Y., Zhao, X., & Zhang, L. (2024). EEG-based major depressive disorder recognition by neural oscillation and asymmetry. Frontiers in Neuroscience, 18, Article 1362111. https://doi.org/10.3389/fnins.2024.1362111

Lorenzetti, V., Allen, N. B., Fornito, A., & Yücel, M. (2009). Structural brain abnormalities in major depressive disorder: A selective review of recent MRI studies. Journal of Affective Disorders, 117(1–2), 1–17. https://doi.org/10.1016 /j.jad.2008.11.021

Lyness, J. M., Cox, C., Curry, J., Conwell, Y., King, D. A., & Caine, E. D. (1995). Older age and the underreporting of depressive symptoms. Journal of the American Geriatrics Society, 43(3), 216–221. https://doi.org/10.1111/j.1532-5415.1995.tb07325.x

Mayberg, H. (1997). Limbic-cortical dysregulation: A proposed model of depression. The Journal of Neuropsychiatry and Clinical Neurosciences, 9(3), 471–481. https://doi.org/10.1176 /jnp.9.3.471

McGaugh, J. L. (2004). The amygdala modulates the consolidation of memories of emotionally arousing experiences. Annual Review of Neuroscience, 27(1), 1–28. https://doi.org/10.1146/annurev.neuro.27.070203.144157

Platek, S. M., Keenan, J. P., Gallup, G. G., & Mohamed, F. B. (2004). Where am I? The neurological correlates of self and other. Cognitive Brain Research, 19(2), 114–122. https://doi.org/10.1016/j.cogbrainres.2003.11.014

Romeo, Z., & Spironelli, C. (2024). Theta oscillations underlie the interplay between emotional processing and empathy. Heliyon, 10(14), Article e34581. https://doi.org/10.1016 /j.heliyon.2024.e34581

Siegle, G. J., Thompson, W., Carter, C. S., Steinhauer, S. R., & Thase, M. E. (2007). Increased amygdala and decreased dorsolateral prefrontal BOLD responses in unipolar depression: Related and independent features. Biological Psychiatry, 61(2), 198–209. https://doi.org/10.1016 /j.biopsych.2006.05.048

Takahashi, E., Ohki, K., & Kim, D.-S. (2007). Diffusion tensor studies dissociated two fronto-temporal pathways in the human memory system. NeuroImage, 34(2), 827–838. https://doi.org/10.1016/j.neuroimage.2006.10.009

Tang, S., Lu, L., Zhang, L., Hu, X., Bu, X., Li, H., Hu, X., Gao, Y., Zeng, Z., Gong, Q., & Huang, X. (2018). Abnormal amygdala resting-state functional connectivity in adults and adolescents with major depressive disorder: A comparative meta-analysis. EBioMedicine, 36, 436–445. https://doi.org/10.1016 /j.ebiom.2018.09.010

Trambaiolli, L. R., & Biazoli, C. E. (2020). Resting-state global EEG connectivity predicts depression and anxiety severity. 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), pp. 3707–3710. Montreal, Canada. https://doi.org/10.1109 /EMBC44109.2020.9176161

Trentini, C. M., Xavier, F. M. D. F., Chachamovich, E., Rocha, N. S. D., Hirakata, V. N., & Fleck, M. P. D. A. (2005). The influence of somatic symptoms on the performance of elders in the Beck Depression Inventory (BDI). Revista Brasileira de Psiquiatria, 27(2), 119–123. https://doi.org/10.1590/S1516-44462005000200009

Tseng, H.-J., Lu, C.-F., Jeng, J.-S., Cheng, C.-M., Chu, J.-W., Chen, M.-H., Bai, Y.-M., Tsai, S.-J., Su, T.-P., & Li, C.-T. (2022). Frontal asymmetry as a core feature of major depression: A functional near-infrared spectroscopy study. Journal of Psychiatry and Neuroscience, 47(3), E186–E193. https://doi.org/10.1503/jpn.210131

Wang, Y.-P., & Gorenstein, C. (2013). Psychometric properties of the Beck Depression Inventory-II: A comprehensive review. Revista Brasileira de Psiquiatria, 35(4), 416–431. https://doi.org/10.1590/1516-4446-2012-1048

Williams, K. A., Mehta, N. S., Redei, E. E., Wang, L., & Procissi, D. (2014). Aberrant resting-state functional connectivity in a genetic rat model of depression. Psychiatry Research: Neuroimaging, 222(1–2), 111–113. https://doi.org/10.1016 /j.pscychresns.2014.02.001

Wright, N. E., Scerpella, D., & Lisdahl, K. M. (2016). Marijuana use is associated with behavioral approach and depressive symptoms in adolescents and emerging adults. PLoS ONE, 11(11), Article e0166005. https://doi.org/10.1371 /journal.pone.0166005

Yamada, M., Kimura, M., Mori, T., & Endo, S. (1995). EEG power and coherence in presenile and senile depression. Characteristic findings related to differences between anxiety type and retardation type. Journal of Nippon Medical School, 62(2), 176–185. https://doi.org/10.1272/jnms1923.62.176

Yang, J., Yin, Y., Svob, C., Long, J., He, X., Zhang, Y., Xu, Z., Li, L., Liu, J., Dong, J., Zhang, Z., Wang, Z., & Yuan, Y. (2017). Amygdala atrophy and its functional disconnection with the cortico-striatal-pallidal-thalamic circuit in major depressive disorder in females. PLoS ONE, 12(1), Article e0168239. https://doi.org/10.1371/journal.pone.0168239

Zhang, L., Hu, X., Hu, Y., Tang, M., Qiu, H., Zhu, Z., Gao, Y., Li, H., Kuang, W., & Ji, W. (2022). Structural covariance network of the hippocampus–amygdala complex in medication-naïve patients with first-episode major depressive disorder. Psychoradiology, 2(4), 190–198. https://doi.org/10.1093 /psyrad/kkac023

Zheng, J., Anderson, K. L., Leal, S. L., Shestyuk, A., Gulsen, G., Mnatsakanyan, L., Vadera, S., Hsu, F. P. K., Yassa, M. A., Knight, R. T., & Lin, J. J. (2017). Amygdala-hippocampal dynamics during salient information processing. Nature Communications, 8(1), Article 14413. https://doi.org/10.1038 /ncomms14413

Downloads

Published

2025-06-27

Issue

Section

Research Papers