Clinical Applicability of the Test-retest Reliability of qEEG Coherence

Authors

  • Alycia M. Roberts Rainbow Babies & Children's Hospital
  • Paul Fillmore Baylor University
  • Scott L. Decker University of South Carolina

DOI:

https://doi.org/10.15540/nr.3.1.7

Keywords:

qEEG, coherence, reliability, reliable change

Abstract

Measurement reliability is an important aspect of establishing the utility of scores used in clinical practice. Although much is known about the reliability of quantitative electroencephalographic (qEEG) metrics related to absolute power, less is known about the reliability of coherence metrics. The current study examined the measurement reliability of coherence metrics across standard frequency bands during an eyes-closed resting state. Reliability was examined both within channel pairs, and averaged across spatially contiguous channels, to summarize global patterns. We found that while most channel pairs were highly reliable on average, there was substantial variability across channels. Finally, we estimated the effect of measurement reliability on the detection of treatment-related neural change. We concluded that estimates of reliability for treated channels are crucial, and should factor into clinical assessment of treatment efficacy for EEG biofeedback (neurofeedback), especially in cases where large cross-channel variability is present.

Author Biographies

Alycia M. Roberts, Rainbow Babies & Children's Hospital

Dr. Roberts is a postdoctoral fellow in pediatric neuropsychology in the Division of Developmental-Behavioral Pediatrics & Psychology.

Paul Fillmore, Baylor University

Dr. Fillmore is an Assistant Professor of Communication Sciences and Disorders

Scott L. Decker, University of South Carolina

Dr. Decker is an Associate Professor of School Psychology

References

Begić, D., Popović-Knapić, V., Grubišin, J., Kosanović-Rajačić, B., Filipčić, I., Telarović, I., & Jakovljević, M. (2011). Quantitative electroencephalography in schizophrenia and depression. Psychiatria Danubina, 23(4), 355–362.

Boutros, N. N., Arfken, C., Galderisi, S., Warrick, J., Pratt, G., & Iacono, W. (2008). The status of spectral EEG abnormality as a diagnostic test for schizophrenia. Schizophrenia Research,99(1–3), 225–237. http://dx.doi.org/10.1016/j.schres.2007.11.020

Bozorg, A. M., Lacayo, J. C., & Benbadis, S. R. (2010). The yield of routine outpatient electroencephalograms in the veteran population. Journal of Clinical Neurophysiology, 27(3), 191–192. http://dx.doi.org/10.1097/wnp.0b013e3181e0a950

BrainMaster Discovery 24 (Version 1.8) [Computer software and hardware]. (2011). Bedford, OH: BrainMaster Technologies, Inc.

Burgess, A., & Gruzelier, J. (1993). Individual reliability of amplitude distribution in topographical mapping of EEG. Electroencephalography and Clinical Neurophysiology, 86(4), 219–223. http://dx.doi.org/10.1016/0013-4694(93)90101-z

Calzada-Reyes, A., Alvarez-Amador, A., Galán-García, L., & Valdés-Sosa, M. (2012). Electroencephalographic abnormalities in antisocial personality disorder. Journal of Forensic and Legal Medicine, 19(1), 29–34. http://dx.doi.org/10.1016/j.jflm.2011.10.002

Cannon, R. L., Baldwin, D. R., Shaw, T. L., Diloreto, D. J., Phillips, S. M., Scruggs, A. M., & Riehl, T. C. (2012). Reliability of quantitative EEG (qEEG) measures and LORETA current source density at 30 days. Neuroscience Letters, 518(1), 27–31. http://dx.doi.org/10.1016/j.neulet.2012.04.035

Cantor, D. S., & Chabot, R. (2009). QEEG Studies in the Assessment and Treatment of Childhood Disorders. Clinical EEG and Neuroscience, 40(20), 113–121. http://dx.doi.org/10.1177/155005940904000209

Chabot, R. J., Merkin, H., Wood, L. M., Davenport, T. L., & Serfontein, G. (1996). Sensitivity and specificity of QEEG in children with attention deficit or specific developmental learning disorders. Clinical EEG and Neuroscience, 27(1), 26–34. http://dx.doi.org/10.1177/155005949602700105

Christakou, A., Murphy, C. M., Chantiluke, K., Cubillo, A. I., Smith, A. B., Giampietro, V., ... Rubia, K. (2013). Disorder-specific functional abnormalities during sustained attention in youth with Attention Deficit Hyperactivity Disorder (ADHD) and with Autism. Molecular Psychiatry, 18(2), 236–244. http://dx.doi.org/10.1038/mp.2011.85

Christensen, L., & Mendoza, J. L. (1986). A method of assessing change in a single subject: an alteration of the RC index. Behavior Therapy, 17, 305–308.

Cohen, J., Cohen, P., West, S. G., & Aiken, L. S. (2003). Applied multiple regression/correlation analysis for the behavioral sciences (3rd ed.). Mahwah, NJ: Lawrence Erlbaum Associates.

Corey, D. M., Dunlap, W. P., & Burke, M. J. (1998). Averaging correlations: Expected values and bias in combined Pearson rs and Fisher’s z transformations. The Journal of General Psychology, 125(3), 245–261. http://dx.doi.org/10.1080/00221309809595548

Corsi-Cabrera, M., Galindo-Vilchis, L., del-Río-Portilla, Y., Arce, C., & Ramos-Loyo, J. (2007). Within-subject reliability and inter-session stability of EEG power and coherent activity in women evaluated monthly over nine months. Clinical Neurophysiology, 118(1), 9–21. http://dx.doi.org/10.1016/j.clinph.2006.08.013

Corsi-Cabrera, M., Solís-Ortiz, S., & Guevara, M. A. (1997). Stability of EEG inter- and intrahemispheric correlation in women. Electroencephalography and Clinical Neurophysiology, 102(3), 248–255. http://dx.doi.org/10.1016/s0013-4694(96)95179-6

Duff, J. (2004). The usefulness of quantitative EEG (QEEG) and neurotherapy in the assessment and treatment of postconcussion syndrome. Clinical EEG and Neuroscience, 35(4), 198–209.

Evans, C., Margison, F., & Barkham, M. (1998). The contribution of reliable and clinically significant change methods to evidence-based mental health. Evidence-Based Mental Health, 1(3), 70–72. http://dx.doi.org/10.1136/ebmh.1.3.70

Fernández, T., Harmony, T., Rodríguez, M., Reyes, A., Marosi, E., & Bernal, J. (1993). Test-retest reliability of EEG spectral parameters during cognitive tasks: I Absolute and relative power. International Journal of Neuroscience, 68(3–4), 255–261. http://dx.doi.org/10.3109/00207459308994280

Fonseca, L. C., Tedrus, G. M. A. S., Moraes, C. d., Machado, A. d. V., Almeida, M. P. d., & Oliveira, D. O. F. d. (2008). Epileptiform abnormalities and quantitative EEG in children with attention-deficit/hyperactivity disorder. Arquivos de Neuro-Psiquiatria, 66(3a), 462–467. http://dx.doi.org/10.1590/s0004-282x2008000400004

Friedrich, E. V. C., Suttie, N., Sivanathan, A., Lim, T., Louchart, S., & Pineda, J. A. (2014). Brain–computer interface game applications for combined neurofeedback and biofeedback treatment for children on the autism spectrum. Frontiers in Neuroengineering, 7, 21. http://dx.doi.org/10.3389/fneng.2014.00021

Gasser, T., Bächer, P., & Steinberg, H. (1985). Test-retest reliability of spectral parameters of the EEG. Electroencephalography and Clinical Neurophysiology, 60(4), 312–319. http://dx.doi.org/10.1016/0013-4694(85)90005-7

Gawel, M., Zalewska, E., Szmidt-Salkowska, E., & Kowalski, J. (2009). The value of quantitative EEG in differential diagnosis of Alzheimer’s disease and subcortical vascular dementia. Journal of the Neurological Sciences, 283(1–2), 127–133. http://dx.doi.org/10.1016/j.jns.2009.02.332

Gootjes, L., Bouma, A., Van Strien, J. W., Scheltens, P., & Stam, C. J. (2008). Attention modulates hemispheric differences in functional connectivity: Evidence from MEG recordings. NeuroImage, 30(1), 245–253. http://dx.doi.org/10.1016/j.neuroimage.2005.09.015

Gruzelier, J. H. (2014). EEG-neurofeedback for optimising performance. III: A review of methodological and theoretical considerations. Neuroscience and Biobehavioral Reviews, 44, 159–182. http://dx.doi.org/10.1016/j.neubiorev.2014.03.015

Gudmundsson, S., Runarsson, T. P., Sigurdsson, S., Eiriksdottir, G., & Johnsen, K. (2007). Reliability of quantitative EEG features. Clinical Neurophysiology, 118(10), 2162–2171. http://dx.doi.org/10.1016/j.clinph.2007.06.018

Haynes, S. N., Smith, G. T., & Hunsley, J. D. (2011). Scientific Foundations of Clinical Assessment. New York, NY: Taylor & Francis/Routledge.

Herrmann, C. S., & Demiralp, T. (2005). Human EEG gamma oscillations in neuropsychiatric disorders. Clinical Neurophysiology, 116(12), 2719–2733.

Jacobson, N. S., & Truax, P. (1991). Clinical significance: a statistical approach to defining meaningful change in psychotherapy research. Journal of Consulting and Clinical Psychology, 59(1), 12–19. http://dx.doi.org/10.1037/0022-006x.59.1.12

John, E. R. (1977). Functional Neuroscience, Vol II: Neurometrics: Clinical Applications of Quantitative Electrophysiology. Hillsdale, NJ: Lawrence Erlbaum Associates.

Keizer, A. W., Verment, R. S., & Hommel, B. (2010). Enhancing cognitive control through neurofeedback: A role of gamma band activity in managing episodic retrieval. NeuroImage, 49(4), 3404–3413. http://dx.doi.org/10.1016/j.neuroimage.2009.11.023

Knyazeva, M. G., Jalili, M., Meuli, R., Hasler, M., De Feo, O., & Do, K. Q. (2008). Alpha rhythm and hypofrontality in schizophrenia. Acta Psychiatrica Scandinavica, 118(3), 188–199. http://dx.doi.org/10.1111/j.1600-0447.2008.01227.x

Koberda, J. L., Moses, A., Koberda, P., & Koberda, L. (2013). Clinical Advantages of Quantitative Electroencephalogram (QEEG)–Electrical Neuroimaging Application in General Neurology Practice. Clinical EEG and Neuroscience, 44(4), 273–285. http://dx.doi.org/10.1177/1550059412475291

Koehler, S., Lauer, P., Schreppel, T., Jacob, C., Heine, M., Boreatti-Hümmer, A., ... Herrmann, M. J. (2009). Increased EEG power density in alpha and theta bands in adult ADHD patients. Journal of Neural Transmission, 116(1), 97–104. http://dx.doi.org/10.1007/s00702-008-0157-x

Koek, R. J., Yerevanian, B. I., Tachiki, K. H., Smith, J. C., Alcock, J., & Kopelowicz, A. (1999). Hemispheric asymmetry in depression and mania: A longitudinal QEEG study in bipolar disorder. Journal of Affective Disorders, 53(2), 109–122. http://dx.doi.org/10.1016/s0165-0327(98)00171-2

Koles, Z. J., Lind, J. C., & Flor-Henry, P. (2010). Gender differences in brain functional organization during verbal and spatial cognitive challenges. Brain Topography, 23(2), 199–204. http://dx.doi.org/10.1007/s10548-009-0119-0

Leuchter, A. F., Cook, I. A., Hunter, A. M., Cai, C., & Horvath, S. (2012). Resting-state quantitative electroencephalography reveals increased neurophysiologic connectivity in depression. PLoS ONE, 7(2), e32508. http://dx.doi.org/10.1371/journal.pone.0032508

Lynch, C. J., Uddin, L. Q., Supekar, K., Khouzam, A., Phillips, J., & Menon, V. (2013). Default mode network in childhood autism: posteromedial cortex heterogeneity and relationship with social deficits. Biological Psychiatry, 74(3), 212–219. http://dx.doi.org/10.1016/j.biopsych.2012.12.013

MATLAB (Release 2007b) [Computer software]. (2007). Natick, MA: The Math Works, Inc. Retrieved from: http://www.mathworks.com/products/new_products/release2007b.html

McEvoy, L. K., Smith, M. E., & Gevins, A. (2000). Test-retest reliability of cognitive EEG. Clinical Neurophysiology, 111(3), 457–463. http://dx.doi.org/10.1016/s1388-2457(99)00258-8

McGrew, K. S., Schrank, F. A., & Woodcock, R. W. (2007). Technical Manual. Woodcock-Johnson III Normative Update. Rolling Meadows, IL: Riverside Publishing.

Minc, D., Machado, S., Bastos, V. H., Machado, D., Cunha, M., Cagy, M., … Ribeiro, R. (2010). Gamma band oscillations under influence of bromazepam during a sensorimotor integration task: An EEG coherence study. Neuroscience Letters, 469(1), 145–149. http://dx.doi.org/10.1016/j.neulet.2009.11.062

Miskovic, V., Schmidt, L. A., Boyle, M., & Saigal, S. (2009). Regional electroencephalogram (EEG) spectral power and hemispheric coherence in young adults born at extremely low birth weight. Clinical Neurophysiology, 120(2), 231–238. http://dx.doi.org/10.1016/j.clinph.2008.11.004

Monastra, V. J., Lubar, J. F., Linden, M., VanDeusen, P., Green, G., Wing, W., … Fenger, T. N. (1999). Assessing attention deficit hyperactivity disorder via quantitative electroencephalography: An initial validation study. Neuropsychology, 13(3), 424–433. http://dx.doi.org/10.1037/0894-4105.13.3.424

Murias, M., Swanson, J. M., & Srinivasan, R. (2007). Functional connectivity of frontal cortex in healthy and ADHD children reflected in EEG coherence. Cerebral Cortex, 17(8), 1788–1799. http://dx.doi.org/10.1093/cercor/bhl089

Neuroguide (Version 2.6.4) [computer software]. St. Petersburg, FL: Applied Neuroscience, Inc.

Noachtar, S., Binnie, C., Ebersole, J., Mauguière, F., Sakamoto, A., & Westmoreland, B. (1999). A glossary of terms most commonly used by clinical electroencephalographers and proposal for the report form for the EEG findings. The International Federation of Clinical Neurophysiology. Electroencephalography and Clinical Neurophysiology, Supplement 02, 52(1), 21–41. http://dx.doi.org/10.1055/s-2003-812583

Pollock, V. E., Schneider, L. S., & Lyness, S. A. (1991). Reliability of topographic quantitative EEG amplitude in healthy latemiddle-aged and elderly subjects. Electroencephalography and Clinical Neurophysiology, 79(1), 20–26.

Rappelsberger, P., & Petsche, H. (1988). Probability mapping: Power and coherence analyses of cognitive processes. Brain Topography, 1(1), 46–54. http://dx.doi.org/10.1007/bf01129339

Ronne-Engstrom, E., & Winkler, T. (2006). Continuous EEG monitoring in patients with traumatic brain injury reveals a high incidence of epileptiform activity. Acta Neurologica Scandinavica, 114(1), 47–53. http://dx.doi.org/10.1111/j.1600-0404.2006.00652.x

Salinsky, M. C., Oken, B. S., & Morehead, L. (1991). Test-retest reliability in EEG frequency analysis. Electroencephalography and Clinical Neurophysiology, 79(5), 382–392. http://dx.doi.org/10.1016/0013-4694(91)90203-g

Shaywitz, B. A., Shaywitz, S. E., Pugh, K. R., Constable, R. T., Skudlarski, P., Fulbright, R. K., ... Gore, J. C. (1995). Sex Differences in the Functional Organization of the Brain for Language. Nature, 373, 607–609. http://dx.doi.org/10.1038/373607a0

Sheikhani, A., Behnam, H., Mohammadi, M. R., Noroozian, M., & Mohammadi, M. (2012). Detection of abnormalities for diagnosing of children with autism disorders using of quantitative electroencephalography analysis. Journal of Medical Systems, 36(2), 957–963. http://dx.doi.org/10.1007/s10916-010-9560-6

Silva, F., Arias-Carrión, O., Teixeira, S., Velasques, B., Peressutti, C., Paes, F., … Ribeiro, P. (2012). Functional coupling of sensorimotor and associative areas during a catching ball task: A qEEG coherence study. International Archives of Medicine, 5, 9. http://dx.doi.org/10.1186/1755-7682-5-9

Thatcher, R. W. (2010). Validity and reliability of quantitative electroencephalography. Journal of Neurotherapy, 14(2), 122–152. http://dx.doi.org/10.1080/10874201003773500

Thatcher, R. W. (2012). Coherence, phase differences, phase shift, and phase lock in EEG/ERP analyses. Developmental Neuropsychology, 37(6), 476–496. http://dx.doi.org/10.1080/87565641.2011.619241

Thatcher, R. W., Krause, P. J., & Hrybyk, M. (1986). Corticocortical associations and EEG coherence: A twocompartmental model. Electroencephalography and Clinical Neurophysiology, 64(2), 123–143. http://dx.doi.org/10.1016/0013-4694(86)90107-0

Thatcher, R. W., & Lubar, J. F. (2009). History of the scientific standards of qEEG normative databases. In T. H. Budzynsky, H. K. Budzynski, J. R. Evans, & A. Abarbanel (Eds.), Introduction to Quantitative EEG and Neurofeedback: Advanced theory and applications (2nd ed., pp. 29–59). San Diego, CA: Academic Press. http://dx.doi.org/10.1016/b978-0-12-374534-7.00002-2

Thatcher, R. W., North, D. M., & Biver, C. J. (2005). EEG and intelligence: Relations between EEG coherence, EEG phase delay and power. Clinical Neurophysiology, 116(9), 2129–2141. http://dx.doi.org/10.1016/j.clinph.2005.04.026

Thatcher, R. W., Walker, R. A., Biver, C., North, D., & Curtin, R. (2003). Quantitative EEG Normative databases: Validation and clinical correlation. Journal of Neurotherapy, 7(3–4), 87–122.

Thornton, K. E., & Carmody, D. P. (2009). Eyes-closed and Activation qEEG databases in predicting cognitive effectiveness and the inefficiency hypothesis. Journal of Neurotherapy, 13(1), 1–21. http://dx.doi.org/10.1080/10874200802429850

Tucker, D. M., Roth, D. L., & Bair, T. B. (1986). Functional Connections Among Cortical Regions: Topography of EEG Coherence. Electroencephalography and Clinical Neurophysiology, 63(3), 242–250. http://dx.doi.org/10.1016/0013-4694(86)90092-1

Velikova, S., Locatelli, M., Insacco, C., Smeraldi, E., Comi, G., & Leocani, L. (2010). Dysfunctional brain circuitry in obsessivecompulsive disorder: Source and coherence analysis of EEG rhythms. NeuroImage, 49(1), 977–983. http://dx.doi.org/10.1016/j.neuroimage.2009.08.015

Volf, N. V., & Razumnikova, O. M. (1999). Sex differences in EEG coherence during a verbal memory task in normal adults. International Journal of Psychophysiology, 34(2), 113–122. http://dx.doi.org/10.1016/s0167-8760(99)00067-7

Voyer, D., Voyer, S., & Bryden, M. P. (1995). Magnitude of sex differences in spatial abilities: a meta-analysis and consideration of critical variables. Psychological Bulletin, 117(2), 250–270. http://dx.doi.org/10.1037/0033-2909.117.2.250

Wada, Y., Nanbu, Y., Kadoshima, R., Jiang, Z.-Y., Koshino, Y., & Hashimoto, T. (1996). Interhemispheric EEG coherence during photic stimulation: Sex differences in normal young adults. International Journal of Psychophysiology, 22(1–2), 45–51. http://dx.doi.org/10.1016/0167-8760(96)00011-6

Wisconsin Card Sorting Test (Computer Version 2) [Computer software]. Lutz, FL: Psychological Assessment Resources, Inc.

Downloads

Published

2016-03-08

Issue

Section

Research Papers